
Supplementary Materials

Anonymous Author(s)
Affiliation
Address
email

1 Further discussions1

1.1 Candidate feature set2

We presented an approach for learning interpretable reward models by automatically selecting non-3

linear functions as reward components. In this work, the candidate feature set was formed from the4

higher moments of state features. However, the candidate feature set could also incorporate other5

basis functions such as radial basis functions, Fourier series, etc. This allows for the incorporation6

of task-specific features that may be relevant to the reward function. Our proposed feature selection7

method for the reward model scales linearly with additional features. Additionally, the computation8

of feature expectations for a feature can be vectorized for the given data. Therefore, feature selection9

is computationally efficient and allows for an increase in the candidate feature set.10

1.2 Comparison to Adversarial Methods11

We have demonstrated the improvement of the policy trained with the proposed reward model com-12

pared to the adversarial inverse reinforcement learning method (AIRL) with a significantly smaller13

number of reward model parameters. Adversarial methods train a neural network to predict if sam-14

ples are from one of two classes: expert or non-expert data. However, within expert data, adversarial15

methods are not trained to differentiate between expert samples if some are more probable or better16

than others. In contrast, using the proposed unsupervised feature selection, we identify the features17

that help to predict the probability of trajectories. Therefore, we anticipate that these features have18

stronger predictive power for the reward signal.19

2 Limitations20

One limitation of our work is the linear model for the reward function. However, our approach may21

be extended to nonlinear reward functions. In that case, we can incorporate mutual information be-22

tween feature expectations and trajectories instead of a linear correlation metric for feature selection.23

We aim to address this extension in future works.24

Another limitation of our work is the experimental design. We have not conducted experiments with25

real robots and human demonstrations. However, we validated our method using complex robotic26

environments. In future works, we plan to apply the method to real-world tasks and learn rewards27

from demonstrations.28

3 Details of Experiments29

Below are the short descriptions of the benchmark tasks and the corresponding ground-truth reward30

functions:31

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.

1. Hopper-v4 The task of this one-legged robot is to move forward by applying torques to32

three hinges. The true reward is calculated using distance moved forward and high torque33

values are penalised.34

2. Ant-v4 The task of this robot consisting of three links is to move forward by applying35

torques to rotors. The true reward is calculated using distance moved forward and high36

torque values are penalised.37

3. Walker2d-v4 The task of this robot is to move forward by applying torques to its six38

hinges. The true reward is calculated using distance moved forward and high torque values39

are penalised.40

4. Half-Cheetah-v4 The task of this two-dimensional robot consisting of 9 body parts is to41

move forward by applying torques to joints, hinges, and feet. The true reward is calculated42

using distance moved forward and high torque values are penalised.43

Tasks dim(S) dim(A)
Hopper 11 3
Walker 17 6

HalfCheetah 17 6
Ant 27 8

Table 1: State-action dimensionality of the tasks

An additional challenge in reward learning is that the features composing the ground-truth rewards44

are not directly available. For example, the direct components of the ground-truth reward, partic-45

ularly the x-coordinate and torque values, are hidden from the states and, consequently, from the46

reward model. Instead, we infer the reward from the available indirect features like velocity or joint47

angles.48

4 Missing Proofs49

1. Computation of trajectory probability50

The probability of trajectory τ = {s1, s2, · · · , sn} is given as51

P (τ) = P (s1)P (s2|s1)P (s3|s2) . . . P (sn|sn−1). (1)

After applying the logarithm to both sides and simplifying the terms, we get52

logP (τ) = logP (s1) +

n−1∑
t=1

(logP (st, st+1)− logP (st)) (2)

Here, conditional state probability P (st+1|st) can be written as P (st+1|st) =53

P (st, st+1)/P (st). Then:54

P (τ) = P (s1)
P (s1, s2)

P (s1)

P (s2, s3)

P (s2)
. . .

P (sn−1, sn)

P (sn−1)
(3)

After applying the logarithm to both sides, we get:55

logP (τ) = logP (s1) + log
P (s1, s2)

P (s1)
+ log

P (s2, s3)

P (s2)
+ . . .+ log

P (sn−1, sn)

P (sn−1)
(4)

= logP (s1) +

n−1∑
t=1

log
P (st, st+1)

P (st)
(5)

= logP (s1) +

n−1∑
t=1

(logP (st, st+1)− logP (st)) (6)

(7)

2

2. Learning of reward weights:56

θ∗ = argmax
θ

∑
τ∈D

logP (τ |θ) (8)

To find the optimal weights θ, we take the derivative of log-likelihood that is given by:57

∇L(θ) = ∇
∑
τ∈D

log

(
eθ

Tϕ(τ)

Z(θ)

)
(9)

= ∇
∑
τ∈D

(
θTϕ(τ)− logZ(θ)

)
(10)

=
∑
τ∈D

ϕ(τ)−∇ logZ(θ) (11)

=
∑
τ∈D

ϕ(τ)− 1

Z(θ)

∑
τ ′∈T

ϕ(τ ′)eθ
Tϕ(τ ′) (12)

=
∑
τ∈D

ϕ(τ)−
∑
τ∈T

p(τ |θ)ϕ(τ) (13)

≈ µe −
m∑
i=1

∑
si∈τ

ϕ(si) (14)

5 Hyperparameters58

HalfCheetah Walker Hopper Ant
Number of expert trajs 150 150 100 150
Epochs 50 50 50 50
Learning rate 0.05 0.03 0.05 0.03
Learning decay 0.985 0.99 0.99 0.985
Total RL timesteps 1e6 1e6 1e6 1e6
Discount factor 0.99 0.99 0.99 0.99
Number of parallel envs 4 4 4 4
Batch size 1024 256 512 256
Number of nodes (MLP) 256x2 256x2 256x2 256x2

Table 2: Training hyperparameters.

3

	Further discussions
	Candidate feature set
	Comparison to Adversarial Methods

	Limitations
	Details of Experiments
	Missing Proofs
	Hyperparameters

