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1 PROOFS OF PROPOSITIONS

1.1 PROOF OF PROPOSITION 1

Disjoint Unions. Let z ∈ RQ and z̃ ∈ RQ′ such that for some i ∈ I we have Qi ̸= Q
′

i. If z = z̃, it implies that
||zJi

− xJi
|| = Qi and ||z̃Ji

− xJi
|| = Q

′

i which is a contradiction.

Partition. |Ji| ≤ Ri, and ||zJi
− xJi

|| ≤ Qi hence X = ∪Q≤RRR
Q.

1.2 PROOF OF PROPOSITION 2

As the noise for each entry is independent we can decompose the probabilities as so

P (ϕ(x̃) = z)

P (ϕ(x) = z)
=

∏
k∈[N ]

P (ϕ(x̃)k = zk)

P (ϕ(x)k = zk)
. (1)

Furthermore, as each components belongs to exactly one edge community.

∏
k∈[N ]

P (ϕ(x̃)k = zk)

P (ϕ(x)k = zk)
=

I∏
i=1

∏
k∈Ci

P (ϕ(x̃)k = zk)

P (ϕ(x)k = zk)
. (2)

We note that for k where x̃k = xk this fraction is one, so we can focus on terms when x̃k ̸= xk. In equations this can be
written as

I∏
i=1

∏
k∈Ci

P (ϕ(x̃)k = zk)

P (ϕ(x)k = zk)
=

I∏
i=1

∏
k∈Ji

P (ϕ(x̃)k = zk)

P (ϕ(x)k = zk)
(3)

We can consider what the terms are equal to when xk = zk and when xk ̸= zk (assuming that xk ̸= x̃k). We get

P (ϕ(x̃)k = zk)

P (ϕ(x)k = zk)
=

{
pi

1−pi
if xk = zk and xk ̸= x̃k

1−pi

pi
if xk ̸= zk and xk ̸= x̃k

. (4)

In total there are Ri terms in each product, of which Qi are the first case and Ri −Qi are in case two. Thus
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Figure 1: Pictorial representation of where the terms in Proposition 2 come from.

I∏
i=1

∏
k∈Ji

P (ϕ(x̃)k = zk)

P (ϕ(x)k = zk)
=

I∏
i=1

(
pi

1− pi

)Qi
(
1− pi
pi

)Ri−Qi

(5)

=

C∏
i=1

(
pi

1− pi

)2Qi−Ri

(6)

=

C∏
i=1

(
1− pi
pi

)Ri−2Qi

(7)

as required. We provide Fig. 1 as a visual aid to the proof.

1.3 PROOF OF PROPOSITION 3

We have RQ = {z ∈ X : ∥zJi
− xJi

∥0 = Qi}. The probability P(ϕ(x) ∈ RQ) corresponds to each set Ri having Qi

entries not being flipped or equivalently Ri −Qi entries being flipped. Each node pair is flipped with a probability of pi.
Since all flips are independent we can express the probability as P(ϕ(x) ∈ RQ) =

∏C
i=1 Bin(Ri −Qi|Ri, pi).

2 IMPLEMENTATION

2.1 NOISE SAMPLING

In order to sample from the anisotropic noise defined in eq. (11), we propose an illustration in Fig. 2. Given disjoint regions
of node pairs Ci, new graphs are sampled by adding independent Bernoulli samples with parameters given by the regions to
the appropriate part of the graph.
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Figure 2: A comparison between the anisotropic certificate and the sparsity-aware certificate. Each entry represents the ratio
of correctly classified test-set samples that could be certified at a specified number of edge deletions and additions.

2.2 ESTIMATIONS OF PROBABILITIES

The quantities py(x) cannot be computed in closed form for general f . Hence, we resolve to lower bound pA and upper
bound py(x), y ̸= cA via sampling. To achieve this, we use the Clopper-Pearson interval. Cai [2005].

2.3 SYMMETRIES CERTIFICATION

Solving the optimization problem defined in Eq. (8) is difficult as certificates have to be computed for every x̃ in the ball
around x: Br(x). However, in practice, Φx,x̃(pA, cA) displays some symmetries depending on the noise distribution ϕ(x).

In the case of isotropic noise, the regions Hk and values ηk only depends on ∥x − x̃∥0. This implies Φx,x̃(pA, cA) =

Φx,x̃′ (pA, cA) for all x̃, x̃
′ ∈ Sr(x) which reduce the search on every spheres.

In the case of anisotropic noise, the regions Hk and values ηk only depends on ∥xCi
− x̃Ci

∥0. This implies Φx,x̃(pA, cA) =

Φx,x̃′ (pA, cA) for all x̃, x̃
′ ∈ SR(x).

3 ALGORITHM

The full algorithm of our method is given in Alg. 1 and its complexity is analyzed below.

3.1 ALGORITHMIC COMPLEXITY: CERTIFICATION

Let x be a graph, N the number of samples to perform the Clopper-Pearson statistical test, n the number of nodes in the
graph, and R ∈

∏
i

[|Ci|] a given radius to certify. The certification algorithm proceeds as follow:

1. Sample N graphs from the noise distribution with complexity O(Nn2), this step is very easily parallelizable.

2. Forward the N sampled graphs through the model. Given a model forward complexity of O(m(n)) (we omit potential
depency on node or edge feature dimension), the total complexity is O(Nm(n)), this step is very easily parallelizable.

