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This supplementary material is organized as follows: §1 introduces
the advantage of VR-DiagNet in terms of convergence as discussed
in the “Ablation Study” of the main text. §2 provides additional visu-
alization of the normalized feature strength in radiomics across six
datasets, complementing “Visualization” in the main text. §3 com-
pletes the remaining ablation experiments as elaborated in “Abla-
tion Study” of the main text. §4 describes the zero-centered position
encoding used in Equation 6 of the main text. §5 provides detailed
information about the model hyperparameter settings across all six
datasets, augmenting the content of “Settings” in the main text. §6
supplements the second paragraph of “Visualization” by explaining
the planning process over ten rounds across all six datasets. §7
elaborates on the different performances achieved by a traditional
machine learning classifier on radiomic features extracted in two
different ways, as discussed in the second paragraph of “Ablation
Study” in the main text. Finally, in §8, we provide a detailed discus-
sion of the limitations of this study and potential future research
directions.

1 CONVERGENCE ANALYSIS

Figure S1 illustrates the convergence comparison between VR-
DiagNet and the ACS method [3] on the validation sets of six
datasets. Our approach outperforms the ACS method on five of six
datasets, with the remaining exhibiting comparable performance.
Using the same backbone showcases the advantage of our clinician-
like planning, whereas the dense encoding employed in ACS fails
to achieve this. However, it is noteworthy to mention that a higher
degree of oscillation is observed in our approach, indicating poten-
tial room for improvement in stability in future iterations of our
work.

2 RADIOMIC FEATURES VISUALIZATION

The figures below, denoted as Figure S2 (Organ3D), Figure S3 (Nod-
ule3D), Figure S4 (Fracture3D), Figure S5 (Adrenal3D), Figure S6
(Vessel3D), and Figure S7 (Synapse3D), illustrate the normalized fea-
ture strength of raw radiomic features juxtaposed with multimodal-
refined radiomic features. These visualizations eloquently illustrate
the discernible alterations in discriminability across various fea-
tures. Notably, the refined features manifest significant macroscopic
changes in inter-class discriminability, particularly evident in cases
such as Organ3D, Nodule3D, and Adrenal3D.

However, having clinical experts in the loop is essential for a
more comprehensive and profound interpretation. This clinicians
in the loop could entail delving into the intricate relationship be-
tween specific radiomic features and corresponding organs or le-
sions before and after refinement. Such interdisciplinary efforts are
indispensable for unlocking deeper insights and maximizing our
findings’ clinical relevance and applicability.

3 ABLATION STUDY

Does volumetric input matter? We commence our investigation
by examining the significance of volumetric input in our task. Given
the intricate three-dimensional nature of the tasks, we hypothesize
that incorporating neighboring knowledge could potentially en-
hance task performance due to the lack of three-dimensional spatial
information in 2D slices. As summarized in Table S1, the results sub-
stantiate this conjecture, demonstrating a consistent performance
enhancement as the neighboring window size increases within the
tested range of values. We refrained from exploring larger window
sizes due to the limited number of slices (28) in the task and the
need to balance accuracy and computational cost.

Table S1: The study of neighboring windows. Averaged AU-
ROC (1) and ACC (1) across six datasets are reported.

Neighboring window AUROC ACC

N(1) 0.851  0.799
N(3) 0.865  0.817
N(5) 0.873  0.831

What depth of experience tree do the tasks need? As illustrated in
Table S2, each dataset achieves optimal performance under distinct
configurations, challenging the notion that deeper layers inherently
lead to superior results. We attribute this variance to differences
in task complexity influenced by various factors: 1) target size
in three dimensions and 2) the emphasis on texture detection or
morphology.

Removing black slices constrains the maximum tree depth for
Fracture3D, Adrenal3D, and Vessel3D. This constraint leads to a
uniform tree depth adoption across all volumes within a given
dataset, resulting in "N/A" entries within the table. These findings
emphasize the importance of selecting dataset-specific tree depths
for optimal performance.

