
Appendix for iGibson 2.0: Object-Centric Simulation for Robot Learning of
Everyday Household Tasks

A.1 The iGibson 2.0 Virtual Reality Interface

In this section, we provide additional information about the implementation of our virtual reality
(VR) interface in iGibson 2.0.

Mapping human motion to the virtual embodiment: Humans in VR control a bimanual embodi-
ment in iGibson 2.0 composed of a head, two hands and a torso/body. The hardware for VR control
is composed of a headset and two hand controllers, possibly an additional tracker for the human torso
that maps directly to the VR body. At each step, the pose of the agent’s head is directly set to be the
new headset’s pose as provided by the VR hardware. This step bypasses physics simulation of the
head motion to make sure that the motion of the head in VR corresponds exactly and without delays
to that in the real world to avoid any discomfort. In contrast, both the hands and the main body move
as the result of physical simulation of a body constraint connecting the simulated hands and body
to the new poses provided by the VR hardware. In other words, the VR hardware provides at each
step new “desired” poses for the hands and body that “pull” the body parts towards them with forces
computed by the simulator. This creates realistic interactions between the hands and body and the
objects in the scene, colliding with them and applying forces. The constraint to move the hand has a
maximal force of 300N, simulating the lifting force of humans. The constraint to move the body is
50N. While the desired new poses for the hands always come from the hand-controllers, the desired
pose for the body can be provided by a body tracker on the human’s torso or be otherwise estimated
based on the headset position. This constraint-based system strikes a balance between accurately
following the human motion and realistic interactions with the scene in VR.

Haptic feedback: To approximate the real-world experience, it is important to create haptic feedback
to human subjects when interacting with the scene. To that end, in our VR interface collisions of
the body and the hands trigger haptic vibrations in the controllers. The body will trigger a strong
vibration in both controllers facilitating navigation in the scene. The hands also generate low-strength
vibration when they are in contact with an object, to notify users that they are in contact with a virtual
object. These mechanisms create a multi-modal stream to the humans (vision and haptics) that help
them interact more dexterously and realistically.

Assistive Grasping: Creating realistic, robust and dexterous grasping in virtual reality is challenging.
Grasping objects in real-world involves generating multiple frictional contact points and surfaces
between the hand and the object: simulating physically this complex process in a realistic manner is
non-trivial. Additionally, real-world grasping involves rich multimodal signals that include tactile
and haptic information, that is not available in common virtual reality interfaces. To compensate for
these differences and generate a natural experience in simulation, we implement an assistive grasping
mechanism.

In our VR interface, grasping is performed by pressing the left or right trigger, a one degree of
freedom (DoF) actuation. This single DoF is mapped to a closing motion of the avatar’s hand where
all fingers move synchronously. If the trigger is pressed more than 50% of its range, we activate the
assistive grasping (AG) mode. The AG mode facilitates grasping by creating an additional fixed or
point-to-point joint between the hand and the movable objects inside the hand. We use three criteria
to decide what object inside the hand should be assisted for grasping: First, the object has to be inside
the hand. We evaluate this we a ray casting mechanism. Rays are shot between the following two
sets of points: (thumb tip, thumb middle, palm middle, palm base) and (4 non-thumb finger tips).
These 16 rays return a list of all objects that are in the hand. Second, the object has to be close to the
palm. This is defined as the distance between the center of mass of the palm link and the object is
the smallest among all objects in hand. And third, the object needs to be in contact with the hand
and the hand has to be applying force on it. We found that, defined with these three criteria, the AG
mechanism is realistic as humans can grasp objects reliably with motions that are close to the ones
used in real-world for the same objects. While a user is grasping an object using AG, collision of the
hand with that object is also disabled, to avoid any recurring collisions or simulation instability.

The AG breaks the connection between the object and the hand if the grasping trigger goes under
50% pressed, or the center of mass of object being grasped moves further away from the palm than
a maximum threshold, DAGMax . We use DAGMax = 10 cm. This effectively avoids that humans
can use AG to grasp objects or pull from them in an unrealistic manner, e.g., grasping a heavy object

12

such a watermelon with a single hand. Our AG system strikes a good balance between facilitating
grasping and interactions of humans in VR and simplifying the manipulation of objects excessively.
In this way, humans in VR still need to move and position the hands in realistic ways to grasp and
manipulate heavy objects. The AG mode is also critical to grasp small objects with dexterity. In the
VR demonstrations created by the human, we can see that the AG mechanism works robustly for all
kind of rigid and articulated objects, ranging from fridge handles to knives, from watermelons to
strawberries. Please refer to the supplementary video to see examples of AG mechanism.

Hardware compatibility: We have tested our iGibson 2.0 with the three main commercially available
headsets at the time, HTC Vive (Pro Eye), Oculus Rift S and Oculus Quest. For the former, we
include functionalities to observe and record the eye gaze tracked by the device. To serve both
devices, the iGibson renderer needs to output 1296 x 1440 images at 30Hz, shown to the human to
create a immersive 3D experience. The system is capable of rendering at up to 90Hz, but we had
to reduce the frame rate to accommodate additional expensive per-frame computations, including
physics and extended states update steps in our simulator.

Logging and replaying demonstrations: All information of the runs can be logged and replay
deterministically (same output for the same actions). The logged information includes kinematics and
extended iGibson 2.0 states, and VR agent actions. We believe the logged information acquired with
the iGibson 2.0 VR interface will facilitate research: the information can be analyzed to understand
human strategies, or used with modern robot learning techniques, e.g. with imitation learning, to train
embodied AI solutions.

A.2 Extended Object States, Logical Predicates and Generative System in iGibson 2.0

In this section, we provide additional information on iGibson 2.0’s new extended physical states,
logical predicate system that map physical states to logical states, and the generative system that
sample valid simulated physical states based on logical states.

Extended states associated to object categories: In iGibson 2.0, not all extended states need to be
maintained for instances of all object categories, e.g., most objects cannot be Sliced and only food
objects could be Cooked. We assume that any object instance added to iGibson 2.0 belongs to a
category annotated with properties. The properties indicate what extended states should be updated
for object instances of that category. The exhaustive list of all possible object category properties
is shown in Table A.2. Some properties will require additional annotation for each object model to
estimate logical states.

Object model annotations: Each model needs to be annotated with additional physical and semantic
information to simulate correctly interactions and their associated logical states. The exhaustive
list of all possible object model properties are included in Table A.3. Some properties directly
come from the 3D assets, such as Shape and KinematicStructure. We compute Weight based
on query results from Amazon Product API, and compute CenterOfMass and MomentOfInertia
accordingly for each link based on the assumption of uniform density. Note that if an object category
is annotated with a certain property, e.g., stove is annotated as HeatSourceSink, we need to
annotate HeatSourceSinkLink, a virtual (non-colliding) fixed link that heats or cools objects,
for all object models of stove. For SlicingTool and CleaningTool, we additionally annotate
SlicingToolLink and CleaningToolLink, which are colliding fixed links that can slice objects
(the blade of a knife) and remove dirt particles from objects (the bottom of a vacuum), respectively.

Updating object state: During simulation, our simulator maintains and updates not only the kine-
matic states of the objects, such as Pose and InContactObjs, using our underlying physics engine
Bullet [17], but also the non-kinematic states, such as Temperature and WetnessLevel with custom
rules. These update rules are explained in Sec. 3 and summarized in Table A.4.

Logical predicates as discriminative functions: As explained in Sec. 4, we define a set of discrimi-
native functions that map the extended physical states to logical states that are semantically grounded
on natural language, such as Cooked and Sliced. These logical states can used for symbolic plan-
ning and checking intermediate success for sub-tasks for reinforcement learning. The details of the
discriminative functions of all the logical predicates can be found in Table A.1.

Logical predicates as generative functions: We also define a set of sampling functions that can
generate valid physical states that satisfy the given logical states. For example, if the initial conditions
of the task require a book placed OnTopOf a table or a shelf being Stained, our system can

13

automatically sample concrete physical states that satisfy the requirements: sampling a random
position on the table and place the book there, and sample stain particles on random locations on the
shelf (see Fig. 5a). The details of the generative functions of all the logical predicates can be found in
Table A.5. Please also refer to our supplementary video for more details.

Sampling extended states based on the given logical predicates is relatively simple, e.g., sampling a
temperature that corresponds to an object being Frozen. However, sampling object poses to fulfill the
given kinematic predicates is more involved as it requires sampling values in the Special Euclidean
group SE(3) with additional constraints such as placing objects in stable configurations and not
causing penetrations between objects. In the following, we describe our algorithm to sample valid
poses based on kinematic logical predicates.

