
Appendix A Evaluation Protocol Details

The hyper-parameter search range of the constrained evaluation track is given as follow:

1. Layer: {every single layer, weighted sum}
2. Model: {one-layer 512-units MLP, one-layer 512-unit LSTM (melody extraction only),

3-layer 512-unit LSTM (source separation only), 3-encoder-3-decoder layers transformer
(lyrics transcription only)}

3. Batch size: {64}
4. Learning rate: {5e-5, 1e-4, 5e-4, 1e-3, 5e-3, 1e-2}
5. Dropout probability: {0.2}

Appendix B Detail Analysis

What have the music audio pre-trained representations learned? We observe that all the rep-
resentations have learned multiple levels of knowledge in Fig. 1. Most of the selected baselines
are particularly good at high-level music description tasks, such as genre classification and emotion
recognition. However, when pre-trained with a full supervision paradigm, the representations may
not be able to model pitch and key well, as they could overfit the supervision signal less relevant to
pitch-related information. On the contrary, SSL methods usually mitigate this issue by providing
more generalisable representations. Some representations do not support frame-level representations,
which makes it difficult to evaluate their performance on tasks such as source-separation and beat
tracking. Therefore, it is unclear how well these models have learned such information.

How can we design better pre-training strategies for music audio representation learning? As
mentioned in the above paragraph, we suggest that a good pre-training strategy needs to prevent
overfitting the supervision signal, which makes self-supervised learning a more promising approach.
Moreover, we argue that an optimal method for music pre-training should be able to scale up to larger
data and model size. Based on observations from Figure 2, it appears that larger data and model size
have a greater impact on performance than the training paradigm (generative, contrastive, or mask
prediction) at the current stage of research. Besides, stacked transformer models are good candidates
for future pre-training architecture, as they can be easily scaled up, and usually provide frame-level
representations in a well-considered design.
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Figure 3: Results Analysis Regarding Training Context Length. The performances of source separa-
tion and beat tracking tasks are ignored similar to Fig. 2.

How does context length affect performance? According to Fig. 3, the relationship between
context length and performance exhibits a rather complex and irregular pattern, for which it is
currently difficult to draw any conclusive insights. This is due to the limited number of music audio
representations available at the moment, coupled with challenges in controlling variables. However,
we are able to derive some preliminary observations when considering factors such as data size (D)
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and parameter size (N). We observe that within a context length (L) of approximately 3 to 5 seconds,
scaling up N and D can be effective, but the performance quickly saturates. Furthermore, according
to MAP-Music2Vec-95M, solely increasing the L without scaling the N and D may also lead to
performance saturation. Interestingly, when scaling up all three aspects, according to Jukebox-5B
with 23 seconds context and 60~120khr data, the performance still saturates. The underlying cause of
this saturation may be associated with the training paradigm.

Appendix C Website and Leaderboard

To accompany the MARBLE benchmark with leaderboard data and detailed resources presentation,
we build a website, which can be found at https://marble-bm.shef.ac.uk. All the resources
and comprehensible introduction of the benchmark and submission guideline are indexed on the
homepage as shown in Fig. 4. The participants can easily find the process of submitting their results
according to the guidelines. As demonstrated in Fig. 5, we provide a well-organised leaderboard for
MARBLE, where the evaluated results can be re-ranked according to different metrics and filtered by
tasks.

Figure 4: Website for the Proposed MARBLE Benchmark.
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Figure 5: Music Understanding Model Leaderboard Hosted on the MARBLE Website.
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Appendix D Details on Chord Estimation

D.1 Chord Vocabulary

Our chord vocabulary includes “none” and 35 different chords on each of the 12 root notes, 421 in
total. The root notes are listed as follows: {C Db D Eb E F Gb G Ab A Bb B}. We do not distinguish
between equal notes under the twelve equal temperaments. For example, we think that C# and Db are
the same note and have the essentially equivalent function in chord prediction. We use sharp in the
code implementation for identification but use flat in the following tables.

