
Table 2: Formulations that are invariant to the choice of the noise schedules. The maximum likelihood
training loss w.r.t. λ is equivalent to the objectives in [10, 41], and the exact solution of the diffusion
ODEs are proposed in Proposition 3.1.

Method Invariance Formulation

Maximum likelihood training
∫ λ0

λT

Eq0(x0)Eϵ∼N (0,I)

[
∥ϵθ(x̂λ, λ)− ϵ∥22

]
dλ

Sampling by diffusion ODEs x̂λt =
α̂λt

α̂λs

x̂λs − α̂λt

∫ λt

λs

e−λϵ̂θ(x̂λ, λ)dλ

A Sampling with Invariance to the Noise Schedule

In this section, we discuss more about the exact solution in Proposition 3.1 and give some insights
about the formulation. Below we firstly restate the proposition w.r.t. λ (i.e. the half-logSNR).

Proposition 3.1 (Exact solution of diffusion ODEs). Given an initial value x̂λs
at time s with the

corresponding half-logSNR λs, the solution x̂λt
at time t of diffusion ODEs in Eq. (2.7) with the

corresponding half-logSNR λt is:

x̂λt
=

αt

αs
x̂λs
− αt

∫ λt

λs

e−λϵ̂θ(x̂λ, λ)dλ. (A.1)

In the following subsections, we will show that such formulation decouples the model ϵθ from
the specific noise schedule, and thus is invariant to the noise schedule. Moreover, such change-of-
variable for λ in Proposition 3.1 is highly related to the maximum likelihood training of diffusion
models [10, 41]. We show that both the maximum likelihood training and the sampling of diffusion
models have invariance formulations that are independent of the noise schedule.

A.1 Decoupling the Sampling Solution from the Noise Schedule

In this section, we show that Proposition 3.1 can decouples the exact solutions of the diffusion ODEs
from the specific noise schedules (i.e. choice of the functions αt = α(t) and σt = σ(t)). Namely,
given a starting point λs, a ending point λt, an initial value x̂λs

at λs and a noise prediction model
ϵ̂θ, the solution of x̂λt

is invariant of the noise schedule between λs and λt.

We firstly consider the VP type diffusion models, which is equivalent to the original DDPM [2, 3].
For VP type diffusion models, we always have α2

t + σ2
t = 1, so defining the noise schedule is

equivalent to defining the function αt = α(t) (For example, DDPM [2] uses a noise schedule such
that β(t) = d logαt

dt is a linear function of t, and i-DDPM [16] uses a noise schedule such that

β(t) = d logαt

dt is a cosine function of t). As λt = logαt − log σt, we have αt =
√

1
1+e−2λt

and

σt =
√

1
1+e2λt

. Thus, we can directly compute the αt and σt for a given λt. Denote α̂λ :=
√

1
1+e−2λ ,

we have

x̂λt
=

α̂λt

α̂λs

x̂λs
− α̂λt

∫ λt

λs

e−λϵ̂θ(x̂λ, λ)dλ. (A.2)

We should notice that the integrand e−λϵ̂θ(x̂λ, λ) is a function of λ, so its integral from λs to λt is
only dependent on the starting point λs, the ending point λt and the function ϵ̂θ, which is independent
of the intermediate values. As other coefficients (α̂λs

and α̂λt
) are also only dependent on the starting

point λs and the ending point λt, we can conclude that x̂λt
is invariant of the specific choice of the

noise schedules. Intuitively, this is because we converts the original integral of time t in Eq. (3.1)
to the integral of λ, and the functions f(t) and g(t) are converted to an analytical formulation e−λ,
which is invariant to the specific choices of f(t) and g(t). Finally, for other types of diffusion models
(such as the VE type and the subVP type), they are all equivalent to the VP type by equivalently
rescaling the noise prediction models, as proved in [10]. Therefore, the solutions of these types also
have such property.

14

In summary, Proposition 3.1 decouples the solution of diffusion ODEs from the noise schedules,
which gives us an opportunity to design tailor-made samplers for DPMs. In fact, as shown in
Sec. 3.2, the only approximation of the proposed DPM-Solver is about the Taylor expansion of the
neural network ϵ̂θ w.r.t. λ, and DPM-Solver analytically computes other coefficients (which are
corresponding to the specific noise schedules). Intuitively, DPM-Solver keeps the known information
as much as possible, and only approximates the intractable integral of the neural network, so it can
generate comparable samples within much fewer steps.

A.2 Choosing Time Steps for λ is Invariant to the Noise Schedule

As mentioned in Appendix A.1, the formulation of Proposition 3.1 decouples the sampling solution
from the noise schedule. The solution depends on the starting point λs and the ending point λt, and
is invariant to the intermediate noise schedule. Similarly, the updating equations of the algorithm
of DPM-Solver are also invariant to the intermediate noise schedule. Therefore, if we have chosen
the time steps {λi}Mi=0, then the solution of DPM-Solver is also determined and is invariant to the
intermediate noise schedule.

A simple way for choosing time steps for λ is uniformly splitting [λT , λϵ], which is the setting in our
experiments. However, we believe that there exists more precise ways for choosing the time steps,
and we leave it for future work.

A.3 Relationship with the Maximum Likelihood Training of Diffusion Models

Interestingly, the maximum likelihood training of diffusion SDEs in continuous time also has such
invariance property [10]. Below we briefly review the maximum likelihood training loss of diffusion
SDEs, and then propose a new insight for understanding diffusion models.

Denote the data distribution as q0(x0), the distribution of the forward process at each time t as qt(xt),
the distribution of the reverse process at each time t as pt(xt) with pT = N (0, I). In [3], it is proved
that the KL-divergence between q0 and p0 can be bounded by a weighted score matching loss:

DKL(q0 ∥ p0) ≤ DKL(qT ∥ pT)+
1

2

∫ T

0

g2(t)

σ2
t

Eq0(x0)Eϵ∼N (0,I)

[
∥ϵθ(xt, t)−ϵ∥22

]
dt+C, (A.3)

where xt = αtx0 + σtϵ and C is a constant independent of θ. As shown in Sec. 3.1, we have

g2(t) =
dσ2

t

dt
− 2

d logαt

dt
σ2
t = 2σ2

t

(
d log σt

dt
− d logαt

dt

)
= −2σ2

t

dλt

dt
, (A.4)

so by applying change-of-variable w.r.t. λ, we have

DKL(q0 ∥ p0) ≤ DKL(qT ∥ pT) +
∫ λ0

λT

Eq0(x0)Eϵ∼N (0,I)

[
∥ϵθ(x̂λ, λ)− ϵ∥22

]
dλ+ C, (A.5)

which is equivalent to the importance sampling trick in [41, Sec. 5.1] and the continuous-time
diffusion loss in [10, Eq. (22)]. Compared to Proposition 3.1, we can find that the sampling and the
maximum likelihood training of diffusion models can both be converted to an integral w.r.t. λ, such
that the formulation is invariant to the specific noise schedules, and we summarize it in Table 2. Such
invariance property for both training and sampling brings a new insight for understanding diffusion
models. For instance, we can directly define the noise prediction model ϵθ w.r.t. the (half-)logSNR
λ instead of the time t, then the training and sampling for diffusion models can be done without
further choosing any ad-hoc noise schedules. Such finding may unify the different ways of the
training and the inference of diffusion models, and we leave it for future study.

