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ABSTRACT

We tackle the problem of solving shape puzzles, that is, reassembling randomly-
partitioned and scattered pieces of 2D or 3D shapes into an original shape. This
task is challenging since it only relies on geometric features without rich visual
information. Specifically, we are supposed that target shapes and their randomly-
partitioned pieces are pattern-free and irregular. Existing methods tend to rely
on specific constraints regarding piece shapes and neglect the consideration of
invariance and equivariance. We propose learning a robust puzzle solver through
a generative diffusion process in which the roto-translational equivariance holds.
Experiments on 2D and 3D puzzle benchmarks including the Breaking Bad dataset
demonstrate that our method successfully assembles given geometric pieces into
a target shape. We also provide in-depth ablation studies showing the effects of
our equivariant design and the components in our proposed framework.

1 INTRODUCTION

The task of shape puzzles aims to assemble given parts into a complete and assembled shape. In
particular, we solve pattern-free and irregular shape puzzles by assuming the unavailability of visual
and semantic information, unlike semantic shape assembly approaches (Li et al., 2020a;b; Lee et al.,
2021; Wang et al., 2022). More specifically, the problem solved in this work more focuses on the
geometric information of each shape rather than semantic information.

As discussed in the previous work (Hosseini et al., 2023) on a 2D geometric puzzle dataset, there
are a few inherent characteristics of simple puzzles, making shape puzzles a highly suitable task
for exploring the potential of geometric features. Firstly, the puzzle dataset is built with a minimal
number of points defining each shape, simplifying a solution space. Secondly, each puzzle can
possess explicit geometric constraints such as edge matching constraint. Lastly, it is easy to control
the puzzle’s constraints, one can adjust the level of generality within the task.

Recognizing the potential of solving the 2D puzzle dataset, our work first proposes the creation
of a generic 3D puzzle dataset, and then showcases a novel puzzle solver based on a diffusion
model-based conditional generation framework for 2D and 3D puzzles including the Breaking Bad
dataset (Sellán et al., 2022). Inspired by the existing studies on complex representations and SE(3)
equivariant network such as the work (Deng et al., 2021), our approach demonstrates performance
improvements by integrating simple yet effective representations that satisfy permutation equivari-
ance, SE(2)/SE(3) invariance, and potentially SE(2)/SE(3) equivariance. This design is theoretically
and empirically validated with significant performance gains in both 2D and 3D puzzle tasks.

In summary, our contributions are as follows.

• We design a dataset generating framework which allows direct adjustment of piece number and
shape complexity, and propose a new 3D puzzle dataset.

• We propose a novel diffusion-based framework which solves puzzles on 2D and 3D domains.
To the best of our knowledge, this is the first approach to solving a 3D assembly task via the
coniditional equivariant diffusion model.

• We demonstrate theoretical results and performance improvements with ablation studies prov-
ing the effectiveness of each component included in our framework.

We will make our implementation public upon publication.
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2 RELATED WORK AND PRELIMINARIES

We cover the recent work and preliminaries related to our framework in this section. More detailed
discussion on related work and preliminaries can be found in Section A.

Shape and Puzzle Assembly Problems. Shape assembly is an active research area in computer
vision and graphics. It is to construct complete shapes from given parts. Previous research often
utilizes public datasets such as PartNet (Mo et al., 2019) and IKEA-Manual (Wang et al., 2022),
which provide detailed semantic part information. Thus, they can be categorized into semantic shape
assembly. The recent studies (Li et al., 2020a;b; Lee et al., 2021; Wang et al., 2022) have addressed
assembly from single images or focused on specific applications such as furniture assembly.

While many prior approaches heavily rely on semantic part information, the work (Cho et al., 2010;
Chen et al., 2022) has tackled an assembly problem by prioritizing shape geometries over seman-
tic details. Also, the Breaking Bad dataset (Sellán et al., 2022) has introduced challenges in as-
sembling non-semantic fragments into complete shapes, highlighting the complexity of fractured
shape reassembly. On the other hand, there is a line of research on shape assembly with LEGO
bricks (Thompson et al., 2020; Kim et al., 2020; Chung et al., 2021), where each brick is seman-
tically meaningless. Moreover, the work (Lee et al., 2022) tackles the problem of 2D sequential
puzzles with fixed target shapes using the Transformer-based network.

SE(2)/SE(3) Invariance and Equivariance. The special Euclidean groups in two and three di-
mensions (denoted as the SE(2) and SE(3) groups, respectively) represent a set of all possible com-
binations of rotation and translation in 2D and 3D spaces. For the sake of brevity, we only describe
the details of the SE(3) group in this section; the SE(3) group can readily be reduced to the SE(2)
group. Each instance of the SE(3) group is represented by a tuple of a rotation matrix R ∈ R3×3 and
a translation vector t ∈ R3, i.e., (R, t). Specifically, R indicates an orientation change in 3D space
where this matrix is orthogonal; R⊤R = I, and has a determinant of 1, ensuring that it represents
pure rotation without reflection. Moreover, t indicates a position shift in 3D space where it specifies
how much an object moves along x, y, and z directions. Formerly, a function f to apply rotation
and translation to an input variable x is given by the following: f(x; (R, t)) = Rx+ t ∈ R3.

With the definition of the SE(3) group, SE(3) invariance and equivariance are significant for defining
robustness against arbitrary SE(3) transformations, supposing that a function f invariant or equivari-
ant against a transformation T if it satisfies f(T (x)) = f(x) or f(T (x)) = T (f(x)), respectively.
These properties are particularly desirable in specific tasks where the tasks should not depend on
transformations such as scaling, rotation, or translation of an input data. Without loss of generality,
we can define the SE(3) invariant function f : f(Rx+ t) = f(x) ∀(R, t) ∈ SE(3). This invariance
property implies that the outputs of f are all identical when applying any SE(3) transformation,
so that it ensures that a model is invariant to object’s positioning and orientation. Furthermore,
the SE(3) equivariance is readily defined, based on the equivariance and SE(3) group. These are
well-known desirable properties in robotics and 3D vision (Chen et al., 2021; Thomas et al., 2018).

3 PROBLEM STATEMENT

We describe the details of the 2D and 3D shape puzzle problems, focusing on the 3D puzzle task.

3.1 GEOMETRIC SHAPE PUZZLE TASKS

The task of 2D and 3D shape puzzles involves solving the reconstruction of irregular 2D and 3D
objects from disassembled, irregular, and pattern-free pieces, as shown in Figure 1. The goal of this
task is to accurately identify the correct spatial orientation and proper placement of all geometric
pieces. In particular, irregular target objects and geometric pieces complicate the assembly task as
it requires the precise understanding of spatial relationships between pieces and demands complex
reasoning on the occupation of 2D and 3D spaces. Moreover, the characteristics on pattern-free
objects make the problems more difficult since we cannot resort to the visual information captured by
modern feature extraction techniques. To address such tasks, in this paper we employ the equivariant
diffusion model with overcomplete representations; see Section 4 for details.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Arrangement parameter(pose) of 

Arrangement parameter(pose) of 

(a) Two randomly-partitioned pieces

optimal pose of 

optimal pose of 

(b) Target assembled shape

Figure 1: Given a variable number of randomly-partitioned pieces, the goal of a shape puzzle is to
determine the correct positions and orientations of these pieces.

3.2 REPRESENTATIONS FOR 3D SHAPE PUZZLES

Suppose that we are given a puzzle set with n randomly-partitioned pieces, denoted as S =
{P1,P2, . . . ,Pn}. Each piece Pi is composed of an arbitrary number of corners and an arbitrary
number of faces: Pi = (Ci,Fi), where Ci = {ci,1, ci,2, . . . , ci,mi} and

Fi = {fi,1, fi,2, . . . , fi,li}. Note that ci,j ∈ R3 is the j-th corner coordinate of a piece Pi and fi,k is
a set containing the indices which form the k-th face of Pi. For example, fi,k = {1, 4, 7} indicates
that the k-th face of Pi consists of ci,1, ci,4, and ci,7. For S, we define the following geometric
parameters ai = (r

(r)
i , r

(p)
i , r

(y)
i , ti) ∈ [−1, 1]6 × R3, which is called arrangement parameter for

each Pi. This arrangement parameter is used to place the piece in an absolute 3D coordinate system
where r

(r)
i , r

(p)
i , r

(y)
i ∈ [−1, 1]2 are transformed angles for roll, pitch, and yaw directions; each

angle is considered as representing ri = [cos(θi),− sin(θi)], and ti ∈ R3 is a piece center. Given
the specific ai, the transformed ĉi,j of Pi is expressed as the following:

ĉi,j = R
(y)
i R

(p)
i R

(r)
i ci,j + ti, (1)

where rotation matrices R(r)
i ,R

(p)
i ,R

(y)
i are defined as follows:

R
(r)
i =

1 0 0

0 [r
(r)
i ]1 [r

(r)
i ]2

0 −[r
(r)
i ]2 [r

(r)
i ]1

 ,R
(p)
i =

[r(p)i ]1 0 −[r
(p)
i ]2

0 1 0

[r
(p)
i ]2 0 [r

(p)
i ]1

 ,R
(y)
i =

 [r
(y)
i ]1 [r

(y)
i ]2 0

−[r
(y)
i ]2 [r

(y)
i ]1 0

0 0 1

 .

(2)
Note that [r]k indicates the k-th entry of r. Eventually, the goal of 3D shape puzzle task is converted
to predict appropriate a1,a2, . . . ,an given S. It is important to acknowledge that there exist multiple
solutions for a1,a2, . . . ,an due to a vast number of possibilities to assemble given geometric pieces
into a target shape under the SE(3) transformations. This nature complicates the learning process
for addressing the puzzle problems.

4 PROPOSED METHOD

Our framework with the diffusion models (Ho et al., 2020) based on the Transformer net-
work (Vaswani et al., 2017) and inspired by the previous puzzle-solving method (Hosseini et al.,
2023) aims to predict piece centers and their rotation vectors. For the simplicity of the paper struc-
ture, the description of our method is based on 3D shape puzzles; without loss of generality, 3D
puzzles can easily be reduced to 2D puzzles.

4.1 OVERCOMPLETE REPRESENTATIONS FOR 3D SHAPE PUZZLES

As presented in Section 3.2, we formulate the 3D shape puzzle problem as a task that estimates
arrangement parameters a1,a2, . . . ,an given S. Instead of directly predicting a1,a2, . . . ,an, we
define overcomplete representations ai,j to utilize the information of each cj of Pi. Subsequently,
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Figure 2: Overall architecture of our proposed model.

during an inference phase, we calculate the arithmetic mean of the predictions of overcomplete
representations, which is used to indirectly estimate ai: ai = 1

mi

∑mi

j=1 ai,j . By the definition of
overcomplete representations, our ultimate goal is to predict ai for i ∈ [n] utilizing the corner-wise
arrangement parameters ai,1,ai,2, . . . ,ai,mi

for i ∈ [n]. Moreover, given the ground-truth arrange-
ment parameter a∗i , each ground-truth corner-wise arrangement parameter a∗i,j for Pi is naturally
identical to a∗i .

While the direct estimation of all ai seems simple, this indirect approach to predicting all ai,j has
proved efficient in the recent conditional generation task (Shabani et al., 2023). We presume that it
naturally allows for more complex shapes to have longer queries, thereby facilitating more complex
reasoning, and each corner ci,j can be individually encoded into a fixed-length conditional vector
that corresponds to ai,j instead of the use of the piece-wise aggregated representation.

4.2 NEURAL ARCHITECTURE OF OUR PROPOSED METHOD

Diffusion Models. Following the common process of the diffusion model discussed in Section A,
ai,j is transformed into random noise during the forward process. Conversely, in the reverse process,
the reconstruction model ϵθ(Z(t), t) generates cleaner a(t−1)

i,1 ,a
(t−1)
i,2 , . . . ,a

(t−1)
i,mi

for i ∈ [n], taking
Z(t):

Z(t) =
[
z
(t)
i,1, z

(t)
i,2, . . . , z

(t)
i,mi

]n
i=1

, (3)

where z
(t)
i,j = [a

(t)
i,j , ci,j , i] with a noisier arrangement parameter a(t)i,j , the j-th corner ci,j , and a

piece index i. We collect z(t)i,j in the order of i, j to make Z(t) sequential, so that we can make use

of the Transformer encoder (Vaswani et al., 2017) for ϵθ(Z(t), t). Note that a(t)i,j only depends on t,
while ci,j and i remain identical during the reverse process. Also, our approach employs the cosine
scheduling (Nichol & Dhariwal, 2021) to transform an input data to unbiased noise in the forward
process.