The following Tables of the 35 types of chords with examples and a number of samples in the datasets.

chord name maj min aug maj6 min6 7 maj7 min7 dim7 hdim7
example C:maj C:min C:aug C:maj6 C:min6 C:7 C:maj7 C:min7 C:dim7 C:hdim7

chord tones 1,3,5 1,b3,5 1,3,5 1,3,5,6 1,b3,5,7 1,3,5,b7 1,3,5,7 1,b3,5,b7 1,b3,b5,bb7 1,b3,b5,b7
chord number 1120 368 16 70 12 374 292 204 2 106

chord name 9 maj9 min9 11 sus2 sus4 maj/3 maj/5 min/b3 min/5 7/3 7/5 7/b7
example C:9 C:maj9 C:min9 C:11 C:sus2 C:sus4 C:maj/3 C:maj/5 C:min/b3 C:min/5 C:7/3 C:7/5 C:7/b7

chord tones 1,3,5,b7,9 1,3,5,7,9 1,b3,5,b7,9 1,3,5,b7,9,11 1,2,5 1,4,5 3,5,1 5,1,3 b3,5,1 5,1,b3 3,5,b7,1 5,b7,1,3 b7,1,3,5
chord number 78 22 48 8 88 44 82 264 10 82 10 44 46

chord name maj7/3 maj7/5 maj7/7 min7/b3 min7/5 min7/b7 dim7/b3 dim7/b5 dim7/bb7 hdim7/b3 hdim7/b5 hdim7/b7 N
example C:maj7/3 C:maj7/5 C:maj7/7 C:min7/b3 C:min7/5 C:min7/b7 C:dim7/b3 C:dim7/b5 C:dim7/bb7 C:hdim7/b3 C:hdim7/b5 C:hdim7/b7 No chord

chord tones 3,5,7,1 5,7,1,3 7,1,3,5 b3,5,b7,1 5,b7,1,b3 b7,1,b3,5 b3,b5,bb7,1 b5,bb7,1,b3 bb7,1,b3,b5 b3,b5,b7,1 b5,b7,1,b3 b7,1,b3,b5 No chord
chord number 6 66 14 6 30 42 0 0 0 0 6 2

These are some special or rare chords in the dataset and we use some Chord Substitutions based on
similar chords or the chord annotation for the music score instead of the ground truth chord annotation
the musician actually plays.

1. majmin7 was substituted with 7: The "majmin7" chord is equivalent to the "7" chord, so
we are making a replacement to standardize the notation.

2. minmaj7 was substituted with min7: Both chords share the root, minor third, and perfect
fifth. When mapping minmaj7 to min7, the major seventh is altered to a minor seventh,
ensuring the “minor” character of both chords remains consistent.

3. min11 was substituted with 11: Both chords are minor chords composed of the seventh and
eleventh tones. Given their infrequent occurrences, we map “min11” to the “11” chord.

4. Substitution for out-of-vocabulary colour chords: The performed chord annotations
in the GuitarSet also contain out-of-vocabulary colour chords such as (1,5)/1, (1,5,b7)/1,
(5,2,b7,4)/4. For such chords, we identify the corresponding standard chords in the instructed
chord annotations and substitute them.

5. Special Transposition Handling for Standard Chords: Map to the standard transposition
that is closest to the corresponding transposed note.

D.2 Chord Recognition Metric Definition
1. root: Evaluating chord recognition algorithms based on the root notes of the identified

chords. Only compares the root of the chords.
2. majmin: Only compares major, minor, and “no chord” labels. Any other chord types or

variations, such as 7th chords, augmented, diminished, and so on, are not considered in this
specific evaluation.

3. mirex: Compare chords along MIREX rules. A estimated chord is considered correct if it
shares at least three pitch classes in common.

4. thirds: Chords are compared at the level of major or minor thirds (root and third). For
example, both (’A:7’, ’A:maj’) and (’A:min’, ’A:dim’) are equivalent, as the third is major
and minor in quality, respectively.

