
Figure 1. Illustration of controllers’ positional signal masking.

As promised in our main paper, this supplemental doc-
ument provides detailed explanation of our input data pro-
cessing and evaluation metrics. In addition, we demonstrate
more qualitative results here.

1. Input signal processing
Head Mounted Displays (HMD) estimate their 3D position
and orientation using a combination of inside-out cameras
with SLAM algorithms and inertial measurement unit (IMU)
sensors for precise motion tracking. Conversely, most hand
controllers lack inside-out cameras, requiring their position
to be tracked by the HMD, while their orientation is esti-
mated using onboard IMU sensors. This limitation makes
the hand controllers’ positional signal unreliable when the
controllers are outside the HMD’s field of view or occluded,
as they can no longer be accurately tracked by HMD. As a
result, the estimation of 3D human motion is impacted, since
existing models [1–3, 5, 6, 13] inherently learn to predict
users’ hand positions based on the controllers’ positional sig-
nals, making their predictions vulnerable to tracking errors.

To enhance robustness against this issue, we incorporate
random masking of the controllers’ positions during training.
Figure 1 illustrates our approach to input signal processing.
The input signals include the 3D position sp, 3D orientation
so, linear velocity ṡp, and angular velocity ṡo of each device
as input signal. We divide these signals into three compo-
nents: (1) the position of the right controller sp,rctr, (2) the
position of the left controller sp,lctr, and (3) all remaining
signals srest. Each component is independently projected
into an embedding space, where we apply masking to the
position embeddings of the left and right hand controllers
using the tracking mask m:

m =

{
1 if controller is tracked,
0 otherwise.

To generate synthetic masking during training, we ap-
plied the following approach: with a 10% probability, both
controllers were masked out across all frames. For 60% of

Figure 2. Illustration of limb length condition. See text.

cases, no masking was applied to either controller. In the
remaining 30%, each controller was individually masked for
randomly selected consecutive frames, where the length of
the masked frames followed a Gaussian distribution with a
standard deviation of 10.

When testing our system on real data captured by the
Meta Quest 3, we directly utilized the position flag pro-
vided by the OpenXR API. Empirical evaluations showed
that training EgoMDM with synthetic masking significantly
enhances the system’s robustness to tracking errors in the
controllers.

2. Analytical limb IK
Following HybrIK’s [7, 8] insight that 3D joint angles can
be analytically computed from the body joints’ 3D position
and twist angle, we reconstruct joint angles from P̂global

and θtwist. However, HybrIK solves the IK problem from
the pelvis outward, leading to cumulative position errors
along the limb joints due to slight mismatches between the
predicted motion and decoding avatar’s limb lengths. To
address these errors, our analytical IK module first refines
the positions of mid-joints (i.e., knees and elbows) to match
limb length conditions precisely. Consider a mid-joint pmid

with its corresponding child joint pchild and parent joint
pparent as well as bone lengths llower and luper connecting
these three joints. For example, in case of the left knee as
the mid-joint, pc is the left ankle, pparent is the left hip,
llower and lupper are the lengths of left shank and thigh. As
introduced by MANIKIN [6], the set of mid-joint positions
satisfying bone-length condition can be formulated as an
orbit condition (see Fig 2):

{p̃mid} = {pparent + lupper · (u⃗ cosϕ+ v⃗ sinϕ)} ,

s.t. u⃗ =
pchild − pparent

||pchild − pparent||
, v⃗ ⊥ u⃗ and ∥v⃗∥ = 1.

Here, the angle ϕ can be computed as:

ϕ = arccos

(
l2upper + ||pchild − pparent||2 − l2lower

2 lupper ||pchild − pparent||

)
.



Then, we can choose the refined mid-joint position p̂mid

among the orbit circle that is closest to the initial prediction
pmid,

p̂mid = arg min
p̃mid

||p̃mid − pmid||.

The final step is to compute the rotation of each limb segment
R, following HybrIK’s analytical solution. Let l⃗ and l⃗0 be
the 3D vectors of the current limb pose and the neutral pose,
where l⃗0 is the rotation axis of the twist angle. Then, the
swing angle θswing that rotates around w⃗ = (⃗l0× l⃗) satisfies:

cos θswing =
l⃗0 · l⃗

||⃗l0|| ||⃗l||
, sin θswing =

||⃗l0 × l⃗||
||⃗l0|| ||⃗l||

.

We then compute the limb rotation R = RswingRtwist,
where the rotation matrices, Rswing and Rtwist, can be de-
rived by the Rodrigues formula.

3. Evaluation metrics
We use the AMASS dataset [9], a large-scale human motion
capture dataset, to train and evaluate EgoMDM. To thor-
oughly assess our model’s performance and compare it with
existing methods, we employ a variety of metrics that mea-
sure both tracking accuracy and the quality of the generated
motion.