Transformer-based Networks. The Transformer network (Vaswani et al., 2017) is widely used
in natural language processing and its applications (Devlin et al., 2018; Brown et al., 2020; OpenAI,
2023). However, it is inherently permutation-sensitive due to positional embedding over inputs.
Inspired by the work (Zaheer et al., 2017; Lee et al., 2019), we utilize the Transformer network
without positional embedding in our problem formulation, so that our network is not sensitive for
the permutation of indices i, j for the overcomplete representations of shape puzzles.

As illustrated in Figure 2, our model encompasses three distinctive modules of masked multi-
head attention: global multi-head self-attention, piece-wise masked multi-head self-attention, and
connection-wise masked multi-head self-attention. Firstly, the global attention mechanism employs
conventional self-attention, allowing every query to attend to each other universally. This compo-
nent is capable of facilitating comprehensive context understanding across entire inputs. Secondly,
the piece-wise attention separately applies self-attention piece-by-piece by masking out interactions

4
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between corners that belong to different pieces. Lastly, the connection-wise attention is capable
of processing piece information Pi for i ∈ [n], allowing us to directly capture relationships be-
tween connected corners. This design helps understand our puzzle problems from the macroscopic
and microscopic perspectives including global layout comprehension and intricate piece-wise and
connection-specific details. We conduct ablation studies on the two attention modules against the
global attention in Section 6.

4.3 EQUIVARIANT FEATURE EMBEDDING

We introduce a feature embedding layer for our framework on shape puzzles. This layer embeds
the concatenated inputs Z(t), which are mentioned in Section 4.2. In the sense of puzzle solving,
it is considered as satisfying the invariant property, but our model can be viewed as an equivariant
framework in the perspective of an absolute coordinate system. In this step, our model processes
various input variables under the presence of permutation and global SE(3) transformations. Our
embedding layer is defined as the following:

h(z
(t)
i,j , t) = lini(fac(a

(t)
i,j )) + linc([fsc(ci,j ; Ci), fcc(fsc(ci,j ; Ci)), anchor(i)]) + te(t), (4)

where z(t)i,j = [a
(t)
i,j , ci,j , i] is an enhanced input for ci,j of Pi, anchor(·) is a function to distinguish an

anchor piece, lini(·) and linc(·) are simple linear functions with learnable parameters; in this paper
we embed input vectors to 512-dimensional vectors, and te(·) is a conventional time embedding
function, which is used in the work (Ho et al., 2020). From now, we detail the respective components
presented in (4). Similar to (3), we can define the collection of (4) for i ∈ [n]:

H(t) =
[
h(z

(t)
i,1, t), h(z

(t)
i,2, t), . . . , h(z

(t)
i,mi

, t)
]n
i=1

. (5)

Shape Canonicalization fsc. In the prior work, the positional information of each corner, denoted
as ci,j , is significant for encoding the shape of each geometric piece. Despite its importance, the use
of this information makes the problems ambiguous. In particular, identical shapes can be encoded
differently. For example, given (R, t) ∈ SE(3), Pi = (Ci,Fi) and P ′

i = ((R, t)Ci,Fi) clearly
indicate topologically equal shapes, but they are considered as different shapes in the prior work.
Note that (R, t)Ci = {Rci,1 + t,Rci,2 + t, . . . ,Rci,mi

+ t}. Instead of applying a complex
SE(3) invariant model that significantly restricts a representation space, we propose a simple SE(3)
invariant function fsc : R3 → R3, which effectively standardizes corner coordinates to make the
regular representation of shapes. To design SE(3) invariant fsc which satisfies the following:

fsc(ci,j ; Ci) = fsc(Rci,j + t; (R, t)Ci), ∀(R, t) ∈ SE(3), (6)

we eliminate the effect of arbitrary rotation and translation (R, t) ∈ SE(3) from Rci,j + t. The
translation vector is computed by the center of mass as t = R( 1n

∑n
i=1

1
mi

∑mi

j=1 ci,j) + t =
1
n

∑n
i=1

1
mi

∑mi

j=1(Rci,j +t) with the assumption of the center of ci,j is located at the origin. After
substracting the translation vector, the rotation matrix is obtained through singular value decompo-
sition (SVD). Initially, the centered corners are sorted and arranged into a matrix CR ∈ R3×mi to
have fixed order in the same set. This arrangement ensures that the SVD results remain consistent,
even in the presence of rotational symmetry. The SVD decomposition gives us CR = UΣV⊤,
where U ∈ R3×3 identifies the three principal axes that best describe the data, Σ ∈ R3×3 is the
diagonal matrix of singular values, and V⊤ ∈ R3×mi contains the right singular vectors corre-
sponding to the singular values. However, each principal axis has a sign ambiguity under different
rotations, and U can represent a reflection with a determinant of -1. To resolve this, the sign ambi-
guity is eliminated by aligning the signs of U with the signs of the largest absolute position of V
along each axis. The determinant of U is then corrected by multiplying a corresponding axis of U
and V by the determinant of U, ensuring that the overall determinant becomes 1. After this sign
and determinant correction, we can obtain the desired rotation matrix R = US, where S represents
the correction matrix. Once R is canceled out, the corners are left in the form of Σ(VS)⊤, which
is now rotation-invariant. The result, ΣSV⊤, represents the canonicalized shape, while US gives
the rotation. The resulting translation and rotation are then incorporated back into the arrangement
parameters with the relation of Rai

(Rci,j + t) + tai
= (Rai

R)ci,j + (Rai
t + tai

), where Rai

and tai
denote the corresponding SE(3) transformation of the parameter ai. The corners and the ar-

rangement parameters become invariant under the arbitrary transformation of SE(3) by considering
the fixed target shape.

5
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Anchor Centering fac and Anchor Selection. We now introduce the method of an anchor center-
ing strategy, which re-aligns all arrangement parameters a(t)1,1,a

(t)
1,2, . . . ,a

(t)
n,mn at step t with respect

to the expected arrangement parameter from the reverse process a
(t)
p,1 of an anchor piece Pp. An

anchor-centered new input representation fac(a
(t)
i,j ) is given by the following:

fac(a
(t)
i,j ) =

(
a
(t)
p,1

)−1

a
(t)
i,j . (7)

Through the components discussed, we transform the model’s input space to be invariant to global
SE(3) transformations. However, the simple application of these changes disrupts consistency of the
training process of diffusion. Originally, the reconstruction model for the reverse process ϵθ(Z(t), t)

is trained to match to the ground-truth noise ϵ
(t)
i,j of the forward process. In order to make this

training process consistent, we apply reverse transformation to both target ground-truth noise and
the predicted noise of the reverse process model:

ϵ̄
(t)
i,j = (a

(t)
p,1)ϵ

(t)
i,j and ϵ̃

(t)
i,j = (a

(t)
p,1)ϵ̂

(t)
i,j , (8)

where ϵ
(t)
i,j is original ground-truth noise and ϵ̂

(t)
i,j is an original model output. Using this trans-

formation, our loss for training diffusion models changes accordingly; it will be discussed more
in Section 4.4. Similar to (12), the model’s reverse process still denoises a(t)i,j by predicting ϵ̃

(t)
i,j :

a
(t−1)
i,j =

1√
1− βt

(
a
(t)
i,j −

βt√
1− ᾱt

ϵ̃θ(fac(a
(t)
i,j ), t)

)
. (9)

To actively use the information from the anchor, we add an anchor indicator:

anchor(i) =
{
1, i = p,

0, otherwise,
(10)

where p is an anchor index. This additional indicator encourages the model to focus on the anchor.

Lastly, we consider one of two criteria for selecting an anchor Pp: choosing either a randomly-
selected piece or the largest piece as an anchor This uncovers the importance of the anchor’s size in
the assembly process, suggesting that larger pieces serve as a more stable and recognizable beacon
for solving puzzles. This is intuitive since larger pieces are likely to have more geometric features.
Furthermore, since the selection of largest piece p is permutation-equivariant against i, this selection
also makes p-dependent anchor(i) permutation-equivariant.

Corner Connectivity fcc. In addition to shape canonicalization, which effectively encodes each
piece shape into its inherent representation, we define additional vectors to indirectly encode relative
information between connected corners in Pi. While ci,j can capture the information based on
corner locations, it does not directly hold the surface information of the piece ci,j belongs to.

Assuming that the given connected corners of ci,j are {ci,a, ci,b, ci,c}, The output of fcc(ci,j) is a
zero-padded 30-dimensional vector of the concatenation of all unit vectors ci,a−ci,j

∥ci,a−ci,j∥2
2

, ci,b−ci,j

∥ci,b−ci,j∥2
2

,

and ci,c−ci,j

∥ci,c−ci,j∥2
2

. This configuration is also crucial from the invariance perspective. Since it is con-
structed based on the aforementioned canonicalized shape, it shares equal SE(3) invariance against
Ci. Furthermore, by relying on ground-truth connection information, it preserves permutation in-
variance with respect to the permutation of i, j. This ensures that the representation of our model
is both comprehensive in capturing the geometric features of each piece and robust to variations in
orientation and ordering.

4.4 LOSS FUNCTIONS

For training, we employ the mean squared error (MSE) loss on noise, widely used in diffusion
models, along with a matching loss to support the puzzle-solving processes. The MSE loss is defined
by Lnoise =

∑
(i,j) ∥ϵ̄

(t)
i,j − ϵ̃

(t)
i,j∥22. Note that the transformed noise shown in (8) is used in the MSE

loss. Additionally, we calculate the matching loss for corner matching. For example, if j-th corner
of Pi matches to the k-th corner of Pl in the ground-truth puzzle set, the following matching loss
is applied to the given pair: Lmatch =

∑
(i,k,l,m) ∥(R

(y)
i R

(p)
i R

(r)
i ci,j + ti)− (R

(y)
l R

(p)
l R

(r)
l cl,k +

tl)∥22. Eventually, we use the sum of two losses as an overall loss: L = Lnoise + Lmatch.

6
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Hosseini et al.
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Figure 3: Qualitative results for the 2D cross-cut dataset.

5 THEORETICAL ANALYSIS ON OUR METHOD

We leverage equivariance to enhance the model’s training efficiency and increase its robustness to
transformations applied to the puzzle. Specifically, the proposed model enforces an SE(3)-invariant
density function for the assembled puzzle, allowing for a more efficient assembly process. In this
section, we provide the theoretical analysis to support this approach.

In order to analyze our model from the perspective of whole assembly processes, we suppose that
we are interested in the invariance of a set of all pieces, each of which is defined on the SE(3)
manifold. In particular, Ĉi is defined by multiplying the arrangement parameters to Ci for i ∈ [n], as
mentioned in Section 3.2. The translation part of the arrangement parameters is naturally defined on
the SE(3) manifold, but their rotation part may not be on the SE(3) manifold due to our definition
on orientation. This issue can be readily resolved by the normalization of the rotation part of the
arrangement parameters.
Proposition 1. Suppose that Ci is a representation without shape canonicalization. There always
exists some arrangement parameter for transforming Ci to the canonicalized Ci.
Proposition 2. Let Ĉ be an assembled puzzle of pieces C with arrangement parameters. By us-
ing the arrangement parameters sampled from the standard Gaussian distributions, Ĉi is a linear
transformation of the canonicalized Ci and the sampled arrangement parameter for i ∈ [n]. There-
fore, the consideration of the sampled arrangement parameter for calculating Ĉi is equivalent to the
consideration of Ĉi.
Proposition 3. We have SE(3)-invariant density pθ(Ĉ(0)) if the denoising model ϵθ(Z(t), t) is SE(3)-
invariant, i.e., ϵθ(Z(t), t) = ϵθ(TgZ(t), t), where Tg is some roto-translational transformations of a
group element g ∈ SE(3).
Proposition 4. The proposed SE(3)-invariant feature embedding H(Z(t), t) ensures that the de-
noising model ϵθ(Z(t), t) satisfies SE(3)-invariant, provided that its constituent modules preserve
permutation equivariance.
Proposition 5. Our proposed Global MSA, Piece Masked MSA, and Corner Connection Masked
MSA always satisfy permutation equivariance.

Considering Propositions 1 to 5 together, the proposed model generates an SE(3)-invariant density
function for the entire puzzle. All proofs are provided in the appendices.

