
Published as a conference paper at ICLR 2025

APPENDIX
NULL COUNTERFACTUAL FACTOR INTERACTIONS FOR
GOAL-CONDITIONED REINFORCEMENT LEARNING

TABLE OF CONTENTS

A Reproducibility Statement 16

B Flow Diagram 16

C Visualization of HInt using Ground Truth or NCII interactions 16

D Simulated Nulling 16

E Filter Criteria 17

F Investigating ϵnull 18

G Network Architectures 19

G.1 Pointnet Architectures . 19

G.2 Graph Architectures . 19

G.3 Transformer Architectures . 20

H Environment Details 20

H.1 Spriteworld . 20

H.2 Robosuite . 20

H.3 Air Hockey . 21

H.4 Franka Kitchen . 21

I Training Details 21

J Hindsight Sampling Ablation 22

K Vision Experiments 23

L Additional Comparisons 24

M Rollout Visualizations 25

15

Published as a conference paper at ICLR 2025

A REPRODUCIBILITY STATEMENT

We provide the implementation of NCII, HInt, and other baselines in the appendix code. The
installation instructions, detailed settings, and configurations for the data generation process for the
benchmarks and datasets can be found in Appendix H and the appendix code. The training details,
including hyperparameter settings, experimental setups, and platforms, are provided in Appendix I.

B FLOW DIAGRAM

Interactions
Policy Environment

Interaction Model

Hindsight Filter

Replay Buffer

Next State

State

Hindsight Trajectory

Trajectory

Interaction

Identified

Policy Update

Action

Learned Model State Vector Sequence Sequence Filter

Figure 6: The data flow for the HInt method. An interaction matrix B is generated at each time step,
and at the end of each trajectory is used to filter non-interacting trajectories.

C VISUALIZATION OF HINT USING GROUND TRUTH OR NCII INTERACTIONS

0 10M 20M 30M 40M 50M0

20

40

Ep
iso

de
 R

ew
ar

d

(a) Sprite Default

0 10M 20M 30M 40M 50M0

20

40

(b) Sprite Small

0 2M 4M 6M 8M 10M0

50

100

(c) Robo Default

0 2M 4M 6M 8M 10M0

40

80

(d) Air Default

0 0M 1M 1M 2M 3M0.0

0.5

1.0

Su
cc

es
s

(e) Franka default

0 0M 1M 1M 2M 3M0.0

0.2

0.4

Su
cc

es
s

(f) Franka obstacles

Figure 7: Comparison of HInt and HInt with NCII 5 trials for each. The shading indicates standard
error.

D SIMULATED NULLING

Nulling is a powerful tool for lifelong learning settings, where the agent will experience a large
number of trajectories in a wide variety of settings. However, many RL domains often only contain a
few, specific factors and have a sparse number of interactions. It can be expensive to observe every
distribution of possible states in this setting. However, we can often leverage the fact that interactions
are rare to identify high-priority states using a passive error, a technique introduced by Chuck et al.
(2023).

Intuitively, we can estimate states where there is unlikely to be an interaction affecting the target
object by observing if the target object exhibits unexpected behavior. If it does not, then there is likely
not an interaction. For example in an object-based domain, an object is probably not interacting

16

Published as a conference paper at ICLR 2025

with any other object if it maintains its velocity. More specifically, if an autoregressive model
f : Sj → P(S′

j |Sj) is a good predictor of the next target object state s′j using only the current
target object state sj , then there is most likely not an interaction. The passive signal is then just the
log-likelihood of the observed outcome under the distribution induced by the forward model:

epassive
j (sj , s

′
j) := log f(sj)[s

′
j] (6)

Where f(sj)[s′j] is the probability of s′j under the distribution from f(sj). When the passive signal is
high, this suggests a non-interaction.