Table S2: The comparison of tree layers. ACC (1) is reported.

L Org. Nod. Fra. Adr. Ves. Syn.  Avg.

0938 0.872 0523 0.793 0917 0.800 0.807
0947 0.884 0.561 0.818 0.948 0.830 0.831
0.947 0.865 0.548 0.803 N/A 0823 N/A
0952 0.875 0.545 N/A N/A  0.828 N/A
0.963 0.861 N/A N/A N/A  0.822 N/A
0.958 0.874 N/A N/A N/A  0.840 N/A
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Is the default balancing factor in UCB1 compatible? We examine
the influence of the Monte Carlo Tree Search balancing factor ¢
as presented in Table S3. It is observed that the default value V2
utilized in UCBI1 yields the optimal performance.

Table S3: The comparison of balancing factors. Averaged
AUROC (1) and ACC (1) across six datasets are presented.

c AUROC ACC

1 0.865  0.828
V2 0875 0.836
2 0.858  0.828

How many MCTS iterations do we need? Table S4 shows the im-
pact of varying numbers of MCTS iterations, with the number of
tree layers derived from Table S2 for each dataset. Notably, high
sensitivity is also observed regarding hyper-parameter L across dif-
ferent datasets. One might wonder how the model’s performance
would fare if we select the top-L “Sols” rather than those identi-
fied through the search process for classifier training. We adopt
a straightforward approach to investigate this: determining the
maximum value in each slice-level prediction distribution based on
hierarchical priori. Here, the calculations between slices are treated
as independent of each other. Subsequently, the “Sols” with the
top-L predicted values are identified. Notably, this process remains
class-agnostic. As illustrated by the results in the last three rows of
Table S4, in the absence of a planner, the classifier can still achieve
improved performance as the neighboring window expands, albeit
inferior to the MCTS scheme. The result highlights 1) the signifi-
cance of the conditional clinician-like visual inspection process in
our VR-DiagNet and 2) the efficacy of the hierarchical priori design
in providing a robust initial starting point for our model.

Table S4: The impact of MCTS iterations on ACC (7).

Npie Org. Nod. Fra. Adr. Ves. Syn. Avg.
140 0.956 0.863 0.545 0.820 0941 0.841 0.828
112 0.959 0.863 0.530 0.806 0.935 0.841 0.822
84 0.963 0.884 0.561 0.818 0.948 0.840  0.836
56 0.955 0.875 0.538  0.820  0.942 0.837 0.828
28 0.958 0.872 0.532 0.809 0.953  0.840 0.827
14 0.953 0.870 0.542 0.809 0.945 0.832 0.825

top-L w/ N (1) 0.900 0.811 0.532 0.802 0.869 0.770 0.781
top-L w/ N(3) 0.929 0.805 0.528 0.819 0.905 0.781 0.795
top-L w/ N (5) 0.941 0.813 0.538 0.815 0.911 0.780 0.800

How to improve the stability of the search process? We approach
enhancing search process stability through the lens of inter-round
momentum as delineated in Table S5. Our findings reveal that while
the non-momentum approach yields commendable results, the mo-
mentum scheme consistently outperforms the non-momentum de-
sign across all six datasets when endowed with a judiciously chosen
parameter. The results underscore the effectiveness of the momen-
tum scheme integrated into our proposed planner.

Anonymous Authors

Table S5: Influence of inter-round momentum in the pro-
posed planner. ACC (1) is reported.

m Org.  Nod. Fra. Adr. Ves. Syn.  Avg.

N/A 0959 0.870 0549 0.801 0.924 0.838 0.824

0.2 0955 0.860 0.554 0817 0.934 0343 0.827
0.4 0945 0.877 0545 0.804 0.942 0843 0.826
0.6 0955 0.868 0.553 0.808 0.949 0.846 0.830
0.8 0.963 0.884 0.561 0.820 0.953 0.841 0.837
1.0 0958 0.877 0.547 0.795 0.942 0.846 0.828

4 ZERO-CENTERED POSITION ENCODING

The approach adopted for computing one-dimensional position
encoding is outlined as Equation 1:

d
zpe(d, 2i) = sin (—,h)
10000 NEmb

d
zpe(d,2i+ 1) = cos (—21)
10000 NEmb
In our scenario, d € [—L%J, Cees L%J] represents the zero-
centered slice index in a volume, where D denotes the volume’s
slice count. We establish the coordinate system with its center

positioned at the 0-index. The variable i takes integer values within
the interval [0, 1024].

5 HYPER-PARAMETERS

We present an overview of the configuration of all hyper-parameters
pertinent to our methodology in Table Sé6. It is worth noting that the
accurate selection of these hyper-parameters profoundly influences
the efficacy of our proposed approach.

6 VISUALIZATION OF THE PLANNING
PROCESS

We choose one volume from each of the six datasets to illustrate
the planning process of the planner across multiple rounds, as
depicted in Figure S8 (Organ3D), Figure S9 (Nodule3D), Figure S10
(Fracture3D), Figure S11 (Adrenal3D), Figure S12 (Synapse3D), and
Figure S13 (Vessel3D). This demonstration mirrors the sequential
visual inspection undertaken by a clinician, thereby enhancing the
interpretability of the proposed VR-DiagNet.

7 DISCRIMINABILITY OF RADIOMIC
FEATURES

We evaluate the discriminability of raw static radiomic features
and refined radiomic features using an SVM classifier and present
the results in Table S7. Our findings reveal an overall performance
enhancement with refined radiomic features. Specifically, the model
accuracy with refined radiomic features shows improvement in 50%
of the datasets, remains consistent in one dataset, and exhibits
comparable accuracy in the other two datasets, indicating promise
for medical research.
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Table S6: Assignment of hyper-parameters for the VR-DiagNet across different datasets.

Task 1 Task 2
Hyper-parameters
Organ3D Nodule3D Synapse3D Fracture3D Adrenal3D Vessel3D
# Tree layers (L) 6 3 7 3 3 3
¢ Balancing factor (c) V2 V2 V2 V2 V2 V2
pr-related ¢ )
# MCTS iterations (Npyc) 84 84 140 84 56 28
Momentum (m) 0.8 0.8 0.6 0.8 0.8 0.8
# Round (Ngo) 10 10 10 10 10 10
# Epoch in each round (NEp) 20 20 20 20 20 20
Learning rate (Ir) 1le™* le™* le™* le™* 1e73 le™*
Weight decay 3e™° 0 le73 3e™4 1e”’ 3e~*
Batch size 64 64 64 64 64 64
Scale coefficient r 8 4 16 64 4 8
Temperature 7 1 1 0.3 1 1 1
for-related Losspbalancing factor A 0.1 0.1 0.1 0.1 0.1 0.1
Scale in RandomCropResize () (0.08, 1) (0.08, 1) (0.08, 1) (0.08, 1) (0.56, 1) (0.08, 1)
# Window size (n in N(n)) 5 5 5 5 5 5
Dropout rate 0.1 0.1 0 0 0.05 0.1
Granularity of input Coarse-grained ~ Coarse-grained Coarse-grained Fine-grained Fine-grained Fine-grained
Mean 0.5004 0.2686 0.5098 0.0229 0.0158 0.0193
Std 0.2805 0.2734 0.2376 0.1104 0.1247 0.1377

Table S7: Discriminability of different radiomic features re-
ported as ACC (7) using an SVM classifier.