Pose Sampling Algorithm: Say we are sampling a valid pose for an object o1 to be OnTopOf
object o2. First, we query the set of stable orientations allowed for object o1. We assume these
orientations are provided per object model, e.g., for a book the orientations to place the book on its
cover and last page or upright. Each stable orientation is linked to an axis-aligned bounding box with
an associated bounding-box base area. The next step would be to find areas on the surface of object
o2 that can hold the bounding-box area and that are flat, unobstructed, and accessible. To find these
areas of o2 surface we use a ray-casting mechanism conditioned on the specific kinematic logical
predicate. For example, for our case of OnTopOf we will generate rays starting immediately above o2
by sampling points from the top face of its axis-aligned bounding box, and marching downwards in
the vertical direction. The points where the rays intersect o2 surface will be used to define planes
where we can attempt to sample object o1 if they fulfill some criteria such as providing stable support.
We can repeat the procedure for different stable orientations of o1. Other logical predicates use a
similar generative procedure but with variations in the ray-tracing step. For example, for InsideOf,
we start our rays at different points inside the o2 bounding box rather than above it. In addition, for
particle-based states such as Dusty and Stained, we additionally allow casting rays in horizontal
directions.

14

Predicate Description

InsideOf(o1,o2)
Object o1 is inside of object o2 if we can find two orthogonal axes crossing at o1 center of mass that
intersect o2 collision mesh in both directions.

OnTopOf(o1,o2)

Object o1 is on top of object o2 if o2 2 InSameNegativeVerticalAxisObjs(o1) ^
o2 62 InSamePositiveVerticalAxisObjs(o1) ^ InContactWith(o1, o2), where
InSamePositive/NegativeVerticalAxisObjs(o1) is the list of objects in the same positive/negative
vertical axis as o1 and InContactWith(o1, o2) is whether the two objects are in physical contact.

NextTo(o1,o2)

Object o1 is next to object o2 if o2 2 InSameHorizontalPlaneObjs(o1) ^ l2(o1, o2) < tNextTo ,
where InSameHorizontalPlaneObjs(o1) is a list of objects in the same horizontal plane as o1, l2 is
the L2 distance between the closest points of the two objects, and tNextTo is a distance threshold that is
proportional to the average size of the two objects.

InContactWith(o1,o2)
Object o1 is in contact with o2 if their surfaces are in contact in at least one point, i.e., o2 2
InContactObjs(o1).

Under(o1,o2)
Object o1 is under object o2 if o2 2 InSamePositiveVerticalAxisObjs(o1) ^o2 62
InSameNegativeVerticalAxisObjs(o1).

OnFloor(o1,o2) Object o1 is on the room floor o2 if InContactWith(o1, o2) and o2 is of Room type.

Open(o)

Any joints (internal articulated degrees of freedom) of object o are open. Only joints that are relevant to
consider an object Open are used in the predicate computation, e.g. the door of a microwave but not the
buttons and controls. To select the relevant joints, object models of categories that can be Open undergo an
additional annotation that produces a RelevantJoints list. A joint is considered open if its joint state q
is 5% over the lower limit, i.e. q > 0.05(qUpperLimit � qLowerLimit) + qLowerLimit .

Cooked(o)
The temperature of object o was over the cooked threshold, Tcooked , and under the burnt threshold, Tburnt ,
at least once in the history of the simulation episode, i.e., Tcooked Tmax

o < Tburnt . We annotate the
cooked temperature Tcooked for each object category that can be Cooked.

Burnt(o)
The temperature of object o was over the burnt threshold, Tburnt , at least once in the history of the simula-
tion episode, i.e., Tmax

o � Tburnt . We annotate the burnt temperature Tburnt for each object category that
can be Burnt.

Frozen(o) The temperature of object o is under the freezing threshold, Tfrozen , i.e., To Tfrozen . We assume as
default freezing temperature Tfrozen = 0�C, a value that can be adapted per object category and model.

Soaked(o)
The wetness level w of the object o is over a threshold, wsoaked , i.e., w � wsoaked . The default value for
the threshold is wsoaked = 1, (the object is soaked if it absorbs one or more droplets), a value that can be
adapted per object category and model.

Dusty(o)
The dustiness level d of the object o is over a threshold, ddusty , i.e., d > ddusty . The default value for the
threshold is ddusty = 0.5, (half of the dust particles have been cleaned), a value that can be adapted per
object category and model.

Stained(o)
The stain level s of the object o is over a threshold, sstained , i.e., s > sstained . The default value for the
threshold is sstained = 0.5, (half of the stain particles have been cleaned), a value that can be adapted per
object category and model.

ToggledOn(o) Object o is toggled on or off. It is a direct query of the iGibson 2.0 objects’ extended state TS , the toggled
state.

Sliced(o) Object o is sliced or not. It is a direct access of the iGibson 2.0 objects’ extended state SS , the sliced state.

InFoVOfAgent(o) Object o is in the field of view of the agent, i.e., at least one pixel of the image acquired by the agent’s
onboard sensors corresponds to the surface of o.

InHandOfAgent(o) Object o is grasped by the agent’s hands (i.e. assistive grasping is activated on that object).
InReachOfAgent(o) Object o is within dreach = 2 meters away from the agent.
InSameRoomAsAgent(o) Object o is located in the same room as the agent.

Table A.1: Logical Predicates: Description of the discriminative functions

Property of an object category Required extended object states
Can be Cooked MaxTemperature, Temperature
Can be Burnt MaxTemperature, Temperature
Can be Frozen Temperature
Can be Soaked WetnessLevel
Can be Dusty DustinessLevel
Can be Stained StainLevel
Can be ToggledOn ToggledState
Can be Sliced SlicedState
Is a HeatSourceSink ToggledState
Is a DropletSource ToggledState

Table A.2: Extended states associated to properties of object categories

15

Object Model Property Must be defined if the
object category. . . Description

Shape Model of the 3D shape of each link of the object
Weight Weight of the object
CenterOfMass Mean position of the matter in the object
MomentOfInertia Resistance of the object to change its angular velocity

KinematicStructure Structure of links and joints connecting them in the form of URDF (non-
articulated objects are composed of one link)

StableOrientations A list of stable orientations assuming the object is placed on a flat surface,
computed using a 3D geometry library

HeatSourceSinkLink Is a HeatSourceSink Virtual (non-colliding) fixed link that generates/absorbs heat
CleaningToolLink Is a CleaningTool Fixed link that needs to contact dirt particles for the tool to clean them
DropletSourceLink Is a DropletSource Virtual (non-colliding) fixed link that generates droplets
DropletSinkLink Is a DropletSink Virtual (non-colliding) fixed link that absorbs droplets

TogglingLink Can be ToggledOn Virtual (non-colliding) fixed link that changes the toggled state of the object
when contacted

SlicingLink Is a SlicingTool Fixed link that changes the sliced state of another object if it contacts it with
enough force

RelevantJoints Can be Open List of joints that are relevant to indicate whether an object is open

Table A.3: Non-updatable object model properties (annotated)

Object State Description and Update Rules

Pose 6 DoF pose (position and orientation) of the object in world reference frame, updated by the
underlying physics engine.

AABB Axis-aligned bounding box (coordinates of two opposite corners) of the object in the world
reference frame, updated by the underlying physics engine.

JointStates State of all internal DoFs of the (articulated) object for the structure defined by
KinematicStructure, updated by the underlying physics engine.

InContactObjs List of all objects in physical contact with the object, updated by the underlying physics
engine.

InSamePositiveVerticalAxisObjs List of all objects in the positive vertical axis drawn from the object’s center of mass, updated
by shooting a ray upwards in the positive z-axis and gather the objects hit by the ray.

InSameNegativeVerticalAxisObjs
List of all objects in the negative vertical axis drawn from the object’s center of mass, up-
dated by shooting a ray downwards in the negative z-axis and gather the objects hit by the
ray.

InSameHorizontalPlaneObjs List of all objects in the horizontal plane drawn from the object’s center of mass, updated by
shooting a number of ray in the x-y plane and gather the objects hit by the rays.

Temperature, T Object’s current temperature in �C, updated by detecting if the object is affected by any heat
source or heat sink.

MaxTemperature, Tmax
Maximum temperature of the object reached historically during this simulation run, updated
by keeping track of all the Temperature in the history.

WetnessLevel, w Amount of liquid absorbed by the object corresponding to the number of liquid droplets
contacted, updated by detecting if the object is in contact with any liquid droplets.

DustinessLevel, d Fraction of the initial amount of dust particles that remain on the object’s surface, updated
by detecting if the particles are in contact with any CleaningTool.

StainLevel, s Fraction of the initial amount of stain particles that remain on the object’s surface, updated
by detecting if the particles are in contact with any Soaked CleaningTool.

ToggledState, TS Binary state indicating if the object is currently on or off, updated by detecting if the agent
is in contact with the TogglingLink.

SlicedState, SS

Binary state indicating whether the object has been sliced (irreversible), updated by detect-
ing if the object is in contact with any CleaningTool that exerts a force above a certain
threshold Fsliced . We assume as default force threshold of Fsliced = 10N, a value that can
be configured per object category and model.

Table A.4: Object states maintained by iGibson 2.0

16

Predicate Sampling Mechanism

InsideOf(o1,o2)
Only InsideOf(o1,o2) = True can be sampled. o1 is randomly sampled within o2 using the
mechanism described in Pose Sampling Algorithm in Sec. A.2. o1 is guaranteed to be supported
fully by a surface and free of collisions with any other object except o2.

OnTopOf(o1,o2)
Only OnTopOf(o1,o2) = True can be sampled. o1 is randomly sampled on top of o2 using the
mechanism described in Pose Sampling Algorithm in Sec. A.2. o1 is guaranteed to be supported
fully by a surface and free of collisions with any other object except o2.

NextTo(o1,o2) Not supported at the moment.
InContactWith(o1,o2) Not supported at the moment.

Under(o1,o2)

Only Under(o1,o2) = True can be sampled. o1 is randomly sampled on top of the floor region
beneath o2 using the mechanism described in Pose Sampling Algorithm in Sec. A.2. o1 is guar-
anteed to be supported fully by a surface and free of collisions with any other object except the
floor.

OnFloor(o1,o2)
Only OnFloor(o1,o2) = True can be sampled. o1 is randomly sampled on top of o2, which
is the floor of a certain room, using the scene’s room segmentation mask. o1 is guaranteed to be
supported fully by a surface and free of collisions with any other object except o2.

Open(o)

To sample an object o with the predicate Open(o) = True, a subset of the object’s relevant joints
(using the RelevantJoints model property) are selected, and each selected joint is moved to a
uniformly random position between the openness threshold and the joint’s upper limit. To sample
an object o with the predicate Open(o) = False, all of the object’s relevant joints (using the
RelevantJoints model property) are moved to a uniformly random position between the joint’s
lower limit and the openness threshold.

Cooked(o)
To sample an object o with the predicate Cooked(o) = True, the object’s MaxTemperature is
updated to max(Tmax

o , Tcooked). Similarly, to sample an object o with the predicate Cooked(o)
= False, the object’s MaxTemperature is updated to min(Tmax

o , Tcooked � 1).

Burnt(o)
To sample an object o with the predicate Burnt(o) = True, the object’s MaxTemperature is
updated to max(Tmax

o , Tburnt). Similarly, to sample an object o with the predicate Cooked(o) =
False, the object’s MaxTemperature is updated to min(Tmax

o , Tburnt � 1).

Frozen(o)
To sample an object o with the predicate Frozen(o) = True, the object’s Temperature is updated
to a uniformly random temperature between Tfrozen � 10 and Tfrozen � 50. To sample an object
o with the predicate Frozen(o) = False, the object’s Temperature is updated to Tfrozen + 1.

Soaked(o)
To sample an object o with the predicate Soaked(o) = True, the object’s WetnessLevel w is
updated to match the Soaked threshold of wsoaked . To sample an object o with the predicate
Soaked(o) = False, the object’s WetnessLevel w is updated to 0.

Dusty(o)

To sample an object with Dusty(o) = True, a fixed number (currently 20) of dust particles are
randomly placed on the surface of o using the mechanism described in Pose Sampling Algorithm
in Sec. A.2. To sample an object with Dusty(o) = False, all dust particles on the object are
removed.