3.1. Tracking accuracy metrics.

To evaluate motion tracking accuracy, we adopt widely-used
metrics that quantify the geometric similarity between pre-
dicted and ground-truth motion. These include the Mean Per
Joint Position Error (MPJPE, in cm), which calculates the
average Euclidean distance between predictions and ground-
truth labels across all joints and time frames. Notably, no
alignment was applied when computing MPJPE. Addition-
ally, we decompose the position error (PE) into separate
components: upper-body position error (UPE), lower-body
position error (LPE), hand position error (HPE), and root po-
sition error (RPE). Following prior works [1, 2, 13], we use
14 joints—including spines, shoulders, elbows, wrists, neck,
and head—for UPE, and 8 joints—including hips, knees, an-
kles, and toes—for LPE. We further use temporal coherence
metrics: Mean Per Joint Velocity Error (MPJVE, in cm/s)
and Jitter (in 102 m/s−3). MPJVE measures the L2 distance
between the first-order time derivatives of the predicted and
ground-truth joint positions, capturing the similarity of mo-
tion flows. Jitter, on the other hand, is computed as the L2

norm of the third-order time derivatives of the predicted joint
positions, indicating the smoothness of the predicted motion.

3.2. Motion quality metrics.

We use Skate metric (in cm) to quantify the average horizon-
tal displacement of the foot while it is in contact with the
ground. Ground contact labels are computed based on the
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# Sampling Steps MPJPE MPJVE Jitter Skate Ground

2 4.92 21.30 1.49 0.21 1.27
5 4.89 20.74 1.51 0.19 1.27
10 4.95 20.58 1.55 0.19 1.28
50 5.15 20.97 1.56 0.17 1.33
100 5.24 21.25 1.57 0.17 1.33

Table 1. Ablation experiments of the number of DDIM [10] sam-
pling steps during inference. The best and second-best results are
in bold and underline.

ankle and toe velocities of the ground truth motion, using
a threshold of 1cm/frame. To evaluate the feasibility of
the predicted motion relative to the ground plane, we use
the Ground metric (in cm). Ground represents the average
of floor penetration and floating, where both are calculated
using the distance between the lowest joint of the predicted
motion and the ground plane. Moreover, inspired by text-
to-motion synthesis methods [4, 11, 12], we evaluate the
synthesized motion using the Fréchet Inception Distance
(FID) score and Diversity (in cm). FID compares the dis-
tribution of the latent spaces of predicted and ground-truth
motion, using a pretrained motion encoder [4] to project 3D
human motion into the latent space after aligning the motion
framerate. Diversity measures the variation in lower-body
joint positions between motion samples generated from the
same input signal. We compare Diversity exclusively with
generative models [2, 3], randomly sampling 16 initial noise
vectors to produce different motion samples.

4. Number of sampling steps during inference

We conducted a quantitative comparison of different sam-
pling steps to determine an optimal balance between motion
tracking accuracy (MPJPE, MPJVE, Jitter) and physical fea-
sibility (Skate, Ground). Table 1 suggests that 5 DDIM [10]
sampling steps are provide an optimal balance, achieving
strong performance across most evaluation metrics while
maintaining real-time inference speed.

We conducted quantitative comparison of EgoMDM by
changing the number of diffusion sampling steps during
inference (Table 1). While EgoMDM was trained with 1,000
sampling steps, we take DDIM [10] sampling strategy with
a subset of diffusion steps during inference. We found that 5
DDIM sampling steps are the optimal design as it provides
not only the best tracking accuracy (MPJPE) but also ended
up with physically plausible and smooth motion generation.

5. Qualitative results

We present more visual comparison of EgoMDM with state-
of-the-art model, HMD-Poser [1] in Figure 3. We compute
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Figure 3. Additional qualitative comparison with state-of-the-art method [1].

vertex-to-vertex error and colored each vertex accordingly.
The proposed method shows better geometric similarity with
the ground truth motion, while exhibiting less ground penen-
tration or floating compared to HMD-Poser.

6. Failure cases
EgoMDM synthesizes full-body human motion from sparse
egocentric inputs (3-point signals), which inherently faces
challenges in capturing accurate lower-body motion due to
limited positional input. As illustrated in Figure 4, while
upper-body joints align closely with ground truth, lower-
body joints exhibit noticeable deviations. These deviations
arise from the intrinsic ambiguity of reconstructing lower-
body poses using limited tracking signals. Nevertheless, the
predicted lower-body movements remain plausible and phys-
ically realistic, demonstrating the robustness of our approach

in maintaining coherent motion predictions despite these
limitations.
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