B Proof of Theorem 3.2

B.1 Assumptions

Throughout this section, we denote xs as the solution of the diffusion ODE Eq. (2.7) starting from
xT . For DPM-Solver-k we make the following assumptions:

15

Assumption B.1. The total derivatives dj ϵ̂θ(x̂λ,λ)
dλj (as a function of λ) exist and are continuous for

0 ≤ j ≤ k + 1.
Assumption B.2. The function ϵθ(x, s) is Lipschitz w.r.t. to its first parameter x.
Assumption B.3. hmax = O(1/M).

We note that the first assumption is required by Taylor’s theorem Eq. (3.6), and the second assumption
is used to replace ϵθ(x̃s, s) with ϵθ(xs, s) + O(xs − x̃s) so that the Taylor expansion w.r.t. λs is
applicable. The last one is a technical assumption to exclude a significantly large step-size.

B.2 General Expansion of the Exponentially Weighted Integral

Firstly, we derive the Taylor expansion of the exponentially weighted integral. Let t < s and then
λt > λs. Denote h := λt − λs, and the k-th order total derivative ϵ̂

(k)
θ (x̂λ, λ) :=

dk ϵ̂θ(x̂λ,λ)
dλk . For

n ≥ 0, the n-th order Taylor expansion of ϵ̂θ(x̂λ, λ) w.r.t. λ is

ϵ̂θ(x̂λ, λ) =

n∑
k=0

(λ− λs)
k

k!
ϵ̂
(k)
θ (x̂λs

, λs) +O(hn+1). (B.1)

To expand the exponential integrator, we further define [31]:

φk(z) :=

∫ 1

0

e(1−δ)z δk−1

(k − 1)!
dδ, φ0(z) = ez (B.2)

and it satisfies φk(0) =
1
k! and a recurrence relation φk+1(z) =

φk(z)−φk(0)
z . By taking the Taylor

expansion of ϵ̂θ(x̂λ, λ), the exponential integrator can be rewritten as∫ λt

λs

e−λϵ̂θ(x̂λ, λ)dλ =
σt

αt

n∑
k=0

hk+1φk+1(h)ϵ̂
(k)
θ (x̂λs

, λs) +O(hn+2). (B.3)

So the solution of xt in Eq. (3.4) can be expanded as

xt =
αt

αs
xs − σt

n∑
k=0

hk+1φk+1(h)ϵ̂
(k)
θ (x̂λs

, λs) +O(hn+2). (B.4)

Finally, we list the closed-forms of φk for k = 1, 2, 3:

φ1(h) =
eh − 1

h
, (B.5)

φ2(h) =
eh − h− 1

h2
, (B.6)

φ3(h) =
eh − h2

/2− h− 1

h3
. (B.7)

B.3 Proof of Theorem 3.2 when k = 1

Proof. Taking n = 0, t = ti, s = ti−1 in Eq. (B.4), we obtain

xti =
αti

αti−1

xti−1
− σt(e

hi − 1)ϵθ(xti−1
, ti−1) +O(h2

i). (B.8)

By Assumption B.2 and Eq. (3.7), it holds that

x̃ti =
αti

αti−1

x̃ti−1 − σti(e
hi − 1)ϵθ(x̃ti−1 , ti−1)

=
αti

αti−1

x̃ti−1 − σti(e
hi − 1)

(
ϵθ(xti−1 , ti−1) +O(x̃ti−1 − xti−1)

)
=

αti

αti−1

xti−1 − σti(e
hi − 1)ϵθ(xti−1 , ti−1) +O(x̃ti−1 − xti−1)

= xti +O(h2
max) +O(x̃ti−1

− xti−1
).

Repeat this argument, we find that
x̃tM = xt0 +O(Mh2

max) = xt0 +O(hmax),

and thus completes the proof.

16

B.4 Proof of Theorem 3.2 when k = 2

We prove the discretization error of the general form of DPM-Solver-2 in Algorithm 4.

Proof. First, we consider the following update for 0 < t < s < T, h := λt − λs.
s1 = tλ (λs + r1h) , (B.9a)

ū =
αs1

αs
xs − σs1

(
er1h − 1

)
ϵθ(xs, s), (B.9b)

x̄t =
αt

αs
xs − σt

(
eh − 1

)
ϵθ(xs, s)−

σt

2r1
(eh − 1)(ϵθ(ū, s1)− ϵθ(xs, s)). (B.9c)

Note that the above update is the same as a single step of DPM-Solver-2 with s = ti−1 and
t = ti, except that x̃ti−1 is replaced with the exact solution xti−1 . Once we have proven that
x̄t = xt + O(h3), we can show that x̃ti = xti + O(h3

max) + O(x̃ti−1
− xti−1

) by a similar
argument as in Appendix B.3, and therefore completes the proof.

In this remaining part we prove that x̄t = xt +O(h3).

Taking n = 1 in Eq. (B.4), we obtain

xt =
αt

αs
xs − σthφ1(h)ϵθ(xs, s)− σth

2φ2(h)ϵ̂
(1)
θ (x̂λs , λs) +O(h3). (B.10)

From Eq. (B.1), we have

x̄t =
αt

αs
xs − σt

(
eh − 1

)
ϵθ(xs, s)−

σt

2r1
(eh − 1)(ϵθ(ū, s1)− ϵθ(xs, s))

=
αt

αs
xs − σt

(
eh − 1

)
ϵθ(xs, s)−

σt

2r1

(
eh − 1

)
[ϵθ(ū, s1)− ϵθ(xs1 , s1)]

− σt

2r1

(
eh − 1

) [
(λs1 − λs)ϵ̂

(1)
θ (x̂λs

, λs) +O(h2)
]
.

Note that by the Lipschitzness of ϵθ w.r.t. x (Assumption B.2),
∥ϵθ(ū, s1)− ϵθ(xs1 , s1)∥ = O(∥ū− xs1∥) = O(h2),

where the last equation follows from a similar argument in the proof of k = 1. Since eh − 1 = O(h),
the second term of the above display is O(h3).

As λs1 − λs = r1h, φi(h) = (eh − 1)/h and φ2(h) = (eh − h− 1)/h2, we find

xt − x̄t = σt

[
h2φ2(h)− (eh − 1)

λs1 − λs

2r1

]
ϵ̂
(1)
θ (x̂λs

, λs) +O(h3).

Then, the proof is completed by noticing that

h2φ2(h)− (eh − 1)
λs1 − λs

2r1
= (2eh − h− 2− heh)/2 = O(h3).

B.5 Proof of Theorem 3.2 when k = 3

Proof. As in Appendix B.4, it suffices to show that the following update has error x̄t = xt +O(h4)
for 0 < t < s < T and h = λs − λt.

s1 = tλ (λs + r1h) , s2 = tλ (λs + r2h) , (B.11a)

ū1 =
αs1

αs
xs − σs1

(
er1h − 1

)
ϵθ(xs, s), (B.11b)

D1 = ϵθ(ū1, s1)− ϵθ(xs, s), (B.11c)

ū2 =
αs2

αs
xs − σs2

(
er2h − 1

)
ϵθ(xs, s)−

σs2r2
r1

(
er2h − 1

r2h
− 1

)
D1, (B.11d)

D2 = ϵθ(ū2, s2)− ϵθ(xs, s), (B.11e)

x̄t =
αt

αs
xs − σt

(
eh − 1

)
ϵθ(xs, s)−

σt

r2

(
eh − 1

h
− 1

)
D2. (B.11f)

17

First, we prove that
ū2 = xs2 +O(h3). (B.12)

Similar to the proof in Appendix B.4, since er2h−1

r2h
− 1 = O(h) and ū1 = xs1 +O(h2), then

ū2 =
αs2

αs
xs − σs2

(
er2h − 1

)
ϵθ(xs, s)

− σs2

r2
r1

(
er2h − 1

r2h
− 1

)
(ϵθ(xs1 , s1)− ϵθ(xs, s)) +O(h3)

=
αs2

αs
xs − σs2

(
er2h − 1

)
ϵθ(xs, s)

− σs2

r2
r1

(
er2h − 1

r2h
− 1

)
ϵ
(1)
θ (xs, s)(λs1 − λs) +O(h3).