Stained(o)

To sample an object with Stained(o) = True, a fixed number (currently 20) of stain particles are
randomly placed on the surface of o using the mechanism described in Pose Sampling ALgorithm
in Sec. A.2. To sample an object with Stained(o) = False, all stain particles on the object are
removed.

ToggledOn(o) The ToggledState of the object is updated to match the required predicate value.

Sliced(o)
The SlicedState of the object is updated to match the required predicate value. Also, the whole
object are replaced with the two halves, that will be placed at the same location and inherit the
extended states from the whole object (e.g. Temperature).

Table A.5: Logical Predicates: Description of the generative functions

A.3 Experimental Setup and Additional Results

In this section we provide the experimental setup for the reinforcement learning and imitation learning
experiments described in Sec. 6.

Reinforcement Learning Experiments with Bimanual Humanoid Robot: The observation
space include 128⇥ 128 RGB-D images from the onboard sensor on the agent’s head, and proprio-
ceptive information (hand poses in agent’s local frame, and a fraction indicating how much each hand
is closed). The action space is 6-dimensional representing the desired linear and angular velocities of
the right hand, where the rest of the agent is stationary. For grasping, we adopt the “sticky mitten”
simplification from other works [11]: we create a fixed constraint between the hand and the object as
soon as they get in contact.

The agent receives a one-time success reward if it satisfies the single predicate (e.g. Cooked(meat)).
Additionally, we provide distance-based reward shaping for each experiment to encourage the hand
to approach activity-relevant objects, e.g. encourage the hand to approach the meat and the meat to
approach to stove. Finally, for the Cleaning Stained Shelf task, we provide partial progress reward
for each stain particle that has been cleaned. The episode terminates if the agent achieves success or
times out (200 timesteps, or equivalently 20 seconds). We train for 10K episodes, evaluate on the
same setups, and report the results. The training reward curves can be found in Fig. A.1.

17

We use Soft Actor-Critic [39] for training. The policy network has two encoders for RGB-D images
and proprioceptive information. With RGB-D images as input, we use a 3-layer convolutional neural
network to encode the image into a 256 dimensional vector. The proprioceptive information is
encoded into a 256 dimensional vector with an MLP. The features are concatenated and pass through
additional MLP layers to generate the action.

Reinforcement Learning Experiments with Fetch Robot: We also conducted the same RL ex-
periments with a Fetch robot. The observation space include 128 ⇥ 128 RGB-D images from the
onboard sensor on the agent’s head, and proprioceptive information (the end effector pose in agent’s
local frame, joint configurations, and whether the end effector is currently grasping something). The
action space is 6-dimensional representing the desired linear and angular velocities of the end effector,
where the rest of the agent is stationary. We experimented with both the “sticky mitten” grasping
simplification (the same as Bimanual Humanoid) and without such simplification. For the later setup,
the Fetch robot has to rely on the friction between the gripper fingers and the objects to grasp them
with realistic physics simulation. Its action space also includes one additional DoF for closing the
gripper. With this later setup, we hope to minimize the sim2real gap as much as possible. Due to the
additional complexity of grasping, we add one more reward shaping terms to encourage the gripper to
grasp the task-relevant object and penalize the agent for dropping it. We use different reward scaling.
The termination conditions remain the same. We also use the same policy network architecture and
training schema as before. The training reward curves can be found in Fig. A.2.

Imitation Learning Experiments with Bimanual Humaniod Robot : The observation space
includes the ground truth poses of the task-relevant objects, and proprioceptive information, the
same as the RL setup. In the Bimanual Pick and Place experiment, task relevant objects include the
cauldron, the table and the agent itself. The agent can control both of its hands with the desired linear
and angular velocities, which result in 12 degree of freedom. The hand closing action is not learned,
but replayed from the human demonstrations.

We collected 6500+ state-action pairs from 30 human demos and used behavior cloning to predict the
action based on the state. The policy network has two MLP encoders for proprioceptive information
and ground truth object poses. The features are concatenated and pass through additional MLP layers
to generate the action.

The network is trained until validation loss plateaus, and evaluated on a test set of demonstrations. As
discussed in the main paper, the entire task is long horizon (>300 steps) and the policy diverges due
to covariate shift [41]. We then evaluate if the policy can successfully perform the task if we initialize
the simulator a few seconds before task completion of a successful human demo. The success rate
with respect to different policy starting time can be found in Fig. 5b. We show a successful sequence
after rewinding 2 seconds in Fig. A.3.

A.4 Performance Benchmark of iGibson 2.0

To evaluate whether iGibson 2.0 can be used in computationally expensive embodied AI research,
we benchmarked the performance (simulation time) and compared with the previous version. The
benchmark setup is the same as in Shen et al. [1], which considered an “idle” setup, in which we place
a robot (a TurtleBot model) in the scene and run the physics simulation and extended physical state
simulation loop. The benchmark runs on 15 scenes, and statistics are collected. The agent applies
zero actions and stays still. We use action time step of ta =

1
30 s and physics time step of ts = 1

120 s
to be consistent with Shen et al. [1]. Both settings are benchmarked on a computer with Intel 5930k
CPU and Nvidia GTX 1080 Ti GPU, in a single process setting, rendering 512⇥ 512 RGB-D images.

The simulator speed is shown in Table A.6. Although we added many extended physical states, we
still achieved a 25% increase in average performance compared with iGibson 1.0 [1]. In iGibson 2.0,
the main source of speed up with respect to the previous version of iGibson is obtained from better
usage of the object sleeping mechanism, and lazy update of object poses in the renderer. This allows
us to simulate much larger scenes with many more objects with extended physical states tracked, and
as a result, more diverse everyday household activities.

Among other simulators, Habitat 2.0 [42] is the one that has the closest capability to iGibson 2.0, with
fully interactive furniture and objects. Therefore, we conducted a thorough performance benchmark
against Habitat 2.0 in three scenes of different scales. These scenes contain around 20, 60, and 120
objects respectively. We strictly follow the “idle” setup in the Habitat 2.0 paper [42] with 1 GPU, 1

18

Figure A.1: Reward curves for RL experiments (Bimanual Humanoid): We observe steady training progress
across all the tasks and the RL agent achieve perfect reward for task 1)-4). For Slicing Fruit, the agent achieves
only 15% success rate because the task requires a precise alignment between the knife blade and the fruit. For
Bimanual Pick and Place, the agent fails to succeed; although it receives partial reward for approaching the
cauldron, bimanual manipulation of large heavy objects requires careful coordination between hands and remains
challenging learn with RL.

Figure A.2: Reward curves for the five task trained with RL (Fetch): When we adopt the same “sticky
mitten” grasping simplifcation as Bimanual Humanoid for Fetch, the RL agent achieves very similar result (blue)
as the one shown in Fig. A.1. Once we remove such simplification, the RL agent, however, struggles to solve the
tasks, achieving around 25% success rate for Grasping Book and Soaking Towel, and 0% for the other three.
Although the robot learns to approach the task-relevant objects with its end effector, grasping a diverse set of
objects (e.g. towel, knife, meat) with a parallel gripper remains a challenging robotics problem.

Figure A.3: A sequence of IL execution of bimnual grasping: the blue bar indicates that we are replaying the
demonstration, and the green bar is indicating the policy is taking over. The sequence shows that we are able to
complete the task of placing a heavy object on table by starting at T � 2s.

19

Simulator Mean Max Min
iGibson 1.0 100 150 68
iGibson 2.0 125 217 73

Table A.6: Simulation Speed Comparison for iGibson 1.0 and iGibson 2.0. The unit is steps per second; each
step simulates 1

30 s.

Simulator 20 Obj-scene 60 Obj-scene 120 Obj-scene
Habitat 2.0 [42] 1595 112 94
iGibson 2.0 425 202 126

Table A.7: Simulation Speed Comparison for Habitat 2.0 and iGibson 2.0. The unit is steps per second; each
step simulates 1

30 s. . iGibson 2.0 has better scaling performance than Habitat 2.0 for scenes with a larger number
of objects.