6 EXPERIMENTAL RESULTS

To validate our method, we conduct experiments in both 2D and 3D domains. Additionally, to prove
the performance contributions of each individual component, we carry out ablation studies, thereby
verifying their effectiveness. Here we enumerate our individual components: shape canonicalization
(denoted as SC), anchor centering (denoted as AC), anchor piece-related components (the largest
piece selection (denoted as AO) and use of anchor(i) (denoted as AI)), connection-wise masked

7
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Puzzle 2 Puzzle 3Puzzle 1

Ours

Hosseini et al.
(2023)

Figure 4: Qualitative results for the 2D recursive-cut dataset.

Table 1: Performance comparison on the 2D cross-cut and recursive-cut puzzles.

Dataset Method Overlap (↑) Precision (↑) Recall (↑)

Cross-cut puzzle
Harel et al. (2021) 0.9145 0.9562 0.9908

Hosseini et al. (2023) 0.9410 0.9694 0.9170
Ours 0.9709 0.9823 0.9666

Recursive-cut puzzle Hosseini et al.(2023) 0.9251 0.9286 0.8950
Ours 0.9504 0.9679 0.9244

Table 2: Ablation studies on the respective components for the 2D cross-cut dataset.

SC AC CA PA CC AI AO Overlap (↑) Precision (↑) Recall (↑)

✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.9709 0.9823 0.9666
✓ ✓ ✓ ✓ ✓ ✓ 0.9644 0.9817 0.9501

✓ ✓ ✓ ✓ 0.9572 0.9805 0.9646
✓ ✓ ✓ ✓ ✓ ✓ 0.9682 0.9818 0.9670
✓ ✓ ✓ ✓ ✓ ✓ 0.9336 0.9358 0.9211
✓ ✓ ✓ ✓ ✓ ✓ 0.9701 0.9837 0.9715
✓ ✓ ✓ ✓ ✓ ✓ 0.9632 0.9740 0.9238
✓ ✓ ✓ ✓ ✓ ✓ 0.9634 0.9758 0.9439
✓ ✓ ✓ ✓ ✓ 0.9599 0.9734 0.9575

✓ 0.9215 0.9284 0.8968

attention (denoted as CA), piece-wise masked attention (denoted as PA), and corner connectivity
(denoted as CC). Additionally, in the 3D domain, since our dataset generation process enables us
to adjust the level of assembled shape complexity, we compare the levels of shape complexity in
the ablation study; see the appendices. Each complexity level corresponds to the average number
of corners that are included in a target shape. Missing details on training details, datasets, baseline
methods, and evaluation metrics can be found in the appendices.

Analysis on the 2D Puzzles. 2D model design is essentially similar to its 3D version described
in Section 4, but the length of the vectors required to represent all ai significantly decreases. This
makes all processes noticeably faster compared to the 3D puzzles. Nevertheless, our method gen-
erally outperforms the existing methods as shown in Table 1, and qualitative results are available
in Figures 3 and 4. In particular, the consistent performance gains are demonstrated on our own 2D
recursive-cut puzzle dataset.

The ablation study discussed in Table 2 shows performance loss when the certain option is removed.
A notable difference from the 3D results is the relatively minor impact of the CA component. This
observation may be attributed to the inherently simpler structural features of 2D shapes compared
to 3D puzzles, because each point is connected only to two other points implying an adjacent corner
index j is basically adjacent. Supporting this observation, the presence or absence of CC, which
enhances information on connected corners, also does not significantly impact the performance.

8
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Figure 5: Qualitative results for the 3D shape puzzles.

Table 3: Performance comparison on the 3D recursive-cut puzzles.

Method PC (↑) PC-C (↓) RMSE-T (↓) RMSE-R (↓)

PA, CC 0.7202 0.01436 0.9186 0.06170
SC, CA, PA, CC 0.9669 0.002398 0.3145 0.1149

Ours 0.9955 0.001256 0.2105 0.09284

Analysis on the 3D Puzzles. We establish a baseline setup, and then demonstrate performance
improvements when various components are applied to this baseline. We compare this baseline
against a model with additional components applied and the best model with all components. Since
PA and CC are not related to explicit equivariance components, applying additional components to
this model can be considered as incorporating equivariance. Comparison between this structured
baseline and other models is shown in Table 3, and qualitative results are available in Figure 5. We
observe that models with additional components significantly outperform the predefined baseline
model, showcasing the effectiveness of our components.

As presented in Table 4, we observe intuitive experimental results. We conduct performance eval-
uations for the models trained by excluding each component from a setup with every component.
We confirm that each component plays a significant role in enhancing performance. Additionally,
models with a small number of components often result in poor performance. Among components,
SC, PA, and CC are most effective. It is noteworthy that three components, SC, CA, and CC, have
a significantly greater impact on performance in 3D than in 2D. Their common characteristic is the
relation to the piece shapes in 3D space.

Analysis on the Breaking Bad Dataset. We also perform analysis on a real-world dataset in
order to show that our method can successfully assemble more realistic objects. The Breaking Bad
dataset (Sellán et al., 2022) is used for this analysis.

As presented in Table 5, we compare our method to baseline methods. By using the mesh decimation
method provided by Open3D (Zhou et al., 2018), we use the sub-sampled version of the meshes from
the Breaking Bad dataset (Sellán et al., 2022), to handle the analysis in reasonable time. Note that
the performance shown in Table 5 is analyzed by our best performing method with SC, AC, CA, PA,
CC, AI, and AO.

As a result, our model clearly mark the best among several diffusion-based assembly approaches.
Naturally, feature-based matching methods show better performance but it is slower than the

9
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Table 4: Ablation study on the components in our framework for the 3D dataset.

DC SC AC CA PA CC AI AO PC (< 1e-2) PC-C RMSE-R RMSE-T

15 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.9955 0.001256 0.2105 0.09284
15 ✓ ✓ ✓ ✓ ✓ ✓ 0.8518 0.008291 0.8076 0.07911
15 ✓ ✓ ✓ ✓ 0.9671 0.003039 0.2433 0.04280
15 ✓ ✓ ✓ ✓ ✓ ✓ 0.9857 0.002417 0.2158 0.07534
15 ✓ ✓ ✓ ✓ ✓ ✓ 0.9390 0.005063 0.2264 0.07332
15 ✓ ✓ ✓ ✓ ✓ ✓ 0.9502 0.005537 0.2234 0.09406
15 ✓ ✓ ✓ ✓ ✓ ✓ 0.9715 0.002677 0.2418 0.1028
15 ✓ ✓ ✓ ✓ ✓ ✓ 0.9846 0.002154 0.2140 0.07314
15 ✓ ✓ ✓ ✓ ✓ 0.9704 0.002427 0.2275 0.06024
15 ✓ ✓ 0.7202 0.01436 0.8135 0.06170
15 ✓ ✓ 0.3418 0.2792 0.9186 0.3349
15 ✓ 0.0532 0.8536 0.8760 0.2980

Class Pot Class Ring

Figure 6: Qualitative results for the Breaking Bad dataset.

Table 5: Performance comparison on the Breaking Bad dataset.

Category Method RMSE-R (↓) RMSE-T (↓) PA (%) (↑)

Feature-based Matching Jigsaw 42.3 10.7 57.3
PuzzleFusion++ 38.1 8.04 70.6

Diffusion

Global 80.7 15.1 24.6
LSTM 84.2 16.2 22.7
DGL 79.4 15.0 31.0

SE(3)-Equiv 79.3 16.9 8.41
DiffAssemble 73.3 14.8 27.5

Ours 58.8 13.3 40.4

diffusion-based assembly methods including our method. If the number of pieces in an object in-
creases, feature-based matching methods are likely to fail in the production of assembly results due
to memory and compute requirements. Qualitative results can be seen in Figure 6, showing that our
model is capable of understanding delicate geometric cues of the Breaking Bad dataset.

7 CONCLUSION

In this study, we successfully applied diffusion models in 2D and 3D shape puzzles including the
Breaking Bad dataset. We proposed several features that make shape representations invariant across
both 2D and 3D environments. Moreover, we addressed the limitations of the traditional assembly
metrics and introduced a novel evaluation metric, point connectivity. Finally, the theoretical and
empirical results are demonstrated to represent the superiority of our method. In particular, our
method shows consistent performance improvements across varying dimensions and conditions.
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A ADDITIONAL DISCUSSION ON RELATED WORK AND PRELIMINARIES

Shape and Puzzle Assembly Problems. In the recent study (Shabani et al., 2023), diffusion mod-
els for floorplan generation have been introduced. Using the similar approach, PuzzleFusion (Hos-
seini et al., 2023) tackles 2D shape puzzle tasks formulating it as a conditional generation problem.
The authors of the work (Hosseini et al., 2023) have prepared diverse 2D puzzle datasets includ-
ing the 2D Voronoi jigsaw and cross-cut datasets. However, this approach exhibits dependency on
specific dataset constraints and faces performance degradation under simple permutation or rotation
attacks.

Diffusion Models. Diffusion models, in this paper particularly denoising diffusion probabilistic
models (Ho et al., 2020), have emerged as one of powerful generative models, since it is capable of
generating high-quality samples in various domains. A diffusion model generally consists of two
phases: forward and reverse processes. In the forward process, the model adds Gaussian noise to
an input every step, effectively transforming an original data distribution into a noise distribution.
This gradual process diffuses an initial data x0 until it becomes an indistinguishable noisy data xT .
Formerly, it is expressed as

xt =
√
αtxt−1 +

√
1− αtϵt, (11)

where xt is a data at step t, αt is a coefficient that controls the amount of noise added at step t, and ϵt
is sampled from the multi-variate standard normal distribution N (0, I). Note that the coefficient αt

is determined by following a predefined schedule policy, which decreases it as t increases in order
to gradually add more noise to the data. Conversely, the reverse process involves reconstructing a
cleaner data xt−1 from a noisier data xt. This allows us to iteratively transform a noisy data xT to
an original data x0. A simplified reverse process can be written as follows:

xt−1 =
1√

1− βt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
, (12)

where xt−1 is a denoised estimate at step t − 1, βt is the variance of the noise added at step t, ᾱt

is the cumulative product of 1 − βt up to step t, and ϵθ(xt, t) is the estimated noise predicted by a
model with parameters θ at step t.

B PROOF OF PROPOSITION 1

Proof. Let the set of canonicalized elements be denoted as {cj}mj=1. Any arbitrary element C can
be written as {Rcj + t}mj=1. Transforming an arbitrary Ci into its canonicalized form {cj}mj=1 is
equivalent to removing the effects of R and t. According to Section 4.3, setting t as the center of
mass and R as US from the result of SVD from the result of SVD makes it possible to canonicalize
the shape.

C PROOF OF PROPOSITION 2

Proof. Let the completed puzzle be denoted as Ĉ = [ĉ1, ĉ2, . . . , ĉm] ∈ R3×m. If C is canonicalized
shape, the completed puzzle has a linear relationship with the arrangement parameters, as shown in
Equation 1 of Section 3.2.

Ĉ = R
(y)
i R

(p)
i R

(r)
i C + t, (13)

where rotation matrices R(r),R(p),R(y) and translation t are the corresponding transformations of
arrangement parameter a.

D PROOF OF PROPOSITION 3

Proof. By Proposition 1, we can assume that Ĉ(t) is generated from shape-canonicalized pieces.
Proposition 2 allows us to convert the discussion about Ĉ(t) into one about the arrangement parame-
ters a(t). Meanwhile, it has been proven that the density of the entire assembly remains invariant as
long as the diffusion kernel is made equivariant to SE(3) transformation (Xu et al., 2022). If our dif-
fusion model ϵθ(Z(t), t) satisfies SE(3)-invariance, the same property can be shown to hold for the
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arrangement parameters a(t). Let Tg be a roto-translational transformation of a group element g ∈
SE(3), and let p(a(T )) represent the SE(3)-invariant density, i.e., p(aT ) = p(Tg(aT )). If the Markov
transitions p(a(t−1)|a(t) parameterized by ϵθ(Z(t), t) are also SE(3)-invariant, i.e., p(a(t−1)|a(t)) =
p(Tg(a

(t−1))|Tg(a
(t))), then the overall density pθ(a

(0)) =
∫
p(a(T ))pθ(a

(0:T−1)|a(T ))da(1:T )

will also be SE(3)-invariant, as demonstrated by Xu et al. (2022).

pθ(Tg(a
(0))) =

∫
p(Tg(a

(T )))pθ(Tg(a
(0:T−1))|Tg(a

(T )))da(1:T )

=

∫
p(Tg(a

(T )))

T∏
t=1

pθ(Tg(a
(t−1))|Tg(a

(t)))da(1:T )

=

∫
p(a(T ))

T∏
t=1

pθ(Tg(a
(t−1))|Tg(a

(t)))da(1:T ) (invariant prior p(a(T )))

=

∫
p(a(T )

T∏
t=1

pθ(a
(t−1)|a(t))da(1:T ) (invariant kernels p(a(t−1)|a(t)))

= pθ(a
(0)). (14)

While this proof closely follows the structure used in the previous work (Xu et al., 2022), the novelty
lies in extending the invariance to the arrangement parameters, after fixing the canonicalized pieces.
By canonicalizing the puzzle pieces and focusing on the arrangement parameters, we ensure that the
density of the entire puzzle assembly is invariant. This division between the canonicalized pieces
and arrangement parameters of assembled puzzle introduces a new layer of generalization, which
allows us to more efficiently learn the puzzle assembly process while maintaining SE(3)-invariance.

E PROOF OF PROPOSITION 4

Proof. Let the denoising model ϵθ(Z(t), t) be composed of an SE(3)-invariant feature embedding
layer H(Z(t), t) and L permutation-equivariant layers Gk, k ∈ [L]. Consider an input that undergoes
both an SE(3) transformation and a permutation. The resulting output can be expressed as follows:

ϵθ(Z(t), t) = GL(. . .G1(H(PTgZ(t), t)))

= GL(. . .G1(PH(Z(t), t))) (SE(3)-invariance H(PTgZ(t), t) = PH(Z(t), t)))

= PGL(. . .G1(H(Z(t), t))). (Permutation equivariance Gk(PX) = PGk(X)) (15)

Thus, the output of the denoising model is permutation-equivariant and SE(3)-invariant. This fol-
lows directly from the fact that the invariant embedding layer H is applied first, ensuring that the
SE(3) transformation is absorbed before the permutation-equivariant layers process the input.

F PROOF OF PROPOSITION 5

Proof. To demonstrate that MHA is permutation equivariant, let us first define the self-attention op-
eration in the context of a set input Z = {z1, z2, . . . , zN}. The self-attention mechanism computes
the attention scores as follows:

Attention(Q,K, V ) = Softmax(QKT )V, (16)

where Q,K, V ∈ RN×d represent the query, key, and value matrices, respectively, each of which
depends on the input set Z . Since the attention mechanism operates on the pairwise relationships
between elements, applying a permutation matrix P ∈ RN×N to Z permutes both Q, K, and V .
The result is that the attention scores are permuted consistently, leading to permutation equivariance
in the output:

Attention(PQ,PK,PV ) = PAttention(Q,K, V ). (17)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Now consider the proposed module, where a permutation-equivariant mask M ∈ RN×N is applied
to the attention scores. After computing the attention scores as Softmax(QKT ), the mask is applied
element-wise:

MaskedAttention(Q,K, V,M) = Softmax(QKT )⊙MV, (18)
where ⊙ denotes element-wise multiplication. To verify that permutation equivariance is preserved,
let the input set Z be permuted by P. The masked attention mechanism then becomes:

MaskedAttention(PQ,PK,PV,PM) = Softmax(PQ(PK)T )⊙PMPV

= P
(
Softmax(QKT )⊙MV

)
. (19)

Thus, the output of the masked attention remains equivariant under permutation of the input. Since
both the MSA operation and the applied mask respect permutation, the overall module preserves
permutation equivariance.

G 8-PIECE RECURSIVE-CUT 3D PUZZLES

Unlike the previous work focuses on 2D geometric shape puzzle (Lee et al., 2022; Hosseini et al.,
2023), this research explores the shape puzzles in a 3D domain. To achieve this, we propose a novel
method to generate a dataset of 3D puzzles. An initial step requires creating random 3D convex
meshes. Their shape complexity can be adjusted by the number of points for 3D meshes; this
analysis will be shown in Section 6. This step is accomplished through a process of random point
sampling, which is combined with the application of the 3D convex hull algorithm (Khosravani
et al., 2013). As the subsequent step, these randomly-generated 3D meshes are recursively cut 3
times, yielding 8 irregular pieces. As a result, a set of 8 geometric pieces, derived from a random 3D
mesh, forms a single puzzle problem. Leveraging this procedure, we generate a dataset of 30,000
puzzle sets.

The existing work (Lee et al., 2022; Hosseini et al., 2023) on 2D puzzle tasks has utilized datasets
with substantial geometric constraints, which are prone to relying on particular models. For in-
stance, the cross-cut dataset mainly solved in PuzzleFusion (Hosseini et al., 2023) comes with 180◦
matching and edge matching constraints, which serve as hints to assembly models, making the
problems much easier. On the contrary, our 3D recursive-cut puzzle dataset eliminates the edge
matching constraints that are uncommon in general real-world puzzle tasks. This design choice
lets the conventional puzzle assembly methods which relies heavily on these constraints (Lee et al.,
2022; Gallagher, 2012) fail to solve the puzzles, and introduces a unique challenge such that more
delicate understanding of spatial and geometric relationships between puzzle pieces is required.

H TRAINING DETAILS

Diffusion models for 3D:

• Number of parameter: 6,557,449
• Training from scratch using 1 NVIDIA TITAN RTX
• Batch size: 128
• Learning rate: 1e-3
• Optimization technique: AdamWR (Loshchilov & Hutter, 2017). With AdamW optimizer and

additional learning rate annealing applied for each 100,000 training step (annealing factor: 0.1).

Diffusion models for 2D:

• Number of parameter: 4984708
• Training from scratch using 1 NVIDIA TITAN RTX
• Batch size: 512
• Learning rate: 1e-3
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• Optimization technique: AdamWR (Loshchilov & Hutter, 2017). With AdamW optimizer and
additional learning rate annealing applied for each 100,000 training step (annealing factor: 0.1).

For the fair comparison and analysis, all training details excepts the aforementioned options (e.g.,
SC and AC) remain same throughout the ablation studies.

I DATASETS AND BASELINES

In shape puzzles, the following geometric constraints are commonly included.

• 180◦ matching constraint: This stipulates that the sum of the two angles adjacent to any corner
must be equal to 180 degrees, ensuring that the pieces fit together to form straight lines or
correct angles.

• Edge matching constraint: This requires that two adjacent edges not only have equal lengths
but also align perfectly with one another, ensuring the continuity of the puzzle’s surface.

• Fixed target shape: Across a dataset, a ground-truth assembled target shape does not change.
While the shape itself is consistent, variations may occur in scale or the target shape may appear
rotated in different instances.

Among the datasets used in 2D shape puzzle tasks, one of relatively general 2D shape puzzles is
the cross-cut shape puzzle dataset proposed in the work (Hosseini et al., 2023). These puzzles are
created by performing n cuts on a randomly-shaped 2D polygon to produce 2n pieces, resulting in a
dataset of randomly-partitioned puzzle pieces. While the cross-cut dataset holds the 180◦ matching
and edge matching constraints, our new generalized recursive-cut dataset on 2D space only holds
the edge matching constraint, following the similar procedure shown in Section G.

Incorporating the 3D shape puzzle dataset introduced in Section G, we design to apply the step-wise
enhancements discussed in Section 4. These enhancements grounded in the principles of equivari-
ance and invariance demonstrate intuitive and substantial performance improvements in both 2D and
3D puzzles.

J EVALUATION METRICS

In the 2D shape puzzle tasks, metrics such as overlap score and point connection precision and
recall are employed. The overlap score measures the extent to which a reconstructed shape overlaps
with a ground-truth shape, providing the indication of both placement accuracy and shape fidelity.
The point connection evaluates the model’s ability to correctly identify and reconstruct connections
between points that are supposed to be connected in the ground-truth.

In the 3D assembly tasks, traditional metrics such as the root mean square errors of rotation (denoted
as RMSE-R) and translation (denoted as RMSE-T) are widely used. In addition to this metric, in this
research, we propose the use of point connectivity (denoted as PC) as another metric for assessing
3D puzzle performance. This metric evaluates how well the points of interest are connected in the
final prediction. In addition to discrete thresholding classification of point connection, we use the
continuous values of point distances (denoted as PC-C) for this metric, enabling the more detailed
evaluation of assembly accuracy.

K PERFORMANCE GAIN ACROSS DIFFERENT DATASET COMPLEXITIES

As shown in Table 6, our method consistently enhances performance across datasets created from
assembled shapes of varying complexity. This consistent improvement underscores the effectiveness
of introducing equivariance into our model, confirming its ability to enhance performance irrespec-
tive of the dataset. A key observation here is that despite the increase in dataset complexity, leading
to a longer input query length and reduced complexity in some instances, there is no significant
difference in performance. Intriguingly, at complexity 30, the performance was marginally better
than those of complexity 15. This suggests that even as shape complexity increases, with the num-
ber of pieces cut remaining at 8, the interfaces between pieces, compared to non-joining surfaces
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(a) A sample of dataset complexity 15 (b) A sample of dataset complexity 8

Figure 7: Difference of given datasets. Visualization of assembled target shape of puzzle.

Table 6: Ablation study for the 3D dataset, for dataset complexity 8/30. Note that dataset complexity
(DC) is indicated by the average number of corners in the assembled shape.

DC SC AC CA PA CC AI AO PC (< 1e-2) PC-C RMSE-R RMSE-T

8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.9947 0.001310 0.1700 0.1104
8 ✓ ✓ ✓ ✓ ✓ ✓ 0.9912 0.001497 0.1190 0.1223
8 ✓ ✓ ✓ ✓ ✓ 0.9726 0.001962 0.2550 0.09332
8 ✓ ✓ ✓ ✓ 0.8257 0.01035 0.6230 0.07110
8 ✓ ✓ ✓ 0.7686 0.01386 0.7921 0.06058
8 ✓ ✓ 0.7180 0.005537 0.2234 0.09406

30 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.9977 0.0009713 0.2200 0.09861
30 ✓ ✓ ✓ ✓ ✓ ✓ 0.9945 0.001309 0.1691 0.1029
30 ✓ ✓ ✓ ✓ ✓ 0.9918 0.001632 0.1182 0.0828
30 ✓ ✓ ✓ ✓ 0.8810 0.007453 0.4546 0.09136
30 ✓ ✓ ✓ 0.8256 0.01436 0.6274 0.07597
30 ✓ ✓ 0.7702 0.01327 0.7910 0.09044

of pieces, might develop geometric distinctions significant enough to facilitate geometric reasoning.
This potentially makes the assembly task easier to solve, despite the overall increase in shape com-
plexity and input query length. Dataset visualization for different dataset complexity can be seen
in Figure 1.

K.1 CONSISTENT PERFORMANCE GAIN

Table 7: Ablation study for the 3D dataset, showing consistent performance improvements when
shape canonicalization (SC) is applied.

DC SC AC CA PA CC AI AO PC (< 1e-2) PC-C RMSE-R RMSE-T

15 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.9955 0.001256 0.2105 0.09284
15 ✓ ✓ ✓ ✓ ✓ ✓ 0.8518 0.008291 0.8076 0.07911
15 ✓ ✓ ✓ ✓ ✓ 0.9704 0.002427 0.2275 0.06024
15 ✓ ✓ ✓ ✓ 0.9159 0.002221 0.6165 0.04189
15 ✓ ✓ ✓ ✓ 0.9239 0.002195 0.5463 0.08452
15 ✓ ✓ ✓ 0.8960 0.003461 0.7180 0.06254
15 ✓ ✓ ✓ 0.8363 0.007180 0.8015 0.06860
15 ✓ ✓ 0.7202 0.01436 0.8135 0.06170

As demonstrated in Table 7, the application of each option, notably Shape Canonicalization (SC),
contributes independently and consistently to performance enhancement across various setups. Fur-
thermore, through extensive experimentation with other options, although not included in this sup-
plement, we assert that our method maintains consistent performance improvement regardless of the
setup applied.
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L LIMITATIONS

The model is specifically designed to tackle puzzle datasets, and as such, this method cannot be
directly applied to point clouds. Some adjustments around the options will be required to ensure
compatibility and effectiveness in a different context.

Training time is significantly influenced by the length of the query, which equates to the overall
number of corners in the puzzle dataset. Due to the overcomplete representation, the query length is
determined by both the number of pieces and the number of corners per piece. This factor can lead
to exceedingly prolonged training times, especially in scenarios where the piece number exceeds 10
or the data complexity is greater than 30.
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