Fea. Type Org.  Nod. Fra. Adr. Ves. Syn.  Avg.
Static 0.669 0836 0.550 0.836 0.895 0.776  0.760
Refined 0.667 0.837 0.540 0.836 0.927 0.790 0.766

8 LIMITATIONS AND FUTURE RESEARCH

This section highlights several limitations inherent in our study
and potential avenues for future research. Firstly, it is imperative
to acknowledge the visible escalation in computational overheads
observed on CPUs as the number of slices, MCTS iteration times,
and tree depth increases, which may impede scalability. Secondly,
we encourage for further convergence analyses to enhance search
efficiency and algorithmic stability. Thirdly, broadening the scope of

data viewpoints holds promise for bolstering robustness and achiev-
ing closer alignment with clinical practice. Lastly, as elucidated in
Table S6, our VR-DiagNet demonstrates significant sensitivity to
hyper-parameter assignments across diverse datasets, signaling a
trajectory for future exploration aimed at devising a solution less
reliant on hyper-parameter selection.
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Figure S1: The convergence comparison between VR-DiagNet and the ACS method [3]. Our method demonstrates superior
convergence compared to ACS [3] across six validation datasets, albeit with more significant oscillations. The symbol M in the
figure legend denotes our MCTS-based approach.
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(a) Raw radi(c;;:ic features. (b) Refined radiomic features.
Figure S2: Comparison of normalized radiomic feature strength. Drawing method references [1, 2]. Both panels depict two
identical subsets of volumes from the Organ3D test set, each containing 40 cases per class. Each row represents one of the
radiomic features post-feature selection, with their respective names listed to the left of each map, while each column represents
a volume, with their corresponding IDs listed below each map. The volumes are organized by class, with class names indicated
at the top of each panel. Additionally, radiomic features are grouped by class, with their class names listed to the right of each

map. We suggest zooming in to better observe the names and selected volume IDs for improved clarity.
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(a) Raw radi(c)a;er:ic features. (b) Refined ra(ciaie(fmic features.
Figure S3: Comparison of normalized radiomic feature strength. Drawing method references [1, 2]. Both panels depict two
identical subsets of volumes from the Nodule3D test set, each containing 40 cases per class. Each row represents one of the
radiomic features post-feature selection, with their respective names listed to the left of each map, while each column represents
a volume, with their corresponding IDs listed below each map. The volumes are organized by class, with class names indicated
at the top of each panel. Additionally, radiomic features are grouped by class, with their class names listed to the right of each
map. We suggest zooming in to better observe the names and selected volume IDs for improved clarity.
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(a) Raw radiomic features. (b) Refined radiomic features.
Figure S4: Comparison of normalized radiomic feature strength. Drawing method references [1, 2]. Both panels depict two
identical subsets of volumes from the Fracture3D test set, each containing 40 cases per class. Each row represents one of
the radiomic features post-feature selection, with their respective names listed to the left of each map, while each column
represents a volume, with their corresponding IDs listed below each map. The volumes are organized by class, with class names
indicated at the top of each panel. Additionally, radiomic features are grouped by class, with their class names listed to the
right of each map. We suggest zooming in to better observe the names and selected volume IDs for improved clarity.
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Figure S5: Comparison of normalized radiomic feature strength. Drawing method references [1, 2]. Both panels depict two
identical subsets of volumes from the Adrenal3D test set, each containing 40 cases per class. Each row represents one of
the radiomic features post-feature selection, with their respective names listed to the left of each map, while each column
represents a volume, with their corresponding IDs listed below each map. The volumes are organized by class, with class names
indicated at the top of each panel. Additionally, radiomic features are grouped by class, with their class names listed to the
right of each map. We suggest zooming in to better observe the names and selected volume IDs for improved clarity.
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(a) Raw radiomic features. (b) Refined radiomic features.
Figure S6: Comparison of normalized radiomic feature strength. Drawing method references [1, 2]. Both panels depict two
identical subsets of volumes from the Vessel3D test set, each containing 40 cases per class. Each row represents one of the
radiomic features post-feature selection, with their respective names listed to the left of each map, while each column represents
a volume, with their corresponding IDs listed below each map. The volumes are organized by class, with class names indicated
at the top of each panel. Additionally, radiomic features are grouped by class, with their class names listed to the right of each
map. We suggest zooming in to better observe the names and selected volume IDs for improved clarity.
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Classes
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(b) Refined radiomic features.

