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Overview

We extend PLUGINn (a novel algorithm which can invert deep generative models)
to compressive sensing and introduce the algorithm PLUGINn-CS, which can
invert deep generative models from compressive observations.

4+ PLUGIN-CS has a simple form and does not require gradient calculation.
4+ PLUGIN-CS has provable global geometric convergence'.
4+ Our analysis for PLUGINn-CS allows some contractive layers in network.

4+ Numerical results show that PLUGIN-CS can effectively recover images
from compressive measurements.

Problem formulation

« A deep generative model with ReLLU activation functions:

G(x)=0(Ag0(Ag_1...0(A1x)...))

where 4; € R™*™i-1,

Layer width: Mg nq M9 Nd—1 Nnd
« Given a noisy compressive observation:
y=®G(x*)+¢e, e R ",

Goal: Recover latent code z “and/or signal G(x™).

The algorithm

A natural way for recovery is to solve the following non-convex optimization
problem using gradient descent

in || — 2.
min [[®G(z) — y|

1. Under assumptions listed in convergence results section.

The gradient descent update (with step size 7) is given by
I G 77(D1A1)T .. (DdAd)TcDT ((I)Q(xk) — y)
where each D; is a diagonal 0 or 1 matrix depending on z* and A (7 <1).

Similar to PLUGIn, we linearize (D;A;)T to A] and obtain

PLUGIn-CS: 2" =2" —nAJAT..  AT®T (0G(z") — y)

 PLUGIN-CS becomes PLUGIn if @ is identity matrix.

A AITAZT---A; is static (does not depend on x¥). No gradient calculation required.

4 If ® and Al- are i.i.d. Gaussian (properly normalized), first iterate of PLUGIn-CS

can provide an unbiased estimate of ™ with step size 5 = 24

Convergence results

We assume:
« Each A, hasi.i.d. N(0,1/n;) entries and are independent.

 Layer width satisfy
i—1
: en.; ,
n; 2 5'ng log<H—‘7>, 1 <iq<d.

n
j=0 0

« @ hasi.i.d. N(0,1/m) entries (independent from weight matrices) with
4 en,;
m > 2%ng log (H —‘7>
. no
=0
- The noise € does not depend on {A;},., or ©.

Also let R be a positive number such that ||z° — z*|| < R.

We prove that, the k-th estimate given by PLUGIn-CS algorithm with constant
step size n = 2¢ satisfies

2% — 2| < 27*R +30-2%/ng/m||¢||, and
|G(2%) — G(z")|| < 27%(3R) + 90 - 2%y/no/m/e|
with probability at least 1 — 2(k + 4)e™ 0",

4 Global and geometrical convergence for estimation errors.

4 Network is expansive on “average”, thus can have some contractive layers.

# PLUGIN-CS can recover latent code and signal when m/ny is large.

# Exact step size can be relaxed to a constant step size 17 < 24

C
o
0

THE UNIVERSITY
v OF BRITISH COLUMBIA

Numerical results

1) Performance of PLUGINn-CS and gradient descent (GD) on a 2-layer
synthetic networks with random Gaussian weights.

(a) We compare their relative recovery error || — z*||/||[z™|| and
relative reconstruction error ||G(z) — G(x™)||/||G(z™)|| w.r.t. noise level.
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(b) We compare their success probability from 20 independent trials w.r.t.
different code dimension n, (with n; = 250, n, = 700, m = 150 fixed).
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2) We trained a generative model on MNIST dataset, then took
compressive measurements (with m = 150 and n; = 784) of some
images and tried PLUGIn-CS as well as gradient descent for recovery.

Original images:
Ol a3 56 7 8 9
Recovered using PLUGINn-CS:

O | &3 Y & & 7 3 7

Recovered using gradient descent:

Ol a3y 567 8¢9