5. traids: Chords are considered at the level of triads (major, minor, augmented, diminished,
suspended). In addition to the root, the quality is only considered through #5th scale degree
(for augmented chords). For example, (’A:7’, ’A:maj’) are equivalent, while (’A:min’,
’A:dim’) and (’A:aug’, ’A:maj’) are not.
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6. sevenths: Compares according to MIREX “sevenths” rules. Only major, major seventh,
seventh, minor, minor seventh and no chord labels are compared.

7. majmin_inv: Compares major/minor chords, with inversions. The bass note must exist in
the triad.

8. sevenths_inv: Compares according to MIREX “sevenths” rules, with inversions. The bass
note must exist in the chord.

During the evaluation process, frame-level predictions are directly merged to event-level by the
mir_eval function so we do not apply any post-processing to the prediction.

Appendix E Details on Lyrics Transcription

E.1 MulJam2.0 dataset

MulJam2.0 is derived from MulJam, featuring larger and more refined human annotation on the test
set. We select 34 songs from the training set and obtain human lyrics annotation to expand the test
set. For each language, 20 songs are randomly selected from the original training set to form the
validation set. A few songs are excluded due to poor alignment for obtaining the line-level annotations
(For details, please refer to [71]). We also exclude the songs in the training and validation sets that
were present in Jamendo (3 songs in training and 1 song in validation), ensuring that the songs in the
evaluation datasets remain unseen during training. The numbers of songs by language can be found
in Tab. 6.

The human annotation is performed at the song level. We applied similar procedures to obtain
line-level annotations, as was done for the training set in MulJam. We use the timestamps provided
by Whisper [44], and align the lines predicted by Whisper with the human annotation. As in [71]
, lines with unusually high character rates (exceeding 37.5 Hz) are removed. However, for the test
set we choose not to filter by the similarity between the aligned text pairs, to prevent introducing
excessive bias in favor of Whisper predictions.

Table 6: Number of songs in MulJam2.0 and Jamendo datasets.

Dataset MulJam2.0 Jamendo
Split Train Valid Test Test

English (en) 3557 20 28 20
French (fr) 977 19 19 20
Spanish (es) 584 19 13 20
German (de) 107 20 3 20
Italian (it) 278 20 7 -
Russian (ru) 106 16 4 -
Total 5609 114 74 80

E.2 Language Model and Tokenizer

The language model (LM) is trained using a speechbrain [48] language model recipe 12. The model
comprises of 12 transformer encoder layers, with an attention dimension of 768, 12 attention heads,
and a position-wise feed-forward layer dimension of 3072. The LM is trained using cross-entropy
loss for 20 epochs, and the model with the lowest loss is selected.

The target character set is the union of the character sets from 6 languages, resulting in a total of 91
tokens: ✏, <bos>, <eos>, <unk>, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W,
X, Y, Z, À, Á, Â, Ä, Æ, Ç, È, É, Ê, Ë, Ì, Í, Î, Ï, Ñ, Ò, Ó, Ô, Ö, Ù, Ú, Û, Ü, Œ, Ÿ, È, , , , , , ,

, , , , , , , , , , , , , , , , , , , , , , , , , .

E.3 Training Details

The beam search used for validation and testing incorporates a combination of CTC probabilities, LM
probabilities (applied only at test time), and S2S probabilities. We assign a weight of 0.4 to the CTC
probabilities and 0.3 to the LM probabilities. During validation, we utilize a beam size of 10 and

12https://github.com/speechbrain/speechbrain/blob/develop/recipes/LibriSpeech/LM/hparams/transformer.yaml
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calculate Word Error Rate every 5 epochs to optimize processing efficiency. For thorough evaluation,
we scale up the beam size to 40 during the testing phase. The accuracy of the S2S branch output
is continually monitored to determine whether early stopping should be triggered and to facilitate
model selection.