Let h2 = r2h, then following the same line of arguments in the proof of Appendix B.4, it suffices to
check that

φ1(h2)h2 = eh2 − 1,

φ2(h2)h
2
2 =

r2
r1

(
eh2 − 1

h2
− 1

)
(λs1 − λs) +O(h3),

which holds by applying Taylor expansion.

Using ū2 = xs2 +O(h3) and λs2 − λs = r2h = 2
3h, we find that

x̄t =
αt

αs
xs − σt

(
eh − 1

)
ϵθ(xs, s)− σt

1

r2

(
eh − 1

h
− 1

)(
ϵθ(ū2, s2)− ϵθ(xs, s)

)
=

αt

αs
xs − σt

(
eh − 1

)
ϵθ(xs, s)− σt

1

r2

(
eh − 1

h
− 1

)(
ϵθ(xs2 , s2)− ϵθ(xs, s)

)
+O(h4)

=
αt

αs
xs − σt

(
eh − 1

)
ϵθ(xs, s)

− σt
1

r2

(
eh − 1

h
− 1

)(
ϵ
(1)
θ (xs, s)r2h+

1

2
ϵ
(2)
θ (xs, s)r

2
2h

2
)
+O(h4).

Comparing with the Taylor expansion in Eq. (B.4) with n = 2:

xt =
αt

αs
xs − σthφ1(h)ϵθ(xs, s)− σth

2φ2(h)ϵ
(1)
θ (xs, s)− σth

3φ3(h)ϵ
(2)
θ (xs, s) +O(h4),

we need to check the following conditions:

hφ1(h) = eh − 1,

h2φ2(h) =

(
eh − 1

h
− 1

)
h,

h3φ3(h) =

(
eh − 1

h
− 1

)
r2h

2

2
+O(h4).

The first two conditions are clear. The last condition follows from

h3φ3(h) = eh − 1− h− h2

2
=

h3

6
+O(h4) =

(
eh − 1

h
− 1

)
r2h

2

2
.

Therefore, x̄t = xt +O(h4).

B.6 Connections to Explicit Exponential Runge-Kutta (expRK) Methods

Assume we have an ODE with the following form:

dxt

dt
= αxt +N(xt, t),

18

where α ∈ R and N(xt, t) ∈ RD is a non-linear function of xt. Given an initial value xt at time t,
for h > 0, the true solution at time t+ h is

xt+h = eαhxt + eαh
∫ h

0

e−ατN(xt+τ , t+ τ)dτ.

The exponential Runge-Kutta methods [25, 31] use some intermediate points to approximate the
integral

∫
e−ατN(xt+τ , t + τ)dτ . Our proposed DPM-Solver is inspired by the same technique

for approximating the same integral with α = 1 and N = ϵ̃θ. However, DPM-Solver is different
from the expRK methods, because their linear term eαhxt is different from our linear term αt+h

αt
xt.

In summary, DPM-Solver is inspired by the same technique of expRK for deriving high-order
approximations of the exponentially weighted integral, but the formulation of DPM-Solver is different
from expRK, and DPM-Solver is customized for the specific formulation of diffusion ODEs.

C Algorithms of DPM-Solvers

We firstly list the detailed DPM-Solver-1, 2, 3 in Algorithms 3, 4, 5. Note that DPM-Solver-2 is the
general case with r1 ∈ (0, 1), and we usually set r1 = 0.5 for DPM-Solver-2, as in Sec. 3.

Algorithm 3 DPM-Solver-1.

Require: initial value xT , time steps {ti}Mi=0, model ϵθ
1: def dpm-solver-1(x̃ti−1

, ti−1, ti):
2: hi ← λti − λti−1

3: x̃ti ←
αti

αti−1
x̃ti−1 − σti

(
ehi − 1

)
ϵθ(x̃ti−1 , ti−1)

4: return x̃ti
5: x̃t0 ← xT

6: for i← 1 to M do
7: x̃ti ← dpm-solver-1(x̃ti−1

, ti−1, ti)
8: end for
9: return x̃tM

Algorithm 4 DPM-Solver-2 (general version).

Require: initial value xT , time steps {ti}Mi=0, model ϵθ, r1 = 0.5
1: def dpm-solver-2(x̃ti−1

, ti−1, ti, r1):
2: hi ← λti − λti−1

3: si ← tλ
(
λti−1

+ r1hi

)
4: ui ←

αsi

αti−1
x̃ti−1 − σsi

(
er1hi − 1

)
ϵθ(x̃ti−1 , ti−1)

5: x̃ti ←
αti

αti−1
x̃ti−1

−σti(e
hi−1)ϵθ(x̃ti−1

, ti−1)−
σti

2r1
(ehi−1)(ϵθ(ui, si)−ϵθ(x̃ti−1

, ti−1))

6: return x̃ti
7: x̃t0 ← xT

8: for i← 1 to M do
9: x̃ti ← dpm-solver-2(x̃ti−1

, ti−1, ti, r1)
10: end for
11: return x̃tM

Then we list the adaptive step size algorithms, named as DPM-Solver-12 (combining 1 and 2;
Algorithm 6) and DPM-Solver-23 (combining 2 and 3; Algorithm 7). We follow [20] to let the
absolute tolerance ϵatol =

xmax−xmin
256 for image data, which is 0.0078 for VP type DPMs. We can tune

the relative tolerance ϵrtol to balance the accuracy and NFE, and we find that ϵrtol = 0.05 is good
enough and can converge quickly.

In practice, the inputs of the adaptive step size solvers are batch data. We simply choose E2 and
E3 as the maximum value of all the batch data. Besides, we implement the comparison s > ϵ by
|s− ϵ| > 10−5 to avoid numerical issues.

19

Algorithm 5 DPM-Solver-3.

Require: initial value xT , time steps {ti}Mi=0, model ϵθ, r1 = 1
3 , r2 = 2

3
1: def dpm-solver-3(x̃ti−1

, ti−1, ti, r1, r2):
2: hi ← λti − λti−1

3: s2i−1 ← tλ
(
λti−1 + r1hi

)
, s2i ← tλ

(
λti−1 + r2hi

)
4: u2i−1 ←

αs2i−1

αti−1
x̃ti−1 − σs2i−1

(
er1hi − 1

)
ϵθ(x̃ti−1 , ti−1)

5: D2i−1 ← ϵθ(u2i−1, s2i−1)− ϵθ(x̃ti−1
, ti−1)

6: u2i ←
αs2i

αti−1
x̃ti−1

− σs2i

(
er2hi − 1

)
ϵθ(x̃ti−1

, ti−1)−
σs2i

r2
r1

(
er2hi−1
r2hi

− 1
)
D2i−1

7: D2i ← ϵθ(u2i, s2i)− ϵθ(x̃ti−1 , ti−1)

8: x̃ti ←
αti

αti−1
x̃ti−1

− σti

(
ehi − 1

)
ϵθ(x̃ti−1

, ti−1)−
σti

r2

(
ehi−1

h − 1
)
D2i

9: return x̃ti
10: x̃t0 ← xT

11: for i← 1 to M do
12: x̃ti ← dpm-solver-3(x̃ti−1 , ti−1, ti, r1, r2)
13: end for
14: return x̃tM

Algorithm 6 (DPM-Solver-12) Adaptive step size algorithm by combining DPM-Solver-1 and 2.

Require: start time T , end time ϵ, initial value xT , model ϵθ, data dimension D, hyperparameters
ϵrtol = 0.05, ϵatol = 0.0078, hinit = 0.05, θ = 0.9

Ensure: the approximated solution xϵ at time ϵ
1: s← T , h← hinit, x← xT , xprev ← xT , r1 ← 1

2 , NFE← 0
2: while s > ϵ do
3: t← tλ(λs + h)
4: x1 ← dpm-solver-1(x, s, t)
5: x2 ← dpm-solver-2(x, s, t, r1) (Share the same function value ϵθ(x, s) with dpm-solver-1.)
6: δ ← max(ϵatol, ϵrtol max(|x1|, |xprev|))
7: E2 ← 1√

D
∥x1−x2

δ ∥2
8: if E2 ≤ 1 then
9: xprev ← x1, x← x2, s← t

10: end if
11: h← min(θhE

− 1
2

2 , λϵ − λs)
12: NFE← NFE + 2
13: end while
14: return x, NFE

D Implementation Details of DPM-Solver

D.1 End Time of Sampling

Theoretically, we need to solve diffusion ODEs from time T to time 0 to generate samples. Practically,
the training and evaluation for the noise prediction model ϵθ(xt, t) usually start from time T to time
ϵ to avoid numerical issues for t near to 0, where ϵ > 0 is a hyperparameter [3].

In contrast to the sampling methods based on diffusion SDEs [2, 3], We don’t add the “denoising”
trick at the final step at time ϵ (which is to set the noise variance to zero), and we just solve diffusion
ODEs from T to ϵ by DPM-Solver, since we find it performs well enough.

For discrete-time DPMs, we firstly convert the model to continuous time (see Appendix D.2), and
then solver it from time T to time t.

20

Algorithm 7 (DPM-Solver-23) Adaptive step size algorithm by combining DPM-Solver-2 and 3.

Require: start time T , end time ϵ, initial value xT , model ϵθ, data dimension D, hyperparameters
ϵrtol = 0.05, ϵatol = 0.0078, hinit = 0.05, θ = 0.9

Ensure: the approximated solution xϵ at time ϵ
1: s← T , h← hinit, x← xT , xprev ← xT , r1 ← 1

3 , r2 ← 2
3 , NFE← 0

2: while s > ϵ do
3: t← tλ(λs + h)
4: x2 ← dpm-solver-2(x, s, t, r1)
5: x3 ← dpm-solver-3(x, s, t, r1, r2) (Share the same function values with dpm-solver-2.)
6: δ ← max(ϵatol, ϵrtol max(|x2|, |xprev|))
7: E3 ← 1√

D
∥x2−x3

δ ∥2
8: if E3 ≤ 1 then
9: xprev ← x2, x← x3, s← t

10: end if
11: h← min(θhE

− 1
3

3 , λϵ − λs)
12: NFE← NFE + 3
13: end while
14: return x, NFE

D.2 Sampling from Discrete-Time DPMs

In this section, we discuss the more general case for discrete-time DPMs, in which we consider the
1000-step DPMs [2] and the 4000-step DPMs [16], and we also consider the end time ϵ for sampling.

Discrete-time DPMs [2] train the noise prediction model at N fixed time steps {tn}Nn=1. In practice,
N = 1000 or N = 4000, and the implementation of the 4000-step DPMs [16] converts the time
steps of 4000-step DPMs to the range of 1000-step DPMs. Specifically, the noise prediction model
is parameterized by ϵ̃θ(xn,

1000n
N) for n = 0, . . . , N − 1, where each xn is corresponding to the

value at time tn+1. In practice, these discrete-time DPMs usually choose uniform time steps between
[0, T], thus tn = nT

N , for n = 1, . . . , N .

However, the discrete-time noise prediction model cannot predict the noise at time less than the
smallest time t1. As the smallest time step t1 = T

N and the corresponding discrete-time noise
prediction model at time t1 is ϵ̃θ(x0, 0), we need to “scale” the discrete time steps [t1, tN] = [TN , T]
to the continuous time range [ϵ, T]. We propose two types of scaling as following.

Type-1. Scale the discrete time steps [t1, tN] = [TN , T] to the continuous time range [TN , T], and let
ϵθ(·, t) = ϵθ(·, T

N) for t ∈ [ϵ, T
N]. In this case, we can define the continuous-time noise prediction

model by

ϵθ(x, t) = ϵ̃θ

(
x, 1000 ·max

(
t− T

N
, 0

))
, (D.1)

where the continuous time t ∈ [ϵ, T
N] maps to the discrete input 0, and the continuous time T maps to

the discrete input 1000(N−1)
N .

Type-2. Scale the discrete time steps [t1, tN] = [TN , T] to the continuous time range [0, T]. In this
case, we can define the continuous-time noise prediction model by

ϵθ(x, t) = ϵ̃θ

(
x, 1000 · (N − 1)t

NT

)
, (D.2)

where the continuous time 0 maps to the discrete input 0, and the continuous time T maps to the
discrete input 1000(N−1)

N .

Note that the input time of ϵ̃θ may not be integers, but we find that the noise prediction model
can still work well, and we hypothesize that it is because of the smooth time embeddings (e.g.,
position embeddings [2]). By such reparameterization, the noise prediction model can adopt the
continuous-time steps as input, and thus we can also use DPM-Solver for fast sampling.

In practice, we have T = 1, and the smallest discrete time t1 = 10−3. For fixed K number of
function evaluations, we empirically find that for small K, the Type-1 with ϵ = 10−3 may have better

21

sample quality, and for large K, the Type-2 with ϵ = 10−4 may have better sample quality. We refer
to Appendix E for detailed results.

D.3 DPM-Solver in 20 Function Evaluations

Given a fixed budget K ≤ 20 of the number of function evaluations, we uniformly divide the interval
[λT , λϵ] into M = (⌊K/3⌋+ 1) segments, and take M steps to generate samples. The M steps are
dependent on the remainder R of K mod 3 to make sure the total number of function evaluations is
exactly K.

• If R = 0, we firstly take M−2 steps of DPM-Solver-3, and then take 1 step of DPM-Solver-2
and 1 step of DPM-Solver-1. The total number of function evaluations is 3·(K3 −1)+2+1 =
K.

• If R = 1, we firstly take M−1 steps of DPM-Solver-3 and then take 1 step of DPM-Solver-1.
The total number of function evaluations is 3 · (K−1

3) + 1 = K.
• If R = 2, we firstly take M−1 steps of DPM-Solver-3 and then take 1 step of DPM-Solver-2.

The total number of function evaluations is 3 · (K−2
3) + 2 = K.

We empirically find that this design of time steps can greatly improve the generation quality, and
DPM-Solver can generate comparable samples in 10 steps and high-quality samples in 20 steps.

D.4 Analytical Formulation of the function tλ(·) (the inverse function of λ(t))

The costs of computing tλ(·) is negligible, because for the noise schedules of αt and σt used in
previous DPMs (“linear” and “cosine”) [2, 16], both λ(t) and its inverse function tλ(·) have analytic
formulations. We mainly consider the variance preserving type here, since it is the most widely-used
type. The functions of other types (variance exploding and sub-variance preserving type) can be
similarly derived.

Linear Noise Schedule [2]. We have

logαt = −
(β1 − β0)

4
t2 − β0

2
t,

where β0 = 0.1 and β1 = 20, following [3]. As σt =
√
1− α2

t , we can compute λt analytically.
Moreover, the inverse function is

tλ(λ) =
1

β1 − β0

(√
β2
0 + 2(β1 − β0) log (e−2λ + 1)− β0

)
.

To reduce the influence of numerical issues, we can compute tλ by the following equivalent formula-
tion:

tλ(λ) =
2 log

(
e−2λ + 1

)√
β2
0 + 2(β1 − β0) log (e−2λ + 1) + β0

.

And we solve diffusion ODEs between [ϵ, T], where T = 1.

Cosine Noise Schedule [16]. Denote

logαt = log

(
cos

(
π

2
· t+ s

1 + s

))
− log

(
cos

(
π

2
· s

1 + s

))
,

where s = 0.008, following [16]. As [16] clipped the derivatives to ensure the numerical stability,
we also clip the maximum time T = 0.9946. As σt =

√
1− α2

t , we can compute λt analytically.
Moreover, given a fixed λ, let

f(λ) = −1

2
log

(
e−2λ + 1

)
,

which computes the corresponding logα for λ. Then the inverse function is

tλ(λ) =
2(1 + s)

π
arccos

(
ef(λ)+log cos(πs

2(1+s))
)
− s.

And we solve diffusion ODEs between [ϵ, T], where T = 0.9946.

22

D.5 Conditional Sampling by DPM-Solver

DPM-Solver can also be used for conditional sampling, with a simple modification. The conditional
generation needs to sample from the conditional diffusion ODE [3, 4] which includes the conditional
noise prediction model. We follow the classifier guidance method [4] to define the conditional
noise prediction model as ϵθ(xt, t, y) := ϵθ(xt, t) − s · σt∇x log pt(y|xt; θ), where pt(y|xt; θ)
is a pre-trained classifier and s is the classifier guidance scale (default is 1.0). Thus, we can use
DPM-Solver to solve this diffusion ODE for fast conditional sampling, as shown in Fig. 1.

D.6 Numerical Stability

As we need to compute ehi − 1 in the algorithm of DPM-Solver, we follow [10] to use expm1(hi)
instead of exp(hi)-1 to improve numerical stability.

E Experiment Details

We test our method for sampling the most widely-used variance-preserving (VP) type DPMs [1, 2].
In this case, we have α2

t + σ2
t = 1 for all t ∈ [0, T] and σ̃ = 1. In spite of this, our method and

theoretical results are general and independent of the choice of the noise schedule αt and σt.

For all experiments, we evaluate DPM-Solver on NVIDIA A40 GPUs. However, the computation
resource can be other types of GPU, such as NVIDIA GeForce RTX 2080Ti, because we can tune the
batch size for sampling.

E.1 Diffusion ODEs w.r.t. λ

Alternatively, the diffusion ODE can be reparameterized to the λ domain. In this section, we propose
the formulation of diffusion ODEs w.r.t. λ for VP type, and other types can be similarly derived.

For a given λ, denote α̂λ := αt(λ), σ̂λ := σt(λ). As α̂2
λ + σ̂2

λ = 1, we can prove that dλ
dα̂λ

= 1
α̂λσ̂2

λ
,

so d log α̂λ

dλ = σ̂2
λ. Applying change-of-variable to Eq. (2.7), we have

dx̂λ

dλ
= ĥθ(x̂λ, λ) := σ̂2

λx̂λ − σ̂λϵ̂θ(x̂λ, λ). (E.1)

The ODE Eq. (E.1) can be also solved directly by RK methods, and we use such formulation for the
experiments of RK2 (λ) and RK3 (λ) in Table 1.

E.2 Code Implementation

We implement our code with both JAX (for continuous-time DPMs) and PyTorch (for discrete-time
DPMs), and our code is released at https://github.com/LuChengTHU/dpm-solver.

E.3 Sample Quality Comparison with Continuous-Time Sampling Methods

Table 3 shows the detailed FID results, which is corresponding to Fig. 2a. We use the official code
and checkpoint in [3], the code license is Apache License 2.0. We use their released “checkpoint_8”
of the “VP deep” type. We compare methods for ϵ = 10−3 and ϵ = 10−4. We find that the sampling
methods based on diffusion SDEs can achieve better sample quality with ϵ = 10−3; and that the
sampling methods based on diffusion ODEs can achieve better sample quality with ϵ = 10−4. For
DPM-Solver, we find that DPM-Solver with less than 15 NFE can achieve better FID with ϵ = 10−3

than ϵ = 10−4, while DPM-Solver with more than 15 NFE can achieve better FID with ϵ = 10−4

than ϵ = 10−3.

For the diffusion SDEs with Euler discretization, we use the PC sampler in [3] with “euler_maruyama”
predictor and no corrector, which uses uniform time steps between T and ϵ. We add the “denoise”
trick at the final step, which can greatly improve the FID score for ϵ = 10−3.

For the diffusion SDEs with Improved Euler discretization [20], we follow the results in their original
paper, which only includes the results with ϵ = 10−3. The corresponding relative tolerance ϵrel are
0.50, 0.10 and 0.05, respectively.

23

https://github.com/LuChengTHU/dpm-solver

Table 3: Sample quality measured by FID ↓ on CIFAR-10 dataset with continuous-time methods, varying the
number of function evaluations (NFE).

Sampling method \ NFE 10 12 15 20 50 200 1000

CIFAR-10 (continuous-time model (VP deep) [3], linear noise schedule)

SDE Euler (denoise) [3] ϵ = 10−3 304.73 278.87 248.13 193.94 66.32 12.27 2.44
ϵ = 10−4 444.63 427.54 395.95 300.41 101.66 22.98 5.01

Improved Euler [20] ϵ = 10−3 82.42(NFE=48), 2.73(NFE=151), 2.44(NFE=180)

ODE
RK45 Solver [28, 3] ϵ = 10−3 19.55(NFE=26), 17.81(NFE=38), 3.55(NFE=62)

ϵ = 10−4 51.66(NFE=26), 21.54(NFE=38), 12.72(NFE=50), 2.61(NFE=62)

DPM-Solver
(ours)

ϵ = 10−3 4.70 3.75 3.24 3.99 3.84 (NFE = 42)
ϵ = 10−4 6.96 4.93 3.35 2.87 2.59 (NFE = 51)

For the diffusion ODEs with RK45 Solver, we use the code in [3], and tune the atol and rtol of
the solver. For the NFE from small to large, we use the same atol = rtol = 0.1, 0.01, 0.001 for
the results of ϵ = 10−3, and the same atol = rtol = 0.1, 0.05, 0.02, 0.01, 0.001 for the results of
ϵ = 10−4, respectively.

For the diffusion ODEs with DPM-Solver, we use the method in Appendix D.3 for NFE ≤ 20, and
the adaptive step size solver in Appendix C. For ϵ = 10−3, we use DPM-Solver-12 with relative
tolerance ϵrtol = 0.05. For ϵ = 10−4, we use DPM-Solver-23 with relative tolerance ϵrtol = 0.05.

E.4 Sample Quality Comparison with RK Methods

Table 1 shows the different performance of RK methods and DPM-Solver-2 and 3. We list the detailed
settings in this section.

Assume we have an ODE with
dxt

dt
= F (xt, t),

Starting with x̃ti−1 at time ti−1, we use RK2 to approximate the solution x̃ti at time ti in the
following formulation (which is known as the explicit midpoint method):

hi = ti − ti−1,

si = ti−1 +
1

2
hi,

ui = x̃ti−1 +
hi

2
F (x̃ti−1 , ti−1),

x̃ti = x̃ti−1
+ hiF (ui, si).

