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ABSTRACT

Diffusion-based image super-resolution (SR) methods have shown promise in re-
constructing high-resolution images with fine details from low-resolution coun-
terparts. However, these approaches typically require tens or even hundreds of
iterative samplings, resulting in significant latency. Recently, techniques have
been devised to enhance the sampling efficiency of diffusion-based SR models via
knowledge distillation. Nonetheless, when aligning the knowledge of student and
teacher models, these solutions either solely rely on pixel-level loss constraints or
neglect the fact that diffusion models prioritize varying levels of information at
different time steps. To accomplish effective and efficient image super-resolution,
we propose a time-aware diffusion distillation method, named TAD-SR. Specifi-
cally, we introduce a novel score distillation strategy to align the score functions
between the outputs of the student and teacher models after minor noise pertur-
bation. This distillation strategy eliminates the inherent bias in score distillation
sampling (SDS) and enables the student models to focus more on high-frequency
image details by sampling at smaller time steps. Furthermore, to mitigate perfor-
mance limitations stemming from distillation, we fully leverage the knowledge in
the teacher model and design a time-aware discriminator to differentiate between
real and synthetic data. This discriminator effectively distinguishes the diffused
distributions of real and generated images under varying levels of noise distur-
bance through the injection of time information. Extensive experiments on SR and
blind face restoration (BFR) tasks demonstrate that the proposed method outper-
forms existing diffusion-based single-step techniques and achieves performance
comparable to state-of-the-art diffusion models that rely on multi-step generation.

1 INTRODUCTION

Image super-resolution (SR), a cornerstone task in low-level vision, involves reconstructing high-
resolution (HR) images with intricate details from low-resolution (LR) counterparts. Owing to the
inherent ill-posed nature of this task, multiple high-resolution reconstructions are plausible for a
given low-resolution input, presenting a persistent and perplexing challenge. Recently, the diffusion
model (Ho et al., 2020; Song et al., 2020), a novel generative model, has garnered increasing atten-
tion for its capacity to model complex data distributions. It has gradually emerged as a successor to
Generative Adversarial Networks (GANs) (Goodfellow et al., 2020) in various downstream tasks,
including image editing (Meng et al., 2021; Hertz et al., 2022), image inpainting (Chung et al., 2022;
Lugmayr et al., 2022) and image super-resolution (Saharia et al., 2022; Yue et al., 2024).

Specifically, existing diffusion-based image super-resolution methods can be broadly categorized
into two streams: one involves feeding low-resolution images along with noise into the diffusion
model and training the model from scratch (Rombach et al., 2022; Yue et al., 2024), while the
other (Wang et al., 2023b; Wu et al., 2024b) adapts SR tasks by fine-tuning the pre-trained text-
to-image diffusion model. While these methods have demonstrated promising results, generating
images typically demands tens or even hundreds of iterative samplings, significantly impeding their
practical application and further advancement.

To enhance the inference efficiency of diffusion models, various acceleration techniques have been
proposed, such as the development of numerical samplers (Lu et al., 2022; Zheng et al., 2024) and
the applications of knowledge distillation (Salimans & Ho, 2022; Sauer et al., 2023). However,
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(i) ResShift-15 (k) Ours-1(j) SinSR-1 

(d) SwinIR(c) ESRGAN (f) RealSR-JPEG

(h) LDM-15

(b) BSRGAN (e) RealESRGAN

(g) DASR(a) LR input

Figure 1: Qualitative comparisons on a typical real-world example of the proposed method and
recent SR approaches, including BSRGAN (Zhang et al., 2021), RealESRGAN (Wang et al., 2021b),
SwinIR (Liang et al., 2021), DASR (Liang et al., 2022b), RealSR-JPEG (Ji et al., 2020) LDM
(Rombach et al., 2022), ResShift (Yue et al., 2024), and SinSR (Wang et al., 2023c). We mark the
number of sampling steps of diffusion-based SR method with the format of “Method-n” for more
intuitive visualization, where “n” is the number of sampling steps. Note that LDM contains more
diffusion steps in training and is accelerated to “n” steps using DDIM (Song et al., 2020) during
inference. Please zoom in for a better view.

due to the requirement of SR tasks to output images with clear details while ensuring high visual
similarity with LR images, directly applying existing acceleration methods to SR tasks presents
significant challenges. For the SR task, ResShift (Yue et al., 2024) has improved the sampling
efficiency of diffusion-based SR models by utilizing information from LR images to reformulate the
diffusion process, thereby reducing the number of sampling steps to 15. Furthermore, SinSR (Wang
et al., 2023c) merges distillation techniques with a cycle consistency approach to refine the ResShift
model into a single inference step. However, it only constrains the output of the student model
at a single scale and fails to leverage the ability of the pre-trained diffusion model to fit diffused
distributions across different time steps, a property referred to as the time-aware of the diffusion
model in this paper. Recently, AddSR (Xie et al., 2024) employs adversarial diffusion distillation
(ADD) (Sauer et al., 2023) for SR task to enhance sampling efficiency. Although it employs the
expertise of the teacher model to optimize the student model via Score Distillation Sampling (SDS)
(Poole et al., 2022), inherent biases in the gradients calculated by SDS lead to image blurring and
excessive smoothness. Additionally, AddSR does not take advantage of the diffusion model’s ability
to extract semantic features at different levels. Instead, it relies on a pre-trained DINOV2 (Oquab
et al., 2023) discriminator in pixel space, which is both expensive and challenging to optimize.

To address the aforementioned issues, we propose a time-aware distillation method that fully lever-
ages the time-aware property of the teacher model and the latent knowledge embedded in the diffu-
sion process. Specifically, we propose a high-frequency enhanced score distillation technique that
eliminates the inherent bias in score distillation sampling and improves the high-frequency details in
the student model’s output by focusing on sampling in small time steps. Additionally, To overcome
the performance limitations of teacher models, we incorporate adversarial learning into the distilla-
tion framework, forcing the student model to directly generate samples that lie on the manifold of
real images in a single inference step. Specifically, we extract features from real and synthetic data
under varying noise disturbances using the teacher model, while designing a time-aware discrimina-
tor to effectively distinguish these features. Combined with the above design, our method can match
or even surpass the performance of state-of-the-art (SOTA) methods with only one-step sampling.

Overall, our contributions can be summarized as follows:

• By fully leveraging the time-aware property of the diffusion model and the latent knowledge
embedded in the diffusion process, we propose a time-aware distillation method that accelerates
diffusion-based SR models into a single inference step.

• We analyze the inherent bias in score distillation sampling and propose a novel score distillation
method to eliminate this bias. Additionally, we focus on enhancing the high-frequency details
in the student model’s output by sampling at small time steps.
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Figure 2: On the left side of the figure, we visualize the clean data predictions made by the pre-
trained diffusion model after applying noise to the single-step output of the student model, the
multi-step output of the teacher model, and GT (HR image). The first row on the right side of the
figure illustrates the difference between the predicted values obtained by inputting GT with added
noise into the pre-trained model and the true values. The second and third rows show the score
differences predicted by the pre-trained diffusion model after adding noise to the outputs of student
model, the outputs of teacher model and GT. Here, we use the symbol ˆ to represent the prediction
results of the pre-trained diffuison model after re-adding noise to the model’s output.

• We highlight the importance of time in distinguishing between the diffused distributions of
real and synthetic data and design a time-aware discriminator to provide efficient and effective
supervision for the student model.

• Extensive experiments on real-world SR and blind face restoration (BFR) tasks have demon-
strated that our method, using only single-step sampling, achieves performance that is compa-
rable to or surpasses state-of-the-art methods.

2 PRELIMINARY

Diffusion model is a type of probabilistic generative model, which utilizes a Markov chain to trans-
form complex data distribution z0 ∼ pdata into noise distribution zT ∼ N (0, I) and recover the
data by gradually removing the noise. In image super-resolution tasks, Resshift (Yue et al., 2024)
changes the initial state of the diffusion model and constructs a new Markov chain to generate high-
resolution images. The forward process can be mathematically expressed as follows:

q (zt|z0, y) = N
(
zt|z0 + ηt (zy − z0) , κ2ηtI

)
, (1)

where z0 and zy represent the latent codes obtained by encoding the HR images x and LR images
y, respectively. ηt is a serial of hyper-parameters that monotonically increases with timestep t and
satisfies η0 → 0 and ηT → 1. κ is a hyper-parameter controlling the noise variance. Based on this
forward process, the reverse process will commence from the initial state with rich information in
low-resolution images to perform denoising. The formula is as follows:

q (zt−1|zt, z0, y) = N
(
zt−1

∣∣ηt−1

ηt
zt +

αt
ηt
z0, κ

2 ηt−1

ηt
αtI

)
, (2)

where αt = ηt− ηt−1. To mitigate the influence of randomness on distillation (Wang et al., 2023c),
we reformulate Eq. 2 to employ deterministic sampling as follows:

q (zt−1|zt, z0, y) = δ (ktz0 +mtzt + jtzy) , (3)

where δ is the unit impulse, mt =
√

ηt−1

ηt
, jt = ηt−1 −

√
ηt−1ηt and kt = 1− jt −mt. The details

of the derivation can be found in SinSR (Wang et al., 2023c). In the backward process, z0 is usually
predicted by a trainable neural network fθ. The training objective function of fθ is as follows:

min
θ

∑
t
wt∥fθ(zt,y, t)− z0∥22, (4)
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(a) LR (b) SDS (c) SDS with HR (d) SDS with Outputs (e) HR

Figure 3: Visualization results with different score distillation techniques. In the figure, (a)
and (e) represent the LR image and its corresponding HR image, respectively. (b) shows the result
obtained by employing SDS technique, while (c) and (d) depict the results obtained by leveraging
HR images and the output of the teacher model to eliminate bias terms in SDS.

Table 1: Diffusion-based SR with different score distillation technologies and discriminators
on RealSR dataset. We compare SDS with two score distillation designs that address the inher-
ent biases in SDS. Additionally, based on our proposed score distillation method, we evaluate the
performance of a vanilla discriminator, multiple discriminators, and our time-aware discriminator in
super-resolution tasks.

Settings Score distillation Discriminators
SDS SDS with HR SDS with Outputs Vanilla Multiple Time-aware

CLIPIQA↑ 0.450 0.556 0.671 0.711 0.724 0.741
MUSIQ↑ 54.069 60.079 61.506 63.550 64.223 65.701

where wt = αt
2κ2ηtηt−1

. In practice, omitting this weight often leads to performance improvement.

Score Distillation Sampling (SDS) is a distillation technique based on pre-trained diffusion models.
It leverages the rich generative prior of pre-trained diffusion models to optimize the generated im-
ages or the generator. Specifically, it adds noise to the clean samples generated by the student model
and feeds them into a pre-trained diffusion model for prediction. The student model is optimized
by calculating the discrepancy between the predicted distribution and the clean sample distribution
produced by the student model, which can be expressed as follows:

∇θLSDS(z, y, ϵ, t) = (ϵϕ(zt, y, t)− ϵ)
∂zt
∂θ

, (5)

where zt refers to the noised version of the clean samples generated by the student model. According
to (Poole et al., 2022), the U-Net jacobian term ∂ϵϕ(z,y,t)

∂zt
is omitted to lead an effective gradient.

3 METHODOLOGY

3.1 MOTIVATION

Building on prior knowledge of Score Distillation Sampling (SDS), we know that SDS can optimize
student models by leveraging the latent knowledge of pre-trained diffusion models, ensuring that the
output image distribution aligns as closely as possible with that of the pre-trained diffusion models.
However, due to the inherent error in pre-trained diffusion models, we observed that even when GT
(HR images) are noised and fed into the pre-trained diffusion model, a deviation still exists between
the predicted distribution and the actual data distribution (as illustrated in the first row on the right
side of Fig. 2). This indicates that even in ideal situations, SDS itself has biases, consistent with the
conclusions of previous related work (Hertz et al., 2023; Wang et al., 2024). Thus, we decompose the
gradient calculated by SDS into two components: ∇θLSDS = ϵϕ(z

stu
t , y, t)−ϵ = Dir+∆bias. The

first is the expected direction, which guides the student model to generate high-resolution images
aligned with the distribution of the teacher model. The second component is the deviation between
the predicted and true values of high-quality images that align with the diffusion model’s prior
distribution. This deviation disrupts the optimization of the student model, producing non-detailed
and blurry outputs (as shown in Fig. 3). Our goal is to identify this deviation and eliminate it during
the optimization process.
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Figure 4: Method overview. We train student model to map noisy latent to clean latent through one
step sampling. To match the student model’s output zstu0 with the multi-step sampling outputs of
the teacher model ztch0 , we optimize the student model using both regression loss and our proposed
HSD. Additionally, to further improve the performance of the student model, we propose a time-
aware discriminator that provides effective supervision through adversarial training.

To achieve this, we attempt to re-noise HR image and the output of the teacher model, then
input them into the pre-trained diffusion model to calculate the bias ∆bias = ϵϕ(zt, y, t) −
ϵ or ϵϕ(ztcht , y, t)−ϵ. This bias is subsequently subtracted from SDS to guide the model’s optimiza-
tion. The example results are shown in Fig. 3. From the figure, it is evident that the outputs obtained
by subtracting the bias using these two methods outperform the results of SDS. Additionally, using
the teacher model’s output to calculate the score difference and guide the optimization of the student
model produces clearer images. This improvement is likely due to the significant difference between
HR images and the student model’s output, making it challenging to optimize the student model by
calculating the score difference on a point-by-point basis. Furthermore, Fig. 2 clearly demonstrates
a significant difference in the denoising scores of images generated by the teacher model and the
student model under slight noise disturbances (small time steps). Due to the diffusion model’s focus
on high-frequency information in images at small time steps, it can be concluded that the student
model’s output notably lacks high-frequency details compared to the teacher model, which aligns
with our expectations. Therefore, calculating the score difference between the outputs of the teacher
and the student model under mild noise interference provides an effective gradient direction to guide
the optimization of the student model.

To ensure that the student model’s performance is not overly restricted by the teacher model, we
propose incorporating real images into the distillation framework to offer additional supervision. As
previously noted, optimizing the model by directly calculating the pixel-wise distance between the
real data and the student model’s output is difficult. In contrast, we suggest employing adversarial
learning to align the output distribution of the student model with that of real data. The successful
deployment of pre-trained diffusion models in downstream tasks has revealed that denoising net-
works can extract multi-level semantic information from images. Consequently, we can utilize the
teacher model to extract features and offer supervisory signals to student models via adversarial
learning. However, as illustrated in the third row of Fig.2, the distribution difference between the
student model’s output and the real data varies over time, making it challenging for the discriminator
to accurately fit the diffused distribution of the images at different time steps. A straightforward so-
lution is to employ multiple discriminators, each specializing in the diffused distribution at different
time steps. As shown in Table 1, this approach significantly enhances the quality of the generated
images. However, managing multiple discriminators and their respective time periods introduces
complexity and incurs substantial training costs. Given that variations in diffused distribution are
primarily related to time steps, we propose that a unique set of parameters can be adaptively learned
from each time step and integrated into the discriminator’s features. From Table 1, it can be seen
that our design effectively improves the quality of generated images.
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3.2 TAD-SR

The overview framework of our proposed TAD-SR is illustrated in Fig. 4, consisting of a teacher
model Fϕ parameterized by ϕ, a student network fθ initialized from the teacher model with weights
θ, and a trainable time-aware discriminator Dψ parameterized by ψ. During training, the student
model generates samples from noisy data and computes the regression loss against the samples
generated iteratively by the teacher model. Subsequently, we introduce slight noise to the samples
produced by both the student and teacher models, predict the score function via the teacher model,
and refine the student network by leveraging the discrepancy between the two score functions. Fur-
thermore, to mitigate the performance constraints of the teacher model on the student model, we
design a time-aware discriminator built upon the encoder network of the pre-trained teacher model,
enhancing the perceptual quality of the generated samples through adversarial training processes.

Regression loss. We utilize the multi-step output results ztch0 of the teacher model as the learning
objective for the student model. It guides the student model to establish a mapping between low-
resolution and high-resolution images through single-step inference. The loss is formulated as the
following formula:

Lreg = ∥ztch0 − zstu0 ∥22, zstu0 = fθ (zT , T, y) , (6)

where zT is obtained through the forward process Eq. (1). Specifically, Note that our student model
samples only the time step T to obtain the noise latent code zT ∼ N

(
xt; y, κ

2ηtI
)
.

High-frequency enhanced score distillation. As analyzed in Section 3.1, employing SDS (Poole
et al., 2022) to accelerate diffusion-based SR models is not an optimal solution. Its inherent bias may
introduce meaningless gradient directions to the student model, leading to a blurring and smoothing
output (Wang et al., 2024; Hertz et al., 2023). To eliminate this bias, DMD (Yin et al., 2023) trains
a new diffusion model to learn the score function of samples generated by the student model and
updates the generator based on the difference between the score functions predicted by the new
model and the teacher model. However, this approach involves a complex training process that
requires alternating training between the student model and the new diffusion model.

By contrast, based on the observations presented in Fig. 2, we develop an effective and efficient score
distillation method. Specifically, we calculate the difference between the predicted score function
of the teacher model’s output and the true score function to obtain the bias term in score distillation
sampling. By subtracting this bias term, we obtain a meaningful gradient direction. According to
Eq. 5, the following formula is derived:

Lhsd = Eztch
t
′ ,zstu

t
′ ,y

[
ω
((
ϵϕ

(
zstu
t′
, t, y

)
− ϵ

)
−
(
ϵϕ

(
ztch
t′
, t, y

)
− ϵ

))]
, (7)

where ω = 1/CS is a weighting function,C is the number of channels and S is the number of spatial
pixels. ztch

t′
and zstu

t′
are the noise data obtained by adding noise to the outputs of the teacher model

ztch0 and the output of student model zstu0 , respectively, through Eq. 1. By simplifying this formula,
our high-frequency enhanced score distillation (HSD) technique essentially calculates the score dif-
ference ϵϕ

(
zstu
t′
, t, y

)
− ϵϕ

(
ztch
t′
, t, y

)
between the teacher model and the student model’s outputs

under different degrees of noise interference. As can be seen from the second row of Fig. 2, these dif-
ferences are primarily significant under mild noise disturbances (i.e., small time steps). Given that
diffusion models typically predict high-frequency information in images at small time steps, this
suggests that images generated by student models are predominantly deficient in high-frequency de-
tails compared to those produced by teacher models. Consequently, we mainly constrain the score
difference between the student model and the teacher model output under slight noise disturbance,
specifically when t

′ ∼ U (1, T/5). According to Eq. 1, we can simplify Eq. 7 as follows:

Lhsd = Eztch
t
′ ,zstu

t
′ ,y

[
ω2

(
zstu0 − ztch0 + Fϕ

(
ztch
t′
, t, y

)
− Fϕ

(
zstu
t′
, t, y

))]
, (8)

where ω2 =
ω(1−η

t
′ )√

η
t
′ κ

. The details of the derivation can be found in the appendix. Note that during

the loss backpropagation in Eq. 7, similar to SDS, we omit the U-Net Jacobian matrix term.
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Figure 5: Comparison of various score distillation techniques. Compared to SDS (Poole et al.,
2022; Sauer et al., 2023) and DMD (Yin et al., 2023), our high-frequency enhanced score distillation
fully utilizes the potential of teacher model, providing meaningful gradient guidance to student
models without training an extra diffusion model.

From the above equation, it can be seen that when the output of the student model is the same as
that of the teacher model, the loss is zero, and there is no additional bias. Compared to SDS, our
proposed HSD provides more meaningful gradient guidance for student models.

Time-aware discriminator. To prevent the student model’s performance from being entirely con-
strained by the teacher model, we propose incorporating real images (HR images) into the distillation
framework. However, directly calculating the regression loss between the real image and the stu-
dent model’s output can result in optimization challenges. Recent studies (Sauer et al., 2023) (Sauer
et al., 2024) have shown that adversarial loss can be integrated into diffusion models to enhance the
quality of generated images. However, ADD (Sauer et al., 2023) relies on pre-training the DINOv2
discriminator in pixel space, which is both costly and complex. To reduce training costs and en-
hance model performance, LADD (Sauer et al., 2024) employed a pre-trained diffusion model for
adversarial training in latent space. Despite its contribution, LADD overlooks the critical correlation
between the features extracted by the diffusion model and their corresponding time steps. It relies on
a single discriminator to differentiate between the distribution differences of real and synthetic data
under various noise disturbances, which poses significant challenges for optimizing the discrimina-
tor. To address this issue, we propose a time-aware discriminator, which is capable of distinguishing
between the distributions of real and generated images that have undergone various perturbations in
latent space. Specifically, we first utilize the encoder part of the teacher model to extract multi-scale
features Fk from both the student model’s output images and real images.

Fk = Encϕ (zt, t, y) , (9)

where Encϕ denotes the encoder part of the teacher model’s denoising network, k denotes the scale
of the extracted features. zt represents the noisy latent code after adding noise to the real latent
code. We use F stuk to denote the multi-scale features extracted from the output of the student model.
We then encode the time step t as of sinusoidal timestep embeddings, which are sent to different
discriminator heads Dψ,k to learn a set of parameters γk and βk through several linear layers. These
parameters are used to modulate multi-scale features: Norm (Fk) ∗ (1 + γk) + βk.

After modulation, the features at each scale are evaluated through their corresponding discriminator
heads. The final output is obtained by averaging the results from each discriminator head. For
simplicity, we denote the process of modulating and discriminating features in the discriminator
head asDψ,k(Fk, t). Consequently, the corresponding adversarial loss can be formulated as follows:

Lfθadv = −Ezstu0

[∑
k

Dψ,k

(
F stuk , t

)]
, (10)

LDψadv = Ezstu0

[∑
k

max
(
0, 1 +Dψ,k

(
F stuk , t

))]
+ Ez0

[∑
k

max (0, 1−Dψ,k (Fk, t))

]
. (11)
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Table 2: Quantitative results of different methods on the dataset of ImageNet-Test. The best and
second best results are highlighted in bold and underline. ∗ indicates that the result was obtained by
replicating the method in the paper.

Methods Metrics
PSNR↑ SSIM↑ LPIPS↓ CLIPIQA↑ MUSIQ↑

ESRGAN 20.67 0.448 0.485 0.451 43.615
RealSR-JPEG 23.11 0.591 0.326 0.537 46.981

BSRGAN 24.42 0.659 0.259 0.581 54.697
SwinIR 23.99 0.667 0.238 0.564 53.790

RealESRGAN 24.04 0.665 0.254 0.523 52.538
DASR 24.75 0.675 0.250 0.536 48.337

LDM-15 24.89 0.670 0.269 0.512 46.419
ResShift-15 25.01 0.677 0.231 0.592 53.660

SinSR-1 24.56 0.657 0.221 0.611 53.357
SinSR*-1 24.59 0.659 0.231 0.599 52.462
DMD*-1 24.05 0.629 0.246 0.612 54.124
TAD-SR-1 23.91 0.641 0.227 0.652 57.533

Table 3: Quantitative results of different methods on two real-world datasets.

Methods
Datasets

RealSR RealSet65
CLIPIQA↑ MUSIQ↑ CLIPIQA↑ MUSIQ↑

ESRGAN 0.236 29.048 0.374 42.369
RealSR-JPEG 0.362 36.076 0.528 50.539

BSRGAN 0.543 63.586 0.616 65.582
SwinIR 0.465 59.636 0.578 63.822

RealESRGAN 0.490 59.678 0.600 63.220
DASR 0.363 45.825 0.497 55.708

LDM-15 0.384 49.317 0.427 47.488
ResShift-15 0.596 59.873 0.654 61.330

SinSR-1 0.689 61.582 0.715 62.169
SinSR*-1 0.691 60.865 0.712 62.575
DMD*-1 0.709 63.610 0.723 66.177
TAD-SR-1 0.741 65.701 0.734 67.500

The total objective. The student network is trained with the above three losses as follows:

Lfθ = Lreg + λ1Lhsd + λ2Lfθadv, (12)

where λ1 and λ2 are the hyperparameters to control the relative importance of these objectives.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Training Details. For a fair comparison, we follow the same experimental setup and backbone
design as that in (Yue et al., 2024; Wang et al., 2023c). Specifically, we use the weights of the
teacher model (ResShift) to initialize the student model, and then train the model for 30K iterations
based on our proposed loss functions. For real-world SR task, we set the weighting factor λ1 = 1
and λ2 = 0.02. For blind face restoration (BFR) task, we set λ1 = 0.1 and λ = 0.2.

Compared methods. For real-world SR task, we evaluate the effectiveness and efficiency of TAD-
SR in comparison to representative SR models, including BSRGAN (Zhang et al., 2021), SwinIR
(Liang et al., 2021), RealESRGAN (Wang et al., 2021b), DASR (Liang et al., 2022b), RealSR-JPEG
(Ji et al., 2020) LDM (Rombach et al., 2022), ResShift (Yue et al., 2024) and SinSR (Wang et al.,
2023c). Additionally, we also apply DMD (Yin et al., 2023) to super-resolution tasks as a baseline.
For BFR task, we compare TAD-SR with recent BFR methods, including DFDNet (Li et al., 2020),
PSFRGAN (Chen et al., 2021), GFPGAN (Wang et al., 2021a), RestoreFormer (Wang et al., 2022),
VQFR (Gu et al., 2022), CodeFormer (Zhou et al., 2022), and DifFace (Yue & Loy, 2022).
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(b) SwinIR (c) BSRGAN (d) LDM-15(a) LR (f) DMD-1 (h) Ours-1(g) SinSR-1 (e) ResShift-15 (i) HR

Figure 6: Qualitative comparisons of different methods on two synthetic examples of the ImageNet-
Test dataset. Please zoom in for a better view.

Huawei Proprietary - Restricted Distribution3

(c) CodeFormer(b) GFPGAN (d) VQFR(a) LR (f) ResShift-15 (h) Ours-1(g) SinSR-1 (e) DifFace-100 (i) HR

Figure 7: Qualitative comparisons of different methods on two synthetic examples of the CelebA-
Test dataset. Please zoom in for a better view.

Metrics. For real-world SR tasks, we utilize LPIPS (Zhang et al., 2018b), CLIPIQA (Wang et al.,
2023a) and MUSIQ (Ke et al., 2021) as evaluation metrics. PSNR and SSIM (Wang et al., 2004)
are also reported for reference. For BFR task, we also evaluate methods with identity score (IDS),
landmark distance (LMD) and FID (Heusel et al., 2017). Note that we take non-reference metrics as
the primary metrics since they are closer to human perception (Wang et al., 2023b; Xie et al., 2024).

Datasets. For the real-world image super-resolution task, we train the models on the training set of
ImageNet (Deng et al., 2009) following the same pipeline with ResShift (Yue et al., 2024) where
the degradation model is adopted from RealESRGAN (Wang et al., 2021b). Then, we evaluate our
model on one synthetic dataset ImageNet-Test (Deng et al., 2009; Yue et al., 2024) and two real-
word datasets RealSR (Cai et al., 2019) and RealSet65 (Yue et al., 2024). For the BFR task, We train
the models on FFHQ dataset (Karras et al., 2019), and the LQ images are synthesized following a
typical degradation model used in (Wang et al., 2021a). One synthetic dataset CelebA-Test (Karras
et al., 2018; Yue et al., 2024) and three real-world datasets LFW (Huang et al., 2008), WebPhoto
and WIDER (Yang et al., 2016) are adopted to evaluate the performance of face restoration model.

4.2 EXPERIMENTAL RESULTS

Evaluation on synthetic datasets. For the real-world SR task, we conduct a comprehensive com-
parison between TAD-SR and other SR methods on the ImageNet-Test dataset, as summarized in
Table 2 and Fig. 6. The following conclusions can be drawn: i) TAD-SR significantly outper-
forms other methods in terms of non-reference metrics, and achieves second-best results in the full-
reference metric LPIPS. It demonstrates that TAD-SR has the ability to generate images with high
perceptual quality and realism. ii) Visual results show that TAD-SR produces images with higher
clarity and better visual perception. Additionally, the complexity comparison of different SR meth-
ods is presented in Table 6. The table shows that our method improves the inference speed of the
teacher model by approximately tenfold. For BFR task, We used CelebA-Test as the testing dataset,
and the results are summarized in Table 4 and Fig. 7. From the perspective of evaluation metrics,
the proposed method achieves SOTA results in terms of FID and comparable results in terms of IDS,
LMD, CLIPIQA, and MUSIQ, which demonstrates the effectiveness of TAD-SR on BFR task. As
shown in Fig. 7, the generated faces by TAD-SR appear more natural and exhibit richer details. Fur-
thermore, we visualize the spectrograms obtained from the Fourier transform of images generated
by TAD-SR and other methods. As shown in Fig. 10, the spectrograms indicate that TAD-SR retains
more high-frequency information compared to other methods.
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Table 4: Quantitative results of different methods on the dataset of CelebA-Test. The best and second
best results are highlighted in bold and underline.

Methods Metrics
LPIPS↓ IDS↓ LMD↓ FID-F↓ FID-G↓ CLIPIQA↑ MUSIQ↑

DFDNet 0.739 86.323 20.784 93.621 76.118 0.619 51.173
PSFRGAN 0.475 74.025 10.168 63.676 60.748 0.630 69.910
GFPGAN 0.416 66.820 8.886 66.308 27.698 0.671 75.388

RestoreFormer 0.488 70.518 11.137 50.165 51.997 0.736 71.039
VQFR 0.411 65.538 8.910 58.423 25.234 0.685 73.155

CodeFormer 0.324 59.136 5.035 62.794 26.160 0.698 75.900
DifFace-100 0.338 63.033 5.301 52.531 23.212 0.527 66.042
ResShift-4 0.309 59.623 5.056 50.164 17.564 0.613 73.214
SinSR*-1 0.319 60.305 4.935 55.292 21.681 0.634 74.140
TAD-SR-1 0.341 59.897 5.050 41.968 16.779 0.735 75.027

Table 5: Quantitative results of different methods on three real-world human face datasets.

Methods
Datasets

LFW WebPhoto WIDER
CLIPIQA↑ MUSIQ↑ CLIPIQA↑ MUSIQ↑ CLIPIQA↑ MUSIQ↑

DFDNet 0.716 73.109 0.654 59.024 0.625 63.210
PSFRGAN 0.647 73.602 0.637 71.674 0.648 71.507
GFPGAN 0.687 74.836 0.651 73.369 0.663 74.694

RestoreFormer 0.741 73.704 0.709 69.837 0.730 67.840
VQFR 0.710 74.386 0.677 70.904 0.707 71.411

CodeFormer 0.689 75.480 0.692 74.004 0.699 73.404
DifFace-100 0.593 70.362 0.555 65.379 0.561 64.970
ResShift-4 0.626 70.643 0.621 71.007 0.629 71.084
SinSR*-1 0.640 72.457 0.641 73.357 0.654 73.556
TAD-SR-1 0.768 74.085 0.718 71.952 0.770 73.739

Evaluation on real-world datasets. In addition to evaluating our method on synthetic datasets, we
also assess the method in real-world datasets. As shown in Table 3, in terms of non-reference met-
rics, the proposed method significantly outperforms other methods with just a single-step sampling.
Specifically, when compared to ResShift, which serves as our teacher model, the non-reference met-
rics show substantial improvement after applying TAD-SR. Additionally, visual comparisons are
displayed in Fig 1 and Fig. 11. To ensure a comprehensive evaluation, we include diverse scenarios,
such as buildings, animals, and landscapes. It can be observed that the images generated by TAD-SR
appear more naturalistic, as evidenced by the distinct brick textures, as well as the fine and natural-
looking polar bear fur. For BFR task, we evaluate recent methods on LFW, Webphoto, and WIDER
datasets. The results are presented in Table 5, leading to several significant conclusions. Across all
three datasets, the proposed method achieves the highest CLIPIQA, outperforming other methods
by a substantial margin. On the WIDER dataset, the proposed method also achieves the second-best
MUSIQ. All these results inform that in terms of BFR task, TAD-SR can generate images with really
high perceptual quality. Visual comparisons are provided in Fig. 14, where it is evident that TAD-SR
produces more realistic hair details, sharper facial contours, and improved skin textures.

5 CONCLUSION

In this paper, we propose a time-aware distillation method that accelerates diffusion-based super-
resolution models to a single inference step. We introduce a high-frequency enhanced score distilla-
tion technique that optimizes the generator by calculating the score difference between the outputs
of the teacher and student models following slight noise perturbation, thereby enhancing the high-
frequency details in the student model’s output. To elevate the student model’s performance ceiling,
we incorporate generative adversarial learning into the diffusion model framework. Specifically, we
design a time-aware discriminator that distinguishes between generated and real data in latent space,
providing more efficient and effective supervision for the student model. Extensive experiments
demonstrate that our method can achieve performance on par with or surpassing that of the SOTA
methods in a single inference step.
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A APPENDIX

A.1 RELATED WORK

A.1.1 IMAGE SUPER-RESOLUTION.

Traditional methods (Dong et al., 2012; Gu et al., 2017; 2015) for image super-resolution rely on
manual design of image priors based on subjective knowledge to restore image details. With the
advancement of deep learning (DL), DL-based image super-resolution has become predominant,
which mainly focuses on network architecture (Lai et al., 2017; Menick & Kalchbrenner, 2018;
Lugmayr et al., 2020; Sajjadi et al., 2017), image priors (Pan et al., 2021; Chan et al., 2021), loss
functions (Zhou et al., 2020; Fuoli et al., 2021), and other aspects (Zhang et al., 2018a; Wang et al.,
2021b). Recently, diffusion-based methods for image super-resolution have garnered widespread
attention. SR3 (Saharia et al., 2022) incorporated low-resolution images as conditions into the de-
noising model to guide the sampling process. Subsequently, CDPMSR (Niu et al., 2023) and IDM
(Gao et al., 2023) respectively utilized preprocessed images and features as conditions to enhance
the perceptual quality. Inspired by the powerful generation priors of stable diffusion (SD) (Rombach
et al., 2022), recent studies (Wang et al., 2023b; Yang et al., 2023; Wu et al., 2024b) have achieved
image super-resolution by fine-tuning pre-trained SD models (Rombach et al., 2022). However,
these methods typically require dozens or even hundreds of iterations to generate high-resolution
images. To enhance the inference efficiency, ResShift (Yue et al., 2024) redesigned the diffusion
process by shifting the residuals between high-resolution and low-resolution images to construct a
Markov chain, achieving performance comparable to previous state-of-the-art methods with just 15
sampling steps. During the same period as our method, OSEDiff (Wu et al., 2024a) directly utilized
LR images as the starting point for diffusion and optimized the student model through variational
score distillation, generating HR images through a single sampling step. However, it relies on a
specific model architecture, while our approach offers a more generalized method for accelerating
diffusion models, enabling the distillation of various super-resolution models into single-step sam-
pling based on specific requirements. Furthermore, our method can theoretically be extended to
other tasks, such as unconditional generation.

A.1.2 ACCELERATING DIFFUSION MODELS.

Although diffusion model (Ho et al., 2020; Rombach et al., 2022) has formidable generation ca-
pabilities, the substantial number of inference steps poses a significant obstacle to its practical im-
plementation. Recent studies focusing on enhancing the inference speed of diffusion models have
garnered considerable interest within the research community. Mainstream approaches include the
development of high-order samplers (Song et al., 2020; Lu et al., 2022; Zheng et al., 2024) and the
application of knowledge distillation techniques (Salimans & Ho, 2022; Sauer et al., 2023; 2024;
Song et al., 2023; Luo et al., 2023). Denoising diffusion implicit models (DDIM) (Song et al.,
2020), an early contribution, introduced a deterministic sampling method that notably decreased
the number of diffusion sampling steps. DPMSolver (Lu et al., 2022) proposed a fast dedicated
high-order ODE solver, further reducing the diffusion sampling steps to 20. However, trajectory
compression through numerical solvers often results in performance degradation, necessitating over
ten inference steps to generate samples. In contrast, progressive distillation (Salimans & Ho, 2022)
gradually reduces the inference steps of student models through multi-stage distillation, but the ac-
cumulation of errors in each distillation stage may affect the performance of the student model.
Consistency model (Song et al., 2023) eliminates the need for computation-intensive iterations by
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Table 6: Complexity comparison among different SR methods. All methods are tested on the ×4
(64→256) SR tasks, and the inference time is measured on an A100 GPU.

Method LDM ResShift SinSR DMD* TAD-SR
NFE 15 15 1 1 1

Inference time (s) 0.408 0.682 0.058 0.058 0.058
#Params (M) 168.92 173.91 173.91 173.91 173.91

applying consistency regularization to ODE trajectories. Additionally, Adversarial diffusion distil-
lation (ADD) (Sauer et al., 2023) integrates generative adversarial networks with score distillation
to enhance the perceptual quality of student network-generated images. For image super-resolution
tasks, AddSR (Xie et al., 2024) introduces two key advancements based on adversarial distillation
technology, effectively fulfilling image super-resolution objectives. Inspired by cycle consistency
loss, SinSR (Wang et al., 2023c) proposes a single-step image super-resolution method. However,
AddSR overlooks the influence of time steps on the discriminator, while SinSR primarily focuses
on constraining latent codes through pixel-level loss, neglecting perceptual distribution alignment.
To achieve image super-resolution more efficiently and effectively, this work proposes a time-aware
diffusion distillation method.

A.2 IMPLEMENTATION DETAILS

A.2.1 MATHEMATICAL DETAILS

• Derivation of Eq. equation 8: According to the transition distribution of Eq. equation 1 of our
manuscript, the predicted noise ϵϕ can be expressed via the following reparameterization trick:

ϵϕ =
zt − (ẑ0 + ηt (zy − ẑ0))√

ηtκ
, (13)

where ẑ0 = Fϕ (zt, t, y). According to the Eq. equation 13, we can rewrite Eq. equation 7 as
follows:

Lhsd = Eztch
t
′ ,zstu

t
′ ,y

ω
((
zstu
t′
− ztch

t′

)
+ (1− ηt′ )

(
Fϕ

(
ztch
t′
, t

′
, y
)
− Fϕ

(
zstu
t′
, t

′
, y
)))

√
ηt′κ

 .
(14)

Since the noise injected into the output image of the student model and the output image of the
teacher model is the same, we have: zstu

t′
− ztch

t′
= (1− ηt′ )

(
zstu0 − ztch0

)
. Then Eq. equa-

tion 14 can be written as:

Lhsd = Eztch
t
′ ,zstu

t
′ ,y

ω (1− ηt′ )
(
zstu0 − ztch0 + Fϕ

(
ztch
t′
, t

′
, y
)
− Fϕ

(
zstu
t′
, t

′
, y
))

√
ηt′κ


= Eztch

t
′ ,zstu

t
′ ,y

[
ω2

(
zstu0 − ztch0 + Fϕ

(
ztch
t′
, t

′
, y
)
− Fϕ

(
zstu
t′
, t

′
, y
))]

, (15)

where ω2 =
ω(1−η

t
′ )√

η
t
′ κ

A.2.2 TAD-SR TRAINING PROCEDURE

For a comprehensive understanding, we provide a detailed description of our TAD-SR training pro-
cedure in Algorithm 1.
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Algorithm 1: TAD-SR Training Procedure
Input: Pretrained diffusion model Fϕ, paired dataset D = {x, y}, Time steps T
Output: Trained generator fθ and disriminator Dψ .

1 // Initialize generator from pretrained model
2 fθ ← copyWeights(FΦ),
3 while train do
4 // Generated images
5 Sample ϵ ∼ N (0, I), (x, y) ∼ D
6 zT ← Forward process(T, y, x, ϵ) // Eq 1
7 zstu0 ← fθ(zT , y, T ) // One-step
8 ztch0 ← Fϕ(zT , y, T ) // Multi-step
9

10 // Update discriminator model
11 Sample time step t ∼ U(0, T )
12 zstut ← Forward process(t, y, zstu0 , ϵ) // Eq 1
13 zt ← Forward process(t, y, z0, ϵ) // Eq 1

14 LDψadv ← Adversarial loss(zstut , zt, y, t) // Eq 9 and Eq 11

15 Dψ ← update(Dψ,L
Dψ
adv )

16

17 // Update generator

18 Sample ϵ
′ ∼ N (0, I), t

′ ∼ U(0, T/5)
19 zstu

t′
← Forward process(t

′
, y, zstu0 , ϵ

′
) // Eq 1

20 ztch
t′
← Forward process(t

′
, y, ztch0 , ϵ

′
) // Eq 1

21 Lreg ← Regression loss(zstu0 , ztch0 ) // Eq 6

22 Lhsd ← HSD(zstu
t′
, ztch
t′
, y, t

′
) // Eq 7

23 Lfθadv ← Adversarial loss(zstut , y, t) // Eq 9 and Eq 10

24 Lfθ ← Lreg + λ1Lhsd + λ2Lfθadv
25 fθ ← update(fθ,Lfθ )
26 end while
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Table 7: Ablation studies of the proposed methods on ImageNet-Test benchmark. The best results
are highlighted in bold.

Score distillation Discriminator PSNR↑ SSIM↑ LPIPS↓ CLIPIQA↑ MUSIQ↑
SDS % 24.46 0.658 0.335 0.412 41.133
SDS ! 24.76 0.670 0.300 0.469 46.024
SDS time-aware 24.69 0.671 0.278 0.522 49.932
HSD % 24.64 0.661 0.228 0.608 53.508
HSD ! 23.89 0.640 0.227 0.649 57.370
HSD time-aware 23.91 0.641 0.227 0.652 57.533

Table 8: Ablation studies of the proposed methods on RealSR and RealSet65 benchmarks. The best
results are highlighted in bold.

Score distillation Discriminator RealSR/RealSet65
CLIPIQA↑ MUSIQ↑

SDS % 0.450/0.484 54.069/52.923
SDS ! 0.489/0.528 57.290/57.567
SDS time-aware 0.538/0.554 60.223/59.627
HSD % 0.671/0.697 61.506/63.609
HSD ! 0.711/0.729 63.550/66.904
HSD time-aware 0.741/0.734 65.701/67.500

A.3 ADDITIONAL EXPERIMENTS

A.3.1 ABLATION STUDY

The aforementioned experiments have confirmed the effectiveness of our method in image super-
resolution tasks. This section is dedicated to presenting ablation studies that aim to further validate
the importance of the crucial modules introduced within our framework.

High-frequency enhanced score distillation. We first investigate the importance of high-frequency
enhanced score distillation. Recall that in Section 3.2, we analyzed how high-frequency enhanced
score distillation can provide meaningful guidance for optimizing student model compared to score
distillation sampling (SDS). Here, we further validate its effectiveness through experiments. As
shown in Table 8 and Table 7, compared with SDS, our proposed high-frequency enhanced score dis-
tillation (HSD) can significantly improve the LPIPS, CILIPIQA and MUSIQ scores on all datasets.
Additionally, with the introduction of adversarial learning, HSD also achieves superior metrics com-
pared to SDS, further validating that the proposed method enhances image generation quality and
surpasses SDS.

Time-aware discriminator. It has been proven that introducing generative adversarial training in
latent space is easier to optimize and more cost-effective than pixel space (Sauer et al., 2024). Now,
we demonstrate the importance of introducing time injection into the discriminator. Intuitively, when
the discriminator does not have time injection, it needs to distinguish the distribution between real
data and generated data under different noise disturbances, which is undoubtedly extremely chal-
lenging. Adding time injection to the discriminator is equivalent to providing additional information
related to the level of noise disturbance, which should improve the performance of the discriminator
and provide more effective supervision for the generator. We further validated the above analy-
sis through experiments. As shown in Table 8, performance improves with the replacement of the
standard discriminator by our proposed time-aware discriminator, regardless of the score distillation
technique used. We also conduct ablation experiments to evaluate the impact of using multi-scale

Table 9: Ablation studies of the proposed discriminator on RealSR and RealSet65 benchmarks. The
best results are highlighted in bold.

Discriminator RealSR RealSet65
CLIPIQA↑ MUSIQ↑ CLIPIQA↑ MUSIQ↑

Ours 0.741 65.701 0.734 67.500
w/o time-aware 0.711 63.550 0.729 66.904
w/o multi-scale 0.722 65.205 0.724 67.330
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Table 10: Performance comparison of the proposed high-frequency enhanced score distillation tech-
niques across varying time-period sampling lengths.

Time-period lengths
Datasets

RealSR RealSet65
CLIPIQA↑ MUSIQ↑ CLIPIQA↑ MUSIQ↑

T/5 0.741 65.701 0.734 67.500
2T/5 0.730 65.223 0.732 67.292
3T/5 0.731 65.431 0.730 67.254
4T/5 0.731 65.122 0.731 67.263

T 0.733 65.321 0.731 67.303

Table 11: Quantitative comparison with state of the arts on RealSR dataset dataset. The best and
second best results are highlighted in bold and underline.

Methods RealSR
PSNR↑ LPIPS ↓ FID ↓ NIQE ↓ CLIPIQA↑ MUSIQ↑ MANIQA↑

BSRGAN 26.49 0.267 141.28 5.66 0.512 63.28 0.376
RealESRGAN 25.78 0.273 135.18 5.83 0.449 60.36 0.373

LDL 25.09 0.277 142.71 6.00 0.430 58.04 0.342
FeMaSR 25.17 0.294 141.05 5.79 0.541 59.06 0.361

StableSR-200 25.63 0.302 133.40 5.76 0.528 61.11 0.366
ResShift-15 26.34 0.346 149.54 6.87 0.542 56.06 0.375
PASD-20 26.67 0.344 122.30 6.06 0.519 62.92 0.404
SeeSR-50 25.24 0.301 125.42 5.39 0.670 69.82 0.540

+UniPC-10 25.86 0.281 122.41 5.53 0.577 67.12 0.476
+DPMSolver-10 25.90 0.281 122.46 5.54 0.581 67.12 0.478

SinSR-1 26.16 0.308 142.44 5.75 0.630 60.96 0.399
AddSR-1 23.12 0.309 132.01 5.54 0.552 67.14 0.488

OSEDiff-1 25.15 0.292 123.49 5.63 0.668 68.99 0.474
TAD-SR-1 24.50 0.304 118.38 5.13 0.676 69.02 0.526

features in the discriminator. We designed an experiment using only the features of the last layer of
the diffusion model for discrimination, denoted as “w/o multi-scale”. From Table 9, it can be seen
that the discriminator utilizing multi-scale features and incorporating temporal information achieves
the best performance.

Time-period sampling lengths within score distillation. We demonstrated the effectiveness of
the high-frequency enhanced score distillation technique and the time-aware discriminator within
the proposed time-aware distillation framework in Sec. A.3.1. In this section, we further investi-
gate the impact of sampling time steps on model performance within the high-frequency enhanced
score distillation technique. Specifically, we divide the total time steps into five equal periods and
incrementally increase the number of sampled periods to assess model performance on RealSR and
RealSet65 datasets. As shown in Table 10, the highest CLIPIQA and MUSIQ scores were achieved
by calculating the score distillation loss during small time steps. Since the diffusion model primar-
ily focuses on high-frequency details during small time steps, this result corroborates our analysis
in Sec. 3.1. In comparison to the teacher model, the student model exhibits a notable deficiency
in modeling high-frequency details, making it both reasonable and effective to compute the score
distillation loss at small time steps.

A.3.2 EXPERIMENTAL RESULTS ON SD-BASED SR METHOD

In addition to distilling the super-resolution model trained from scratch, we also apply our proposed
TAD-SR to distill the SOTA SD-based super-resolution model to further validate its effectiveness.

Training Datasets. We adopt DIV2K (Agustsson & Timofte, 2017), Flickr2K (Timofte et al., 2017),
first 20K images from LSDIR (Li et al., 2023) and first 10K face images from FFHQ (Karras et al.,
2019) for training. The degradation pipeline of Real-ESRGAN (Wang et al., 2021b) is used to
synthesize LR-HR training pairs.
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Table 12: Quantitative comparison with state of the arts on RealLR200 dataset dataset. The best and
second best results are highlighted in bold and underline. Note that since the RealLR200 dataset
lacks high-resolution images, we only computed non-reference metrics.

Methods RealLR200
NIQE↓ CLIPIQA↑ MUSIQ↑ MANIQA↑

BSRGAN 4.38 0.570 64.87 0.369
RealESRGAN 4.20 0.542 62.93 0.366

LDL 4.38 0.509 60.95 0.327
FeMaSR 4.34 0.655 64.24 0.410

StableSR-200 4.25 0.592 62.89 0.367
ResShift-15 6.29 0.647 60.25 0.418
PASD-20 4.18 0.620 66.35 0.419
SeeSR-50 4.16 0.662 68.63 0.491

+UniPC-10 4.25 0.601 66.90 0.433
+DPMSolver-10 4.28 0.603 66.92 0.435

SinSR-1 5.62 0.697 63.85 0.445
AddSR-1 4.06 0.585 66.86 0.418

OSEDiff-1 4.05 0.674 69.61 0.444
TAD-SR-1 3.95 0.674 69.48 0.482

Testing Datasets. We evaluate TAD-SR on two real-world datasets: RealSR (Cai et al., 2019)
and RealLR200 (Wu et al., 2024b), as well as one one synthetic dataset, DIV2K-val(Agustsson
& Timofte, 2017). The method for acquiring HR-LR image pairs in the DIV2K dataset follows
the procedure detailed in (Wang et al., 2023b), and except RealLR200, all datasets are cropped to
512×512 patches.

Compared Methods. We compare our SeeSR with several state-of-the-art Real-ISR methods,
which can be categorized into two groups. The first group consists of GAN-based methods, in-
cluding BSRGAN (Zhang et al., 2021), Real-ESRGAN (Karras et al., 2019), LDL (Liang et al.,
2022a), FeMaSR (Chen et al., 2022). The second group consists of recent diffusion-based methods,
including StableSR (Wang et al., 2023b), ResShift (Yue et al., 2024), PASD (Yang et al., 2023),
SeeSR (Wu et al., 2024b), SinSR (Wang et al., 2023c), AddSR (Xie et al., 2024) and OSEDiff (Wu
et al., 2024a). Additionally, we applied samplers such as UniPC (Zhao et al., 2024) and DPM-Solver
(Lu et al., 2022) to the inference process of the teacher model SeeSR and used them as baselines.

Evaluation Metrics. We employ non-reference metrics (e.g., MANIQA (Yang et al., 2022), MUSIQ
(Ke et al., 2021), CLIPIQA (Wang et al., 2023a) and NIQE (Zhang et al., 2015)) and reference
metrics (e.g., LPIPS (Zhang et al., 2018a), PSNR and FID (Heusel et al., 2017)) to comprehensively
evaluate our TAD-SR. Note that in real-world super-resolution tasks, the non-reference metrics are
more aligned with human perception and better reflects the subjective quality of images.

Evaluation results. We first show the quantitative comparison on one synthetic dataset and two
real-world datasets in Tables 11, 12 and 13. The observations from the table are as follows: (1)
The GAN-based method shows advantages over diffusion-based methods in full-reference metrics
(e.g., PSNR and LPIPS), yet it significantly lags behind diffusion-based methods in non-reference
metrics. (2) Our method achieves performance comparable to the teacher model (SeeSR) using only
single-step sampling. (3) Compared to other one-step diffusion-based SR methods, our approach
outperforms in most metrics. Furthermore, unlike the concurrent work OSEDiff (Wu et al., 2024a),
our method is more versatile, allowing it to accelerate any diffusion-based SR models for practical
needs. Additionally, the visualization results demonstrate that our method not only enhances image
details with greater clarity (as illustrated in the second row of Fig. 8) but also preserves the similarity
to the original image as much as possible (as shown in the fourth row of Fig. 8). Additionally, we
also report the inference time of different SD-based SR methods as shown in Table 14.Overall, our
TAD-SR can effectively and efficiently complete image super-resolution reconstruction.
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Table 13: Quantitative comparison with state of the arts on DIV2k-val dataset. The best and second
best results are highlighted in bold and underline.

Methods DIV2K-val
PSNR↑ LPIPS ↓ FID↓ NIQE↓ CLIPIQA↑ MUSIQ↑ MANIQA↑

BSRGAN 24.58 0.335 44.22 4.75 0.524 61.19 0.356
RealESRGAN 24.29 0.311 37.64 4.68 0.527 61.06 0.382

LDL 23.83 0.326 42.28 4.86 0.518 60.04 0.375
FeMaSR 23.06 0.346 53.70 4.74 0.599 60.82 0.346

StableSR-200 23.29 0.312 24.54 4.75 0.676 65.83 0.422
ResShift-15 24.72 0.340 41.99 6.47 0.594 60.89 0.399
PASD-20 24.51 0.392 31.58 5.37 0.551 59.99 0.399
SeeSR-50 23.68 0.319 25.97 4.81 0.693 68.68 0.504

+UniPC-10 24.07 0.339 27.33 5.00 0.607 64.97 0.432
+DPMSolver-10 24.12 0.338 27.32 5.03 0.612 65.07 0.435

SinSR-1 24.41 0.324 35.23 6.01 0.648 62.80 0.424
AddSR-1 23.26 0.362 29.68 4.76 0.573 63.69 0.405

OSEDiff-1 23.72 0.294 26.33 4.71 0.661 67.96 0.443
TAD-SR-1 23.54 0.311 25.96 4.64 0.664 67.01 0.470

Table 14: Complexity comparison among different SD-based SR methods. All methods are tested
on the ×4 (128→512) SR tasks, and the inference time is measured on an V100 GPU.

Method StableSR PASD SeeSR AddSR OSEDiff TAD-SR
NFE 200 20 50 1 1 1

Inference time (s) 17.76 13.51 8.40 0.64 0.48 0.64

A.4 LIMITATIONS

Although our TAD-SR demonstrates strong performance, it shares a common limitation with current
single-step distillation methods: increasing the number of inference steps alone does not yield better
performance. Thus, developing a distillation method that matches the performance of state-of-the-
art single-step approaches while enabling additional inference steps to enhance performance is a key
area of our ongoing research.

A.5 MORE VISUALIZATION RESULTS
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(i) AddSR-1 (k) LR(j) Ours

(b) RealESRGAN (d) StableSR-200 (e) ResShift-15

(h) SinSR-1

(c) PASD-20 (f) SeeSR-50

(g) OSEDiff-1(a) HR

(b) RealESRGAN (d) StableSR-200 (e) ResShift-15(c) PASD-20 (f) SeeSR-50

(i) AddSR-1 (k) LR(j) Ours(h) SinSR-1(g) OSEDiff-1(a) HR

(i) AddSR-1 (k) LR(j) Ours(h) SinSR-1(g) OSEDiff-1

(b) RealESRGAN (d) StableSR-200 (e) ResShift-15(c) PASD-20 (f) SeeSR-50

(a) HR

Figure 8: Visual comparison on real-world LR images. Note that SeeSR is the teacher model.
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(b) FeMaSR (d) PASD-20 (e) StableSR-200(c) RealESRGAN (f) ResShift-15(a) LR

(i) AddSR-1 (k) Ours-1(j) OSEDiff-1 (h) SinSR-1(g) SeeSR-50 (l) HR

(i) AddSR-1 (k) Ours-1(j) OSEDiff-1 (h) SinSR-1(g) SeeSR-50 (l) HR

(b) FeMaSR (d) PASD-20 (e) StableSR-200(c) RealESRGAN (f) ResShift-15(a) LR

(b) FeMaSR (d) PASD-20 (e) StableSR-200(c) RealESRGAN (f) ResShift-15(a) LR

(i) AddSR-1 (k) Ours-1(j) OSEDