1

o © ® N o 0o b~ W

20

21
22
23
24

25
26
27
28

29

30
31

Supplementary Materials

Anonymous Author(s)
Affiliation
Address

email

1 Further discussions

1.1 Candidate feature set

We presented an approach for learning interpretable reward models by automatically selecting non-
linear functions as reward components. In this work, the candidate feature set was formed from the
higher moments of state features. However, the candidate feature set could also incorporate other
basis functions such as radial basis functions, Fourier series, etc. This allows for the incorporation
of task-specific features that may be relevant to the reward function. Our proposed feature selection
method for the reward model scales linearly with additional features. Additionally, the computation
of feature expectations for a feature can be vectorized for the given data. Therefore, feature selection
is computationally efficient and allows for an increase in the candidate feature set.

1.2 Comparison to Adversarial Methods

We have demonstrated the improvement of the policy trained with the proposed reward model com-
pared to the adversarial inverse reinforcement learning method (AIRL) with a significantly smaller
number of reward model parameters. Adversarial methods train a neural network to predict if sam-
ples are from one of two classes: expert or non-expert data. However, within expert data, adversarial
methods are not trained to differentiate between expert samples if some are more probable or better
than others. In contrast, using the proposed unsupervised feature selection, we identify the features
that help to predict the probability of trajectories. Therefore, we anticipate that these features have
stronger predictive power for the reward signal.

2 Limitations

One limitation of our work is the linear model for the reward function. However, our approach may
be extended to nonlinear reward functions. In that case, we can incorporate mutual information be-
tween feature expectations and trajectories instead of a linear correlation metric for feature selection.
We aim to address this extension in future works.

Another limitation of our work is the experimental design. We have not conducted experiments with
real robots and human demonstrations. However, we validated our method using complex robotic
environments. In future works, we plan to apply the method to real-world tasks and learn rewards
from demonstrations.

3 Details of Experiments

Below are the short descriptions of the benchmark tasks and the corresponding ground-truth reward
functions:

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.

32
33
34

35
36
37

38
39
40

41
42
43

44
45
46
47
48

50

51

52

53
54

55

1. Hopper-v4 The task of this one-legged robot is to move forward by applying torques to
three hinges. The true reward is calculated using distance moved forward and high torque
values are penalised.

2. Ant-v4 The task of this robot consisting of three links is to move forward by applying
torques to rotors. The true reward is calculated using distance moved forward and high
torque values are penalised.

3. Walker2d-v4 The task of this robot is to move forward by applying torques to its six
hinges. The true reward is calculated using distance moved forward and high torque values
are penalised.

4. Half-Cheetah-v4 The task of this two-dimensional robot consisting of 9 body parts is to
move forward by applying torques to joints, hinges, and feet. The true reward is calculated
using distance moved forward and high torque values are penalised.

Tasks dim(S) | dim(A)
Hopper 11 3
Walker 17 6

HalfCheetah 17 6
Ant 27 8

Table 1: State-action dimensionality of the tasks

An additional challenge in reward learning is that the features composing the ground-truth rewards
are not directly available. For example, the direct components of the ground-truth reward, partic-
ularly the x-coordinate and torque values, are hidden from the states and, consequently, from the
reward model. Instead, we infer the reward from the available indirect features like velocity or joint
angles.

4 Missing Proofs

1. Computation of trajectory probability

The probability of trajectory 7 = {s1, s2,- - , S, } is given as
P(1) = P(s1)P(s2]s1)P(s3]s2) ... P(sn|$n—1)- ()
After applying the logarithm to both sides and simplifying the terms, we get
n—1
log P(7) =log P(s1) + Z (log P(s¢, $¢41) — log P(s¢)) (2)
t=1

Here, conditional state probability P(s;y1]s:) can be written as P(siy1]s:) =
P(St78t+1)/P(8t). Then:

P(s1,82) P(s2,s3) P(sp-1,8n)

P(7) = P(s 3
)= PE)"500 Plsa) " Plony) ©)
After applying the logarithm to both sides, we get:
P(s1,5s2) P(s9,s3) P(spn—1,5n)
log P(1) =log P(s1) + log ————~ +log————=+ ...+ log————— 4
g P(7) =log P(s1) + log Ps) &~ P(sy) e P @
n—1
P(st, s141)
=log P(s1) + log————— (5
g P(s1) ;g) ©
n—1
=log P(s1) + Y (log P(st, 5141) — log P(s;)) (6)
t=1
(N

56 2. Learning of reward weights:

0* = arg max Z log P(7|0) 8)
TeD
57 To find the optimal weights 0, we take the derivative of log-likelihood that is given by:
To(r)
=V log <))
T€D
=V Y (07¢(r) —log Z(9)) (10)
TeD
=Y ¢(r) - Vieg Z(0) (11)
TED
=2 9) = g 2 9)" (12)
TeD T'eT
= o(r) - Zp 710)¢(7) (13)
TeD TET
=D > (si) (14)
i=1si€T
ss 5 Hyperparameters
HalfCheetah | Walker | Hopper | Ant
Number of expert trajs 150 150 100 150
Epochs 50 50 50 50
Learning rate 0.05 0.03 0.05 0.03
Learning decay 0.985 0.99 0.99 0.985
Total RL timesteps le6 le6 le6 le6
Discount factor 0.99 0.99 0.99 0.99
Number of parallel envs | 4 4 4 4
Batch size 1024 256 512 256
Number of nodes (MLP) | 256x2 256x2 | 256x2 | 256x2

Table 2: Training hyperparameters.

	Further discussions
	Candidate feature set
	Comparison to Adversarial Methods

	Limitations
	Details of Experiments
	Missing Proofs
	Hyperparameters