(a) Raw radiomic features.
Figure S7: Comparison of normalized radiomic feature strength. Drawing method references [1, 2]. Both panels depict two
identical subsets of volumes from the Synapse3D test set, each containing 40 cases per class. Each row represents one of

the radiomic features post-feature selection, with their respective names listed to the left of each map, while each column
represents a volume, with their corresponding IDs listed below each map. The volumes are organized by class, with class names
indicated at the top of each panel. Additionally, radiomic features are grouped by class, with their class names listed to the
right of each map. We suggest zooming in to better observe the names and selected volume IDs for improved clarity.
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Figure S8: Illustration of the planner’s iterative planning process on the 33-rd volume, belonging to the heart class, from the
Organ3D dataset. The slices enclosed by white boxes represent the identified Sols in each round, with numbers in brackets

denoting their respective indices corresponding to the layer index of the tree path. This search process closely emulates the
visual inspection performed by clinicians.

(b) Nodule3D, round 2

(a) Nodule3D, round 1

(f) Nodule3D, round 6 (g) Nodule3D, round 7 (h) Nodule3D, round 8 (i) Nodule3D, round 9 (j) Nodule3D, round 10
Figure S9: Illustration of the planner’s iterative planning process on the 6-th volume, belonging to the malignant class, from
the Nodule3D dataset. The slices enclosed by white boxes represent the identified Sols in each round, with numbers in brackets
denoting their respective indices corresponding to the layer index of the tree path. This search process closely emulates the
visual inspection performed by clinicians.
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(a) Fracture3D, round 1

C1

(d) Fracture3D, round 4

(e) Fracture3D, round 5

(f) Fracture3D, round 6 (g) Fracture3D, round 7 (h) Fracture3D, round 8 (i) Fracture3D, round 9 (j) Fracture3D, round 10
Figure S$10: Illustration of the planner’s iterative planning process on the 8-th volume, belonging to the nondisplaced rib fracture

class, from the Fracture3D dataset. The slices enclosed by white boxes represent the identified Sols in each round, with numbers
in brackets denoting their respective indices corresponding to the layer index of the tree path. This search process closely
emulates the visual inspection performed by clinicians.

(a) Adrenal3D, round 1 (b) Adrenal3D, round 2 (c) Adrenal3D, round 3 (d) Adrenal3D, round 4 (e) Adrenal3D, round 5

(f) Adrenal3D, round 1 (g) Adrenal3D, round 2 (h) Adrenal3D, round 3 (i) Adrenal3D, round 4 (j) Adrenal3D, round 5
Figure S11: Illustration of the planner’s iterative planning process on the 7-th volume, belonging to the hyperplasia class, from
the Adrenal3D dataset. The slices enclosed by white boxes represent the identified Sols in each round, with numbers in brackets
denoting their respective indices corresponding to the layer index of the tree path. This search process closely emulates the
visual inspection performed by clinicians.

(a) Vessel3D, round 1 (b) Vessel3D, round 2 (c) Vessel3D, round 3 (d) Vessel3D, round 4 (e) Vessel3D, round 5

(f) Vessel3D, round 6 (g) Vessel3D, round 7 (h) Vessel3D, round 8 (i) Vessel3D, round 9 (j) Vessel3D, round 10
Figure S12: Illustration of the planner’s iterative planning process on the 9-th volume, belonging to the aneurysm class, from
the Vessel3D dataset. The slices enclosed by white boxes represent the identified Sols in each round, with numbers in brackets
denoting their respective indices corresponding to the layer index of the tree path. This search process closely emulates the
visual inspection performed by clinicians.
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(f) Synapse3D, round 6 (g) Synapse3D, round 7 (h) Synapse3D round 8 (1) Synapse3D, round 9 (j) Synapse3D, round 10
Figure S13: Illustration of the planner’s iterative planning process on the 6-th volume, belonging to the excitatory synapse

class, from the Synapse3D dataset. The slices enclosed by white boxes represent the identified Sols in each round, with numbers
in brackets denoting their respective indices corresponding to the layer index of the tree path. This search process closely
emulates the visual inspection performed by clinicians.
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