And we use the following RK3 to approximate the solution x̃ti at time ti (which is known as “Heun’s
third-order method”), because it is very similar to our proposed DPM-Solver-3:

hi = ti − ti−1, r1 =
1

3
, r2 =

2

3
,

s2i−1 = ti−1 + r1hi, s2i = ti−1 + r2hi,

u2i−1 = x̃ti−1
+ r1hiF (x̃ti−1

, ti−1),

u2i = x̃ti−1 + r2hiF (u2i−1, s2i−1),

x̃ti = x̃ti−1
+

hi

4
F (x̃ti−1 , ti−1) +

3hi

4
F (u2i, s2i).

We use F (xt, t) = hθ(xt, t) in Eq. (2.7) for the results with RK2 (t) and RK3 (t), and F (x̂λ, λ) =

ĥθ(x̂λ, λ) in Eq. (E.1) for the results with RK2 (λ) and RK3 (λ). For all experiments, we use the
uniform step size w.r.t. t or λ.

E.5 Sample Quality Comparison with Discrete-Time Sampling Methods

We compare DPM-Solver with other discrete-time sampling methods for DPMs, as shown in Table 4
and Table 5. We use the code in [19] for sampling with DDPM and DDIM, and the code license

24

Table 4: Sample quality measured by FID ↓ on CIFAR-10, CelebA 64×64 and ImageNet 64×64 with discrete-
time DPMs, varying the number of function evaluations (NFE). The method †GGDM needs extra training, and
some results are missing in their original papers, which are replaced by “\”.

Sampling method \ NFE 10 12 15 20 50 200 1000

CIFAR-10 (discrete-time model [2], linear noise schedule)

DDPM [2] Discrete 278.67 246.29 197.63 137.34 32.63 4.03 3.16
Analytic-DDPM [21] Discrete 35.03 27.69 20.82 15.35 7.34 4.11 3.84
Analytic-DDIM [21] Discrete 14.74 11.68 9.16 7.20 4.28 3.60 3.86
†GGDM [18] Discrete 8.23 \ 6.12 4.72 \ \ \
DDIM [19] Discrete 13.58 11.02 8.92 6.94 4.73 4.07 3.95

DPM-Solver (Type-1 discrete) ϵ = 10−3 6.37 4.65 3.78 4.28 3.90 (NFE = 44)
ϵ = 10−4 11.32 7.31 4.75 3.80 3.57 (NFE = 46)

DPM-Solver (Type-2 discrete) ϵ = 10−3 6.42 4.86 4.39 5.52 5.22 (NFE = 42)
ϵ = 10−4 10.16 6.26 4.17 3.72 3.48 (NFE = 44)

CelebA 64×64 (discrete-time model [19], linear noise schedule)

DDPM [2] Discrete 310.22 277.16 207.97 120.44 29.25 3.90 3.50
Analytic-DDPM [21] Discrete 28.99 25.27 21.80 18.14 11.23 6.51 5.21
Analytic-DDIM [21] Discrete 15.62 13.90 12.29 10.45 6.13 3.46 3.13
DDIM [19] Discrete 10.85 9.99 7.78 6.64 5.23 4.78 4.88

DPM-Solver (Type-1 discrete) ϵ = 10−3 7.15 5.51 4.28 4.40 4.23 (NFE = 36)
ϵ = 10−4 6.92 4.20 3.05 2.82 2.71 (NFE = 36)

DPM-Solver (Type-2 discrete) ϵ = 10−3 7.33 6.23 5.85 6.87 6.68 (NFE = 36)
ϵ = 10−4 5.83 3.71 3.11 3.13 3.10 (NFE = 36)

ImageNet 64×64 (discrete-time model [16], cosine noise schedule)

DDPM [2] Discrete 305.43 287.66 256.69 209.73 83.86 28.39 17.58
Analytic-DDPM [21] Discrete 60.65 53.66 45.98 37.67 22.45 17.16 16.14
Analytic-DDIM [21] Discrete 70.62 54.88 41.56 30.88 19.23 17.49 17.57
†GGDM [18] Discrete 37.32 \ 24.69 20.69 \ \ \
DDIM [19] Discrete 67.07 52.69 40.49 30.67 20.10 17.84 17.73

DPM-Solver (Type-1 discrete) ϵ = 10−3 24.44 20.03 19.31 18.59 17.50 (NFE = 48)
ϵ = 10−4 27.74 23.66 20.09 19.06 17.56 (NFE = 51)

DPM-Solver (Type-2 discrete) ϵ = 10−3 24.40 19.97 19.23 18.53 17.47 (NFE = 57)
ϵ = 10−4 27.72 23.75 20.02 19.08 17.62 (NFE = 48)

Table 5: Sample quality measured by FID ↓ on ImageNet 128×128 with classifier guidance and on LSUN
bedroom 256×256, varying the number of function evaluations (NFE). For DDIM and DDPM, we use uniform
time steps for all the experiments, except that the experiment† uses the fine-tuned time steps by [4]. For
DPM-Solver, we use the uniform logSNR steps as described in Appendix D.3.

Sampling method \ NFE 10 12 15 20 50 100 250

ImageNet 128×128 (discrete-time model [4], linear noise schedule, classifier guidance scale: 1.25)

DDPM [2] Discrete 199.56 172.09 146.42 119.13 49.38 23.27 2.97
DDIM [19] Discrete 11.12 9.38 8.22 7.15 5.05 4.18 3.54

DPM-Solver (Type-1 discrete) ϵ = 10−3 7.32 4.08 3.60 3.89 3.63 3.62 3.63
ϵ = 10−4 13.91 5.84 4.00 3.52 3.13 3.10 3.09

LSUN bedroom 256×256 (discrete-time model [4], linear noise schedule)

DDPM [2] Discrete 274.67 251.26 224.88 190.14 82.70 34.89 †2.02
DDIM [19] Discrete 10.05 7.51 5.90 4.98 2.92 2.30 2.02

DPM-Solver (Type-1 discrete) ϵ = 10−3 6.10 4.29 3.30 3.09 2.53 2.46 2.46
ϵ = 10−4 8.04 4.21 2.94 2.60 2.01 1.95 1.94

25

is MIT License. We use the code in [21] for sampling with Analytic-DDPM and Analytic-DDIM,
whose license is unknown. We directly follow the best results in the original paper of GGDM [18].

For the CIFAR-10 experiments, we use the pretrained checkpoint by [2], which is also provided in
the released code in [19]. We use quadratic time steps for DDPM and DDIM, which empirically
has better FID performance than the uniform time steps [19]. We use the uniform time steps for
Analytic-DDPM and Analytic-DDIM. For DPM-Solver, we use both Type-1 discrete and Type-2
discrete methods to convert the discrete-time model to the continuous-time model. We use the method
in Appendix D.3 for NFE ≤ 20, and the adaptive step size solver in Appendix C for NFE > 20. For
all the experiments, we use DPM-Solver-12 with relative tolerance ϵrtol = 0.05.

For the CelebA 64x64 experiments, we use the pretrained checkpoint by [19]. We use quadratic time
steps for DDPM and DDIM, which empirically has better FID performance than the uniform time
steps [19]. We use the uniform time steps for Analytic-DDPM and Analytic-DDIM. For DPM-Solver,
we use both Type-1 discrete and Type-2 discrete methods to convert the discrete-time model to the
continuous-time model. We use the method in Appendix D.3 for NFE ≤ 20, and the adaptive step
size solver in Appendix C for NFE > 20. For all the experiments, we use DPM-Solver-12 with
relative tolerance ϵrtol = 0.05. Note that our best FID results on CelebA 64x64 is even better than the
1000-step DDPM (and all the other methods).