Process. The agent (a Fetch robot) is idle while rendering 128⇥ 128 RGB images, with all objects
in the scene being physically simulated. The 20 Obj-scene is the same as the one used in Table 2
of the Habitat 2.0 paper [42]: 3 furniture object (a fridge, a table, and a kitchen counter) plus 15
YCB objects [43]. The 60 Obj-scene is the Rs_int scene from the iGibson 1.0 dataset [1]. The 120
Obj-scene is the Beechwood_0_int scene from the iGibson 1.0 dataset [1] and the apt_0 scene
from Habitat 2.0 [42] and Replica [44]. We tried our best to use comparable objects to build up
comparable scenes in Habitat 2.0 and iGibson 2.0 for fair comparison. The benchmark runs on a
Ubuntu machine with AMD Ryzen 7 3800X 8-core CPU, NVIDIA GeForce RTX 2080 SUPER
GPU, without parallelization. As can be seen in Table A.7, while Habitat 2.0 is well optimized for
scenes with a small number of objects, iGibson 2.0 has better scaling performance for scenes with a
large number of objects, which is a common scenario for household tasks involving long-horizon
mobile manipulation that we propose to study. In addition, Habitat 2.0 doesn’t need to keep track of
and update the extended physical states (e.g. temperature, wetness level, etc) at every time step like
iGibson 2.0 does. Therefore, with physics simulation and rendering alone, iGibson 2.0 can achieve
even higher numbers that the ones included in Table A.7.

A.5 Feature Comparisons of Simulators

In Table A.8, we provide a detailed comparison across multiple simulation environments. The table is
adapted from Table I of [1]. We include more recent simulation environments as columns and more
feature comparisons as rows.

Table A.8: Comparison of Simulation Environments
iGibson 2.0 (ours) iGibson 1.0 [1] Gibson [2] Habitat [5] Sapien [4] AI2Thor [15] ManipulaTHOR [45] VirtualH [16] TDW [7, 13]

Provided Large Scenes
Real-World / Designed

15 homes
(108 rooms) / –

15 homes
(108 rooms) / –

1400 / – – – – / 120 rooms – / 30 rooms – / 7 – / 25

Provided Objects 1217 (*) 570 – – 2346 609 150 308 200
Continuous Extended States � � � � � � � � �

Non-kinematic States � � � � � � � � �

Geometric Sampling
Based on Logical States

� � � � � � � � �

Human Interface Mouse, VR Mouse - Mouse - Mouse Mouse
Natural

Language
VR

Agent/World Interaction
Forces, Predefined Actions

F F – – F F & PA F & PA F & PA F

Physics Engine Pybullet Pybullet Pybullet Bullet PhysX Unity Unity Unity Unity & Flex

Supported Task Nav.&Manip. Nav.&Manip. Nav. Nav. Nav.&Manip. Nav.&Manip. Nav.&Manip. Nav.&Manip. Nav.&Manip.

Speed ++ ++ + +++ ++(PBR)/-(RTX) + + + +

Integrated Motion Planner � � � � � � � � �

Specialty
Continuous Extended

States, VR
Phys. Int. in
Large Scenes

Nav.
Fast,
Nav.

Articulation,
Ray Tracing

Object States,
Task Planning

Mobile
Manipulation

Object States,
Task Planning

Audio,
Fluids

Type of rendering: PBR:Physics-Based Rendering, IBR:Image-Based Rendering, RTX:Ray Tracing

Virtual sensor signals: RGB: Color Images, D:Depth, N:Normals, SS:Semantic Segmentation, LiDAR:Lidar, FL:Flow (optical and/or scene), S: Sounds

* included in a parallel submission BEHAVIOR and fully compatible with iGibson 2.0

20

A.6 Limitations and Future Work

Although iGibson 2.0 has made several significant contributions towards simulating complex, ev-
eryday household tasks for robot learning, it is not without limitation. First of all, iGibson 2.0
doesn’t support soft bodies / flexible material in a scalable way at the moment, due to the limitation
of our underlying physics engine. This prevents us from simulating tasks like folding laundry and
making bed in large, interactive scenes. Also, iGibson 2.0 doesn’t support accurate human behavior
modeling (other than goal-oriented navigation), and thus prevent us from simulating tasks that are
inherently rich in human-robot interaction (e.g. elderly care). With the recent advancement of physics
engines, and human behavior modeling and motion synthesis, we plan to overcome these limitations
in the future. In addition, we also plan to support a more diverse set of extended object states (e.g.
Filled, Hung, Assembled, etc) as well as bi-directional transitions for some of our existing states
(e.g. Soaked and Stained/Dusty), which can unlock even more household tasks. Finally, we plan
to transfer mobile manipulation policies trained in iGibson 2.0 to the real world.

21