3. From estimates (pA, pB) and noise distribution ϵ find optimal radius R. and TR =
∏
i

(Ri + 1):

(a) Compute the vectors ηRQ and sort them, with respective complexity O(CTR) and O(TR log(TR)).
(b) Solve the linear programs of eq. (9) and (10) and verify ρx,x̃(pA, cA)− ρx,x̃(pB , cB) > 0, with complexity O(T )

The total complexity becomes O(Nn2 +Nm(n) + CTR + TR log(TR))

Regarding the model complexity, some example complexity are the following:

1. Graph Neural Network: the complexity is quadratic in the number of nodes due to matrix multiplication: m(n) = O(n2)

2. Label kernel: the complexity is linear in the number of edges O(E) = O(n2)



Algorithm 1 Structure aware randomized smoothing

1: inputs: Graph to certify x, noise perturbation ϵ, anisotropic structure (Ci)i∈I ⊂ [n]2, graph classification model m : X → Y ,
number of samples N and upper bounds on certificate radii (Rmax,i)i∈I .

2: initialize: Train model m on classification data D or load model parameters.
3: voting
4: for i = 1, ..., N do
5: Sample random graph x̃i ∼ x⊕ ϵ
6: Compute model prediction yi ∈ Y
7: end for
8: Compute distribution label frequency from (yi)i∈[N ], denoted (py, y)y∈Y , and identify the most frequent and runner-up (second

most frequent) class (pA, cA) and (pB , cB)
9: certification

10: for R ∈
∏
i

[|Rmax,i|] do

11: Compute ηR
Q according to the formula (13) and sort them.

12: Compute P(ϕ(x)) ∈ RQ with formula (14).
13: Solve the linear programs described in eq. (9) and (10) greedily
14: Verify ρx,x̃(pA, cA)− ρx,x̃(pB , cB) > 0
15: end for
16: return Grid of certification for R ∈

∏
i

[|Rmax,i|]

3.2 ALGORITHMIC COMPLEXITY: OPTIMAL RADIUS

Let x be a graph, N the number of samples to perform the Clopper-Pearson statistical test, n the number of nodes in the
graph. The algorithm to find the optimal radius proceeds as follow:

1. Sample N graphs from the noise distribution with complexity O(Nn2), this step is very easily parallelizable.

2. Forward the N sampled graphs through the model. Given a model forward complexity of O(m(n)) (we omit potential
depency on node or edge feature dimension), the total complexity is O(Nm(n)), this step is very easily parallelizable.

3. From estimates (pA, pB) and noise distribution ϵ find optimal radius R. Select a vector, R ∈
∏
i

[|Ci|], let TR =∏
i

(Ri + 1) and T =
∏
i

(Ri,max + 1):

(a) Compute the vectors ηRQ and sort them, with respective complexity O(CTR) and O(TR log(TR)).

(b) Solve the linear programs of eq. (9) and (10) and verify ρx,x̃(pA, cA)− ρx,x̃(pB , cB) > 0, with complexity O(T )

We output the pareto front R according to the partial ordering R ⪯ R′ ⇐⇒ ∀i,Ri ≤ R′
i

The total naive complexity is O(Nn2 +Nm(n) + CT 2 + T 2 log(T )). However, we want to point out there are multiple
places the complexity could drastically improve.

1. First, the last point is problem agnostic, meaning that, given the estimates (pA, pB) (first and second highest label
probabilities) and the noise distribution ϵ, the corresponding optimal radii R can be computed. Given specific scenario,
this opens the possibility to precompute tables R(pA, pB , ϵ). This can be used to directly output R or use it to find the
optimal R quicker.

2. Second, the linear program described in equation (9) and (10) can be efficiently solved greedily. Given we know
the closed-form formula for µk, making the ordering explicitly dependant on Q, one can compute them only when
necessary.

3. Finally, the partial ordering defined previously is, in practice indicative of the robustness certification, i.e. if we cannot
certify a certain radius, a larger radius won’t be certified either. Although we don’t propose a formal proof of this
property, it holds true in practice, as one can see on the experiment results, and could be exploited for more efficient
search, similar to a multidimensional binary search.
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Figure 3: Influence of the underlying classifier on the anisotropic certificate radius.

4 ADDITIONAL RESULTS

Varying the base classifier In Figure 3, we compare our anisotropic certification performance across three kernels, the
graphlet Sampling kernel Shervashidze et al. [2009], the neighbourhood subgraph pairwise distance kernel Costa and
De Grave [2010] and vertex Histogram kernels Sugiyama and Borgwardt [2015] for a sample size of N = 10, 000. In
general, a model that is robust to noise will lead to certificates with large radii.

Number of sampled perturbations In Figure 4, we analysed the impact of sample size when computing the anisotropic
certification radius in our synthetic experiments. The certificate performs poorly for a small number of samples. This is
because the lower bound on pA becomes very loose.
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Figure 4: Influence of sample size on anisotropic certificate radius.


	Proofs of propositions
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3

	Implementation
	Noise sampling
	Estimations of probabilities
	Symmetries certification

	Algorithm
	Algorithmic Complexity: Certification
	Algorithmic Complexity: Optimal radius

	Additional results