For the ImageNet 64x64 experiments, we use the pretrained checkpoint by [16], and the code license
is MIT License. We use the uniform time steps for DDPM and DDIM, following [19]. We use the
uniform time steps for Analytic-DDPM and Analytic-DDIM. For DPM-Solver, we use both Type-1
discrete and Type-2 discrete methods to convert the discrete-time model to the continuous-time
model. We use the method in Appendix D.3 for NFE ≤ 20, and the adaptive step size solver in
Appendix C for NFE > 20. For all the experiments, we use DPM-Solver-23 with relative tolerance
ϵrtol = 0.05. Note that the ImageNet dataset includes real human photos and it may have privacy
issues, as discussed in [42].

For the ImageNet 128x128 experiments, we use classifier guidance for sampling with the pretrained
checkpoints (for both the diffusion model and the classifier model) by [4], and the code license is
MIT License. We use the uniform time steps for DDPM and DDIM, following [19]. For DPM-Solver,
we only use Type-1 discrete method to convert the discrete-time model to the continuous-time model.
We use the method in Appendix D.3 for NFE ≤ 20, and the adaptive step size solver DPM-Solver-12
with relative tolerance ϵrtol = 0.05 (detailed in Appendix C) for NFE > 20. For all the experiments,
we set the classifier guidance scale s = 1.25, which is the best setting for DDIM in [4] (we refer to
their Table 14 for details).

For the LSUN bedroom 256x256 experiments, we use the unconditional pretrained checkpoint
by [4], and the code license is MIT License. We use the uniform time steps for DDPM and DDIM,
following [19]. For DPM-Solver, we only use Type-1 discrete method to convert the discrete-time
model to the continuous-time model. We use the method in Appendix D.3 for DPM-Solver.

E.6 Comparing Different Orders of DPM-Solver

We also compare the sample quality of the different orders of DPM-Solver, as shown in Table 6. We
use DPM-Solver-1,2,3 with uniform time steps w.r.t. λ, and the fast version in Appendix D.3 for NFE
less than 20, and we name it as DPM-Solver-fast. For the discrete-time models, we only compare the
Type-2 discrete method, and the results of Type-1 are similar.

As the actual NFE of DPM-Solver-2 is 2 × ⌊NFE/2⌋ and the actual NFE of DPM-Solver-3 is
3× ⌊NFE/3⌋, which may be smaller than NFE, we use the notation † to note that the actual NFE is
less than the given NFE. We find that for NFE less than 20, the proposed fast version (DPM-Solver-
fast) is usually better than the single order method, and for larger NFE, DPM-Solver-3 is better
than DPM-Solver-2, and DPM-Solver-2 is better than DPM-Solver-1, which matches our proposed
convergence rate analysis.

E.7 Runtime Comparison between DPM-Solver and DDIM

Theoretically, for the same NFE, the runtime of DPM-Solver and DDIM are almost the same (linear
to NFE) because the main computation costs are the serial evaluations of the large neural network ϵθ
and the other coefficients are analytically computed with ignorable costs.

26

Table 6: Sample quality measured by FID ↓ of different orders of DPM-Solver, varying the number
of function evaluations (NFE). The results with † means the actual NFE is smaller than the given
NFE because the given NFE cannot be divided by 2 or 3. For DPM-Solver-fast, we only evaluate it
for NFE less than 20, because it is almost the same as DPM-Solver-3 for large NFE.

Sampling method \ NFE 10 12 15 20 50 200 1000

CIFAR-10 (VP deep continuous-time model [3])

ϵ = 10−3

DPM-Solver-1 11.83 9.69 7.78 6.17 4.28 3.85 3.83
DPM-Solver-2 5.94 4.88 †4.30 3.94 3.78 3.74 3.74
DPM-Solver-3 †18.37 5.53 4.08 †4.04 †3.81 †3.78 †3.78
DPM-Solver-fast 4.70 3.75 3.24 3.99 \ \ \

ϵ = 10−4

DPM-Solver-1 11.29 9.07 7.15 5.50 3.32 2.72 2.64
DPM-Solver-2 7.30 5.28 †4.23 3.26 2.69 2.60 2.59
DPM-Solver-3 †54.56 6.03 3.55 †2.90 †2.65 †2.62 †2.62
DPM-Solver-fast 6.96 4.93 3.35 2.87 \ \ \

CIFAR-10 (DDPM discrete-time model [2]), DPM-Solver with Type-2 discrete

ϵ = 10−3

DPM-Solver-1 16.69 13.63 11.08 8.90 6.24 5.44 5.29
DPM-Solver-2 7.90 6.15 †5.53 5.24 5.23 5.25 5.25
DPM-Solver-3 †24.37 8.20 5.73 †5.43 †5.29 †5.25 †5.25
DPM-Solver-fast 6.42 4.86 4.39 5.52 \ \ \

ϵ = 10−4

DPM-Solver-1 13.61 10.98 8.71 6.79 4.36 3.63 3.49
DPM-Solver-2 11.80 6.31 †5.23 3.95 3.50 3.46 3.46
DPM-Solver-3 †67.02 9.45 5.21 †3.81 †3.49 †3.45 †3.45
DPM-Solver-fast 10.16 6.26 4.17 3.72 \ \ \

CelebA 64×64 (discrete-time model [19], linear noise schedule), DPM-Solver with Type-2 discrete

ϵ = 10−3

DPM-Solver-1 18.66 16.30 13.92 11.84 8.85 7.24 6.93
DPM-Solver-2 5.89 5.83 †6.08 6.38 6.78 6.84 6.85
DPM-Solver-3 †11.45 5.46 6.18 †6.51 †6.87 †6.84 †6.85
DPM-Solver-fast 7.33 6.23 5.85 6.87 \ \ \

ϵ = 10−4

DPM-Solver-1 13.24 11.13 9.08 7.24 4.50 3.48 3.25
DPM-Solver-2 4.28 3.40 †3.30 3.17 3.19 3.20 3.20
DPM-Solver-3 †49.48 3.84 3.09 †3.15 †3.20 †3.20 †3.20
DPM-Solver-fast 5.83 3.71 3.11 3.13 \ \ \

ImageNet 64×64 (discrete-time model [16], cosine noise schedule), DPM-Solver with Type-2 discrete

ϵ = 10−3

DPM-Solver-1 32.84 28.54 24.79 21.71 18.30 17.45 17.18
DPM-Solver-2 29.20 24.97 †22.26 19.94 17.79 17.29 17.27
DPM-Solver-3 †57.48 24.62 19.76 †18.95 †17.52 17.26 17.27
DPM-Solver-fast 24.40 19.97 19.23 18.53 \ \ \

ϵ = 10−4

DPM-Solver-1 32.31 28.44 25.15 22.38 19.14 17.95 17.44
DPM-Solver-2 33.16 27.28 †24.26 20.58 18.04 17.46 17.41
DPM-Solver-3 †162.27 27.28 22.38 †19.39 †17.71 †17.43 †17.41
DPM-Solver-fast 27.72 23.75 20.02 19.08 \ \ \

Table 7 shows the runtime of DPM-Solver and DDIM on a single NVIDIA A40, varying different
datasets and NFE. We use torch.cuda.Event and torch.cuda.synchronize for accurately
computing the runtime. We use the discrete-time pretrained diffusion models for each dataset. We
evaluate the runtime for 8 batches and computes the mean and std of the runtime. We use 64 batch
size for LSUN bedroom 256x256 due to the GPU memory limitation, and 128 batch size for other
datasets.