E.4 Results and Discussion

The results of multilingual lyrics transcription using different pretrained features can be found in
Tab. 7. In addition to MulJam, we also present WERs on the Multilingual Jamendo evaluation set [13].
This dataset consists of 80 songs in 4 languages: English, French, Spanish, and German. While Italian
and Russian songs are not included, Jamendo’s human-annotated line-level annotation aligns well
with our evaluation setting. For comparison, we reference the state-of-the-art model Whisper [44], a
robust model designed for speech recognition but also performs effectively on singing voice. Whisper
has been trained on an extensive corpus of multilingual and multitask supervised data collected from
the internet. It is also the foundation of the MulJam dataset.

Lyrics transcription is a challenging task that involves detecting vocal pronunciations in the presence
of background music and making the most probable predictions based on linguistic knowledge. The
multilingual context makes this task even more demanding. When performing lyrics transcription
with SSL features, it is essential that these features capture clear vocal information, and that the
backend provides robust inference to generate coherent text from the vocal pronunciations. Achieving
this with SSL features is indeed a significant challenge. The results presented in Table 7 indicate that
there is room for improvement in this task.

Among the six languages we considered, English, French, and Spanish, which have a larger number
of songs than the other three, yield better results. This suggests that there may be an impact from the
imbalanced training data. Russian, on the other hand, produces the worst result for two main reasons:
1. Russian employs the Cyrillic writing system, which has its own set of characters. 2. The training
data for Russian is insufficient for the model to establish a connection between the pronunciation
rules of Cyrillic and Latin alphabets.

The MulJam test set is human-annotated at the song level but relies on the alignment with Whisper
results to derive line-level annotations. Therefore, it is worth noting that bias is introduced, as the
alignment is reliable only when the human annotation closely matches the Whisper’s prediction.

Table 7: Multilingual lyrics transcription results on MulJam and Jamendo.

Language English French Spanish German Italian Russian Whole
Metric CER WER CER WER CER WER CER WER CER WER CER WER CER WER

MulJam2.0 test
MAP-Music2Vec [31] 54.7 79.2 58.3 90.9 43.2 83.7 63.4 99.5 53.0 91.9 101.6 125.6 56.4 87.8
MAP-MERT-v0-95M [30] 48.7 71.2 55.5 85.4 41.0 80.1 65.9 100.9 49.1 86.3 99.5 124.9 52.6 82.3
MAP-MERT-v0-95M-public [30] 49.0 71.2 55.3 85.4 39.0 76.6 63.5 99.9 50.3 90.3 104.7 129.3 52.5 82.7
MAP-MERT-v1-95M [29] 45.5 66.5 52.5 81.9 38.2 73.9 58.8 93.2 44.4 81.6 96.1 117.8 49.4 77.9
MAP-MERT-v1-330M [29] 45.5 65.9 50.7 79.6 35.9 71.9 58.3 93.1 42.4 80.3 100.5 125.5 48.5 77.0
SOTA [44] 33.2 44.8 52.9 70.1 29.9 43.8 36.5 53.0 38.1 58.5 34.7 53.7 39.5 54.8

Jamendo
MAP-Music2Vec [31] 49.0 73.6 55.3 87.1 50.3 90.7 67.8 108.8 - - - - 55.7 89.6
MAP-MERT-v0-95M [30] 48.5 71.8 54.0 85.1 49.3 87.6 67.6 108.1 - - - - 54.8 87.6
MAP-MERT-v0-95M-public [30] 46.9 71.5 52.0 81.5 44.8 82.8 66.3 106.8 - - - - 52.6 85.2
MAP-MERT-v1-95M [29] 43.6 67.2 49.4 79.6 43.2 80.6 62.1 103.3 - - - - 49.6 82.2
MAP-MERT-v1-330M [29] 45.7 68.8 50.2 80.1 44.1 82.8 61.0 102.3 - - - - 50.3 83.1
SOTA [44] 24.9 39.3 29.2 49.9 21.2 41.7 25.8 46.6 - - - - 25.4 44.4
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