We use the passive signal in two ways, first, as a substitute for the null signal. This is because,
assuming that there is not any interaction with the target factor in state s, we can null out any other
state under the null assumption (if there is no interaction, then the outcome distribution should equal
the null distribution). The passive signal can then be used as a proxy for this circumstance since low
passive error implies non-interaction. In practice, this means taking the null vector v, which again is
a 0− 1 vector indicating which objects are present, and randomly zeroing certain indices with some
probability. This gives the passive-adjusted null vector v̂:

v̂ :=

{
v · Bernolli(1− ϵsim-null) epassive

j (sj , s
′
j) > ϵpassive

v otherwise
(7)

Where ϵsim-null is the probability of nulling out a value in high passive likelihood states, and ϵpassive
is the log likehood threshold to be considered high likelihood. We can then train using NII using v̂
instead of v.

The second way we use the passive error is to modify the frequency of interaction states observed
during training. In many of the domains, interactions are very infrequent, ranging from 0.5%
to 0.01%. A model learned with these is likely to simply ignore interactions entirely. Because
interactions are low-likelihood, however, they also tend to have low likelihood under the passive
model f . Consequently, we upweight low passive likelihood states so that they are sampled on
average 20% of the time. This is a technique used in both Chuck et al. (2023; 2024b).

E FILTER CRITERIA

The action path criteria for χ defined in section 4.2 will capture any control exerted by the agent but
has three weaknesses. First, because it incorporates information about all edges, it can be susceptible
to false positives, where a false positive edge in a different object could induce a path. As an example,
imagine the Spriteworld domain with obstacles. If there is a false positive between an object that
was controlled and an obstacle that happened to collide with the target object, this would result in
a trajectory misclassified as passing the criteria. Second, again because identifying a path requires
all edges, this means using the null counterfactual to generate interactions requires an O(T · n2)
operation. Learning these models accurately can be expensive. Finally, while using a binary signal
indicates if any action influence was exerted, it does not give a good measure of the amount of
influence. In practice, this is a challenging problem, but we provide a few heuristic strategies in this
section.

First, we define 3 simplifying filtering strategies for χ.

1. Non-Passive: This is a permissive strategy that rejects any trajectory that does not have
a non-trivial interaction, and assigns a random state after the first non-trivial interaction
as the hindsight goal. Formally, construct B(t) using some subset of the interaction graph
and assigning the remaining edges to 0. Ignore the edges between (i, i), and (action, i)
(because action edges are typically dense). If there is not a nonzero edge remaining, reject
the trajectory. ι =

∑
B(t)∈B̄

∑n
i=0

∑n
j=0 B

(t)
ji = 0.

This formulation allows us to utilize a subgraph while still identifying interactions. However,
since not all non-passive graphs indicate control, it can be overly permissive.

2. Non-passive target: This strategy is a simplification of the general non-passive graph by
taking only the row j corresponding to the target object to test for interactions. Formally,
for target index j, ι :=

∑
B(t)∈B̄

∑n
i=1 B

(t)
ji = 0.

17

Published as a conference paper at ICLR 2025

Domain ϵnull = 0.1 ϵnull = 0.3 ϵnull = 0.5 ϵnull = 0.7 ϵnull = 1.0 ϵnull = 1.5 ϵnull = 2.0 ϵnull = 2.5 ϵnull = 3.0 ϵnull = 3.5

1-in 4.4 ± 3.0 3.4 ± 1.8 3.2 ± 0.5 1.1 ± 1.3 1.2 ± 3.1 1.6 ± 1.3 1.8 ± 0.4 2.2 ± 0.8 2.4 ± 0.9 2.6 ± 2.5
Sprite-1 5.2 ± 2.5 4.9 ± 0.4 2.8 ± 2.5 4.6 ± 3.3 6.4 ± 5.0 21.6 ± 12.5 19.6 ± 4.1 27.4 ± 3.1 39.5 ± 4.7 43.5 ± 17.9

Table 2: Ablation on ϵnull parameter (horizontal) for NCII. Note that because ϵnull indicates a difference
in normalized log-likelihood, the parameter is quite robust. Each is run over 3 seeds.

This has the advantage of reducing the computation to a single row of the graph, though it is
still overly permissive. However, since a non-passive interaction must occur for a control
interaction to occur, it will not filter out any interacting trajectories.

3. Control-target interaction: This strategy is the most stringent, and identifies a control
factor based on the state factor with the most frequent action edge. Call this factor i. Then,
the criteria is simply checking if the control factor has an edge with the target factor j,
and rejecting trajectories where the control factor does not interact with the target factor.
Formally, ι :=

∑
B(t)∈B̄ B

(t)
ji = 0.

This requires, after identifying the control factor, a single interaction test. However, it is
stringent, since it is not required that the control factor directly connects to the target object to
exert control. In practice, we identify the control factor by learning 2n models, one for each
state factor, f passive(sk) → P(S′

k|Sk = sk) and f action(sk,a) → P(S′
k|Sk = sk, A = a).

Then we identify the factor for which adding a helps the most.

The above strategies can reduce some sensitivity to false positives since they only require inference
on a reduced subset of edges. For the same reason, they reduce the computational cost. However, they
do not identify the degree of control. We utilize a simple strategy of only keeping a trajectory if the
number of interactions according to the testing strategy exceeds a certain count. In other words, there
should be at least some amount of interactions if ι is to keep a trajectory. The meaning of frequent is
based on an interaction count b, which is defined differently for each method.

1. Action Graph: define the interaction count as the number of unique paths:

b := #unique paths from actions to j

. A unique path is any path that contains at least one unique edge.
2. Non-Passive: define the interaction count as the number of non-passive edges:

b :=
∑

B
(t)
ij ∈B̄

n∑
i=0

n∑
j=0

B(t)
ji .

3. Non-Passive Target: define the interaction count as the number of non-passive edges to the
target:

b :=
∑

B
(t)
ij ∈B̄

n∑
i=0

B(t)
ji .

4. Control-target: define the interaction count as the number of control-target edges:

b :=
∑

B(t)∈B̄

B(t)
ji .

Then ι := b < nmin interaction number

In practice, we use action-graph interactions in all domains except Spriteworld Obstacles, Robosuite
Pushing Obstacles, and Air Hockey Obstacles. In these domains, we use control-target interactions
for experimental inference.

F INVESTIGATING ϵNULL

The ϵnull parameter can have significant effects on the success of the algorithm, since if selected to be
too small, this will overestimate the prevalence of interactions, and if too large, interactions will fail

18

Published as a conference paper at ICLR 2025

to be identified. While in the experiments for this work we found that a fixed ϵnull is sufficient, as we
see in Table 2, we provide the following strategies for identifying this parameter using information
from learning the null model.

First, learn a null forward model f : S ×A× B → P (·|S,A) that uses information about all input
states to predict a distribution over S′

i, as in Section 4. Then compute the difference in value from the
null operation on the dataset:

diff(s,a, sj , θ)ji = log f(s,a,B(v); θ)j [sj]− f(s,a,B(v) ◦ Si; θ)j [sj] (8)

Now, our objective is to identify the differences that most likely correspond to interactions. Non-
interactions will generally have low error, since nulling should have no effect on the outcome
diff(s,a, sj , θ). Thus, there should be a cluster of low likelihood difference outcomes. Since
interactions mean that the non-nulled evaluation will be higher likelihood, diff() will be higher for
these values, corresponding to the second cluster. In practice, we can apply a 2-mode clustering
algorithm to get the interaction and non-interaction clusters, and take the midpoint (or some other
in-between point) of the mean of the two clusters.

G NETWORK ARCHITECTURES

In this section, we describe the network architectures used in this work. The same architecture is
used for h, f , the interaction and forward dynamics networks.

G.1 POINTNET ARCHITECTURES

Pointnet (Qi et al., 2017) utilizes a 1D convolution-based architecture and an order-invariance
reduce function. In this work, we utilize a multilayer pointnet, which can re-append an embedding
output by the final layer as an input. Our Pointnet uses a 1D convolution to embed the states and
action s1, . . . sn,a, masks them with v, and then follows that with a second 1D convolution. This
architecture is visualized in Figure 8.

Input State

A

S1

S2

Sn

Embed net

Embed net

Embed net

Embed net

Reduce Output net S′￼j

v1

v2

vn

Pointnet

Pointnet

Pointnet

Figure 8: The Pointnet-based architecture used for interactions. Multilayer methods repeatedly
re-append the output to the embeddings. Shared colors (green, yellow) denote weight sharing through
1D convolution.

G.2 GRAPH ARCHITECTURES

We use graph neural networks (GNNs) to model the dynamics, while 1D convolutions are applied
to embed the state and actions. For message passing on GNN, we utilize GCNConv layers (Kipf &
Welling, 2017), and when nulling out objects, we directly remove the corresponding nodes and its
edges from the graph. The architecture is visualized in Figure 9.

19

Published as a conference paper at ICLR 2025

Input State

 A

 S1

 S2

 Sn

Embed net

Embed net

Embed net

Embed net

Message

Passing
Output net S′ j

 v1

 v2

 vn

GNN

Figure 9: The GNN architecture used for interactions. Similarly, shared colors (green, yellow) denote
weight sharing through 1D convolution.

G.3 TRANSFORMER ARCHITECTURES

To adapt to the transformer backbone (Vaswani, 2017), we model the dynamics using a transformer
and nullify the effects of objects by setting their interactions to zero in the cross-attention maps.
However, a challenge occurs when using multiple cross-attention layers: nulling out attention in
one layer does not prevent information exchange in subsequent layers. Results from Random DAG
domains (Table 3) also indicate that transformers perform worse than PointNet or GNN, which we
will address in future work.

Method NCII w/ Point NCII w/ Graph NCII w/ Transformer

1-in 0.8± 0.2 1.0± 0.1 2.6± 0.3
2-in 1.4± 0.2 1.4± 0.2 4.9± 1.7
6-in 25.1± 5.8 26.3± 5.2 41.3± 8.2

Table 3: Accuracy of inference in evaluated domains from states using NCII with different backbones.
Interactions are reweighted to be 50% of the test dataset.

H ENVIRONMENT DETAILS

H.1 SPRITEWORLD

The three 2D Spriteworld domains consist of a target ball being pushed to a goal region by a control
ball in a low friction, gravity-free 7x7 meter region. The action space consists of forces upon the
control ball, and the goal space is a 1m diameter circle. The reward function is sparse, with 0
reward outside and 1 reward inside the goal region. Because controlling the control ball is already
challenging, and when struck the target ball is likely to pass through rather than stay in the goal
region, this task can take a very substantial number of interactions to train. In the variants, we add
2 obstacles of similar mass to the target ball which impede it from reaching the goal. Ground truth
interactions in this domain consist of contacts between the different objects.

The three variants differ according to the radius of the goal and target objects, and the presence of
obstacles. In the Default domain, the radius of the control and target objects are 0.5 meters, while in
the small and Obstacles domains they are 0.3 meters. In the obstacles domain are two additional
obstacles, a triangle and a circle, of similar mass to the target object and where the radius of the
polygon (distance from centroid to further vertex) and circle is 0.5 meters. Each domain uses 100
time steps for a trajectory before timing out.

H.2 ROBOSUITE

The three Robosuite domains involve pushing a block to a desired target location using end effector
control of a PANDAs robotic arm. The workspace is a 0.6 × 0.6 × 0.3 meter region in length,
width height respectively. The action space consists of desired end effector deltas, using an OSC
controller to achieve the desired delta position. The goal space is a 0.05m diameter circle. Again,
the reward function is sparse, with 0 reward outside and 1 reward inside the goal region. Increasing
the dimensionality by moving the gripper in 3D space means that interactions are even less frequent,

20

Published as a conference paper at ICLR 2025

even though the task is over a much smaller area. In the obstacle variant we add 2 immovable 0.05m
blocks to the domain, initialized randomly such that they do not lie on top of the goal. Once again,
Ground truth interactions in this domain consist of contacts between the different objects.

The three variants differ according to the size of the target block, and the presence of obstacles. In
the Default domain, the cube side length of the target block is 0.015 meters, while in the small
and obstacles domain it is 0.007 meters, where the obstacle domain has the two additional 0.05m
obstacles. Each domain uses 100 time steps for a trajectory before timing out.

H.3 AIR HOCKEY

The three 2D Air Hockey domains consist of a puck being struck into a goal region using a paddle in
a low friction 2x1 meter region, where there is gravity pulling the puck down towards the paddle. The
action space consists of forces upon the paddle, and the goal space is a 0.2m diameter circle. In this
domain only, we use a shaped reward instead of a sparse one, although hindsight still proves to be
useful because of the complexity of the dynamics. The reward function is densified with a l2 distance,
which was necessary for any policy to learn in this domain. The agent receives − 1

2∥spuck − g∥22
reward outside and 1 reward inside the goal region. The challenge in this domain is to use a sparse
interaction to achieve a downstream effect, with the puck constantly moving in and out of the goal. In
the variants, we add 2 blocks of high mass to the target ball which can impede the puck from reaching
the goal. Ground truth interactions in this domain consist of contacts between the different objects.

The three variants differ according to the radius of the puck and paddle, and the presence of obstacles.
In the Default domain, the radius of the puck is 0.03m and puck is 0.05 meters, while in the small
and obstacle domain the puck is 0.02 meters and the puck is 0.03 meters. The obstacle domain
additionally adds three random obstacles. The goal in all domains is 0.15m radius. Each domain uses
100 time steps for a trajectory before timing out.

H.4 FRANKA KITCHEN

In the Franka Kitchen domain, a robot with 9 degrees of freedom is tasked with controlling various
kitchen objects, including the top and bottom burners, light switches, sliding and hinged cabinets,
kettle, and microwave. Each object corresponds to a specific sub-task, and the robot must perform a
sequence of tasks, where each is associated with the goal positions of its joints. The sparse reward is
computed based on the number of completed tasks. Here in the Default domain, the robot’s task is to
open the microwave (three objects: desk and microwave). In the Obstacle domain, the robot’s task is
to open the microwave and the sliding cabinet, where the additional objects such as the kettle and
burner switches are added as obstacles.

I TRAINING DETAILS

In this section we describe the hyperparameters and training details for NCII and HInt.

All null experiments were collected with 10 seeds between 0-9. All RL experiments used 5 seeds
between 0-4. The experiments were conducted on machines of the following configurations:

• 4×Nvidia A40 GPU; 8×Intel(R) Xeon(R) Gold 6342 CPU @2.80GHz

• 4×Quadro RTX 6000 GPU; 4×Intel(R) Xeon(R) Gold 6342 CPU @2.80GHz

• 4×Nvidia 4090 GPU; 8×Intel(R) Xeon(R) Gold 6342 CPU @2.80GHz

• 2×Nvidia A100 GPU; 8×Intel(R) Xeon(R) Gold 6342 CPU @2.80GHz

Encoding Dim 512
Hidden 3× 512

Activation Leaky ReLu

Table 4: Forward/inference Model

21

Published as a conference paper at ICLR 2025

Parameter Value

ϵnull 1 (log-likelihood space)
Minimum Normalized distribution variance 0.001

Distribution Diagonal Gaussian
Learning Rate 1× 10−4

Table 5: Null Parameters

Parameter Value

Algorithm DDPG
Batch Size 1024
Optimizer Adam

Actor/critic learning rate 1× 10−4

Exploration Noise 0.1
γ 0.9

Hidden Layers 2× 512
τ 0.005

Table 6: Reinforcement Learning Parameters

Domain Timeout Normalized Goal Epsilon Null Train Steps RL Train Steps

Spriteworld Default 100 0.1 1M 50M
Spriteworld Small 100 0.15 1M 50M

Spriteworld Obstacles 100 0.2 - 50M
Spriteworld Velocity 100 0.2 - 50M

Robosuite default 100 0.15 1M 10M
Robosuite small 100 0.15 - 10M

Robosuite obstacles 100 0.15 - 15M
Air Hockey default 400 0.2 1M 10M
Air Hockey small 400 0.2 - 20M

Air Hockey obstacles 400 0.2 - 20M
Franka Kitchen default 200 0.2 2M 3M

Table 7: Domain Specific Parameters

Domain HInt learned HInt Hind Prio FPG Vanilla ELDEN CAI

Sprites (50M) 62.21 22.10 23.27 26.02 17.15 22.57 40.12 69.34
Air (10M) 12.50 4.33 4.59 6.05 5.24 3.31 9.75 17.23

Robo (10M) 21.17 11.52 15.32 11.28 8.59 8.21 18.28 25.20
Franka (3M) 16.68 9.26 8.45 8.92 10.39 9.16 13.25 22.48

Table 8: Wall Clock Compute Time in Hours

J HINDSIGHT SAMPLING ABLATION

In this work, we focused on the introduction of interactions into Hindsight Filtering using the “final”
sampling scheme, which takes the last state of a trajectory as the hindsight goal. In practice, different
sampling schemes can be used for hindsight Andrychowicz et al. (2017), including sampling any state
after the one observed “future” or any state from the trajectory “episode.” We provide some analysis

22

Published as a conference paper at ICLR 2025

Method NCII w/ Point JACI Gradient Attention NCD

1-in-nonlinear 0.9± 0.2 2.4± 0.8 32.5± 6.1 37.4± 0.7 21.2± 1.1
2-in-nonlinear 2.3± 0.1 2.5± 0.2 36.4± 0.4 21.8± 0.9 19.8± 2.0
40-dim 1.4± 0.1 2.4± 0.5 34.7± 4.4 26.4± 6.9 12.5± 0.8

Table 9: Misprediction rate (lower is better) of inference in additional domains from state, similar
to Table 1. Interactions are reweighted to be 50% of the test dataset. Boldface indicates within ∼ 1
combined standard deviation of the best result. k-in-nonlinear uses nonlinearities in the random DAG
instead of a linear relationship. 40-dimensional uses a 40 dimensional state.

suggesting that hindsight filtering is applicable in any sampling scheme in Figure 10. Note again
that in general, we used the “final” sampling strategy for all other experiments (Figure 4, Figure 7,
Figure 12).

0 10M 20M 30M 40M 50M0

20

40

(a) Sprite Final

0 10M 20M 30M 40M 50M0

20

40

(b) Sprite Future

0 10M 20M 30M 40M 50M0

20

40

(c) Sprite Episode

0 2M 4M 6M 8M 10M0

50

100

(d) Robo Final

0 2M 4M 6M 8M 10M0

50

100

(e) Robo Future

0 2M 4M 6M 8M 10M0

50

100

(f) Robo Episode

0 2M 4M 6M 8M 10M0

40

80

(g) Air Final

0 2M 4M 6M 8M 10M0

40

80

(h) Air Future

0 2M 4M 6M 8M 10M0

40

80

(i) Air Episode

Figure 10: Comparison of HInt and Hindsight using different HER sampling schemes “final”, “future”
and “episode”, with 3 trials for each sampling scheme. In these experiments, we modified the
sampling scheme for both HInt and Hindsight to the sampling strategy indicated in the caption. The
shading indicates standard error. Sprite-, Air- and Robo- domains each use the default variant. The Y
axis is average reward per episode.

K VISION EXPERIMENTS

While the objective of this work is to demonstrate a generally applicable method for utilizing
counterfactual nulls for interaction inference (NCII) and interaction filtering for GCRL (HInt), we
briefly explore the scaling capabilities of NCIIand HInt. In both interaction inference and GCRL,
performance in higher dimensional states remains a challenging problem. While our results certainly

23

Published as a conference paper at ICLR 2025

Method NCII w/ Point JACI Gradient Attention NCD

Sprite-1-vision 13.9± 0.5 18.1± 0.2 26.4± 2 39.6± 4.5 21.2± 1.1

Table 10: Misprediction rate (lower is better) of inference in Spriteworld-1 domain. Interactions are
reweighted to be 50% of the test dataset. Boldface indicates within ∼ 1 combined standard deviation
of the best result.

suggest that the NCIIis competitive with baselines in both domains, these scaling questions remain
unsolved.

Empirically, we take a segmentation of each object in the frame (given from the simulator) in the
Sprite default domain, and train a variational autoencoder Kingma (2013) on a frame stack of 3 frames
of each segmented object with a latent dimension of 128. We then append object-centric features
pixel position and velocity, duplicated to 128 dimensions. This is then used as the input for both
NCIIand RL using HInt. We first compare NCIIto interaction inference baselines in the Spriteworld
Default domain in Table 10. Then we provide a performance curve for HIntwhen compared against
the Hindsight and Vanilla RL baselines in Figure 11.

0 20M 40M 60M 80M 100M0

5

10

(a) Sprite Default 256-encoded

Figure 11: Comparison of HInt, Hindsight and Vanilla RL, 3 trials for each, on Spriteworld Default
using 256-dimension image encodings. The shading indicates standard error. The Y-axis is average
reward per episode.

0 10M 20M 30M 40M 50M0

20

40

(a) Sprite Obstacles

0 2M 4M 6M 8M 10M0

50

100

(b) Robo Default

0 2M 4M 6M 8M 10M0

40

80

(c) Air Default

0 0M 1M 1M 2M 3M0.0

0.5

1.0

(d) Kitchen Default

Figure 12: Addition of Causal Action Influence (CAI) Seitzer et al. (2021) baseline in selected
domains. This baseline is similar to ELDEN, but has more inductive bias towards actions. The Y axis
is the average reward per episode.

L ADDITIONAL COMPARISONS

We also compare with Causal action influence (CAI) (Seitzer et al., 2021). CAI uses conditional
mutual information to infer the local causal relations, detecting when and what the agent can influence
the state variables with its actions. Then they employ the influence as the intrinsic motivation for

24

Published as a conference paper at ICLR 2025

exploration that benefits sample efficiency. The results in selected domains are given in Figure 12,
where CAI performs similarly to ELDEN empirically.

M ROLLOUT VISUALIZATIONS

Figure 13: Selected frames from a successful policy rollout for Spriteworld Obstacles

Figure 14: Selected frames from a successful policy rollout for Robosuite Obstacles

Figure 15: Selected frames from a successful policy rollout for Air Hockey Default

Figure 16: Selected frames from a successful policy rollout for Franka Kitchen

25

	Introduction
	Related Work
	Problem Formulation
	Goal-Conditioned Reinforcement Learning
	Interaction Inference

	Methods
	Null Counterfactual Interaction Inference Algorithm
	Interactions for Hindsight

	Experiments
	Inference Experiments
	Hindsight Relabeling using Interactions
	Hindsight Evaluation
	Hindsight Filtering using NCII

	Conclusion, Limitations, and Future Work
	Reproducibility Statement
	Flow Diagram
	Visualization of HInt using Ground Truth or NCII interactions
	Simulated Nulling
	Filter Criteria
	Investigating null
	Network Architectures
	Pointnet Architectures
	Graph Architectures
	Transformer Architectures

	Environment Details
	Spriteworld
	Robosuite
	Air Hockey
	Franka Kitchen

	Training Details
	Hindsight Sampling Ablation
	Vision Experiments
	Additional Comparisons
	Rollout Visualizations