For DDIM, we use the official implementation3. We find that our implementation of DPM-Solver
reduces some repetitive computation of the coefficients, so under the same NFE, DPM-Solver is
slightly faster than DDIM of their implementation. Nevertheless, the runtime evaluation results show

3https://github.com/ermongroup/ddim

27

https://github.com/ermongroup/ddim

Table 7: Runtime of a single batch (second / batch, ±std) on a single NVIDIA A40 of DDIM and DPM-Solver
for sampling by discrete-time diffusion models, varying the number of function evaluations (NFE).

Sampling method \ NFE 10 20 50 100

CIFAR-10 32×32 (batch size = 128)

DDIM 0.956(±0.011) 1.924(±0.016) 4.838(±0.024) 9.668(±0.013)
DPM-Solver 0.923(±0.006) 1.833(±0.004) 4.580(±0.005) 9.204(±0.011)

CelebA 64×64 (batch size = 128)

DDIM 3.253(±0.015) 6.438(±0.029) 16.132(±0.050) 32.255(±0.044)
DPM-Solver 3.126(±0.003) 6.272(±0.006) 15.676(±0.008) 31.269(±0.012)

ImageNet 64×64 (batch size = 128)

DDIM 5.084(±0.018) 10.194(±0.022) 25.440(±0.044) 50.926(±0.042)
DPM-Solver 4.992(±0.004) 9.991(±0.003) 24.948(±0.007) 49.835(±0.028)

ImageNet 128×128 (batch size = 128, with classifier guidance)

DDIM 29.082(±0.015) 58.159(±0.012) 145.427(±0.011) 290.874(±0.134)
DPM-Solver 28.865(±0.011) 57.645(±0.008) 144.124(±0.035) 288.157(±0.022)

LSUN bedroom 256×256 (batch size = 64)

DDIM 37.700(±0.005) 75.316(±0.013) 188.275(±0.172) 378.790(±0.105)
DPM-Solver 36.996(±0.039) 73.873(±0.023) 184.590(±0.010) 369.090(±0.076)

that the runtime of DPM-Solver and DDIM are almost the same for the same NFE, and the runtime is
approximately linear to the NFE. Therefore, the speedup for the NFE is almost the actual speedup of
the runtime, so the proposed DPM-Solver can greatly speedup the sampling of DPMs.

E.8 Conditional Sampling on ImageNet 256x256

For the conditional sampling in Fig. 1, we use the pretrained checkpoint in [4] with classifier guidance
(ADM-G), and the classifier scale is 1.0. The code license is MIT License. We use uniform time step
for DDIM, and the fast version for DPM-Solver in Appendix D.3 (DPM-Solver-fast) with 10, 15, 20
and 100 steps.

Fig. 3 shows the conditional sample results by DDIM and DPM-Solver. We find that DPM-Solver
with 15 NFE can generate comparable samples with DDIM with 100 NFE.

E.9 Additional Samples

Additional sampling results on CIFAR-10, CelebA 64x64, ImageNet 64x64, LSUN bedroom
256x256 [40], ImageNet 256x256 are reported in Figs. 4-8.

28

NFE = 10 NFE = 15 NFE = 20 NFE = 100

DDIM
[19]

DPM-Solver
(ours)

DDIM
[19]

DPM-Solver
(ours)

Figure 3: Samples by DDIM [19] and DPM-Solver (ours) with 10, 15, 20, 100 number of function
evaluations (NFE) with the same random seed, using the pre-trained DPMs on ImageNet 256×256
with classifier guidance [4].

NFE = 10 NFE = 12 NFE = 15 NFE = 20

DDIM
[19]

DPM-
Solver
(ours)

Figure 4: Random samples by DDIM [19] (quadratic time steps) and DPM-Solver (ours) with 10,
12, 15, 20 number of function evaluations (NFE) with the same random seed, using the pre-trained
discrete-time DPMs [2] on CIFAR-10.

29

NFE = 10 NFE = 12 NFE = 15 NFE = 20

DDIM
[19]

DPM-
Solver
(ours)

Figure 5: Random samples by DDIM [19] (quadratic time steps) and DPM-Solver (ours) with 10,
12, 15, 20 number of function evaluations (NFE) with the same random seed, using the pre-trained
discrete-time DPMs [19] on CelebA 64x64.

NFE = 10 NFE = 12 NFE = 15 NFE = 20

DDIM
[19]

DPM-
Solver
(ours)

Figure 6: Random samples by DDIM [19] (uniform time steps) and DPM-Solver (ours) with 10,
12, 15, 20 number of function evaluations (NFE) with the same random seed, using the pre-trained
discrete-time DPMs [16] on ImageNet 64x64.

30

NFE = 10 NFE = 12 NFE = 15 NFE = 20

DDIM
[19]

DPM-
Solver
(ours)

Figure 7: Random samples by DDIM [19] (uniform time steps) and DPM-Solver (ours) with 10,
12, 15, 20 number of function evaluations (NFE) with the same random seed, using the pre-trained
discrete-time DPMs [4] on LSUN bedroom 256x256.

NFE = 10 NFE = 12 NFE = 15 NFE = 20

DDIM
[19]

DPM-
Solver
(ours)

Figure 8: Random class-conditional samples (class: 90, lorikeet) by DDIM [19] (uniform time steps)
and DPM-Solver (ours) with 10, 12, 15, 20 number of function evaluations (NFE) with the same
random seed, using the pre-trained discrete-time DPMs [4] on ImageNet 256x256 with classifier
guidance (classifier scale: 1.0).

31

	Introduction
	Diffusion Probabilistic Models
	Forward Process and Diffusion SDEs
	Diffusion (Probability Flow) ODEs

	Customized Fast Solvers for Diffusion ODEs
	Simplified Formulation of Exact Solutions of Diffusion ODEs
	High-Order Solvers for Diffusion ODEs
	Step Size Schedule
	Sampling from Discrete-Time DPMs

	Comparison with Existing Fast Sampling Methods
	DDIM as DPM-Solver-1
	Comparison with Traditional Runge-Kutta Methods
	Training-based Fast Sampling Methods for DPMs

	Experiments
	Comparison with Continuous-Time Sampling Methods
	Comparison with Discrete-Time Sampling Methods

	Conclusions
	Sampling with Invariance to the Noise Schedule
	Decoupling the Sampling Solution from the Noise Schedule
	Choosing Time Steps for is Invariant to the Noise Schedule
	Relationship with the Maximum Likelihood Training of Diffusion Models

	Proof of Theorem 3.2
	Assumptions
	General Expansion of the Exponentially Weighted Integral
	Proof of Theorem 3.2 when k=1
	Proof of Theorem 3.2 when k=2
	Proof of Theorem 3.2 when k=3
	Connections to Explicit Exponential Runge-Kutta (expRK) Methods

	Algorithms of DPM-Solvers
	Implementation Details of DPM-Solver
	End Time of Sampling
	Sampling from Discrete-Time DPMs
	DPM-Solver in 20 Function Evaluations
	Analytical Formulation of the function t() (the inverse function of (t))
	Conditional Sampling by DPM-Solver
	Numerical Stability

	Experiment Details
	Diffusion ODEs w.r.t.
	Code Implementation
	Sample Quality Comparison with Continuous-Time Sampling Methods
	Sample Quality Comparison with RK Methods
	Sample Quality Comparison with Discrete-Time Sampling Methods
	Comparing Different Orders of DPM-Solver
	Runtime Comparison between DPM-Solver and DDIM
	Conditional Sampling on ImageNet 256x256
	Additional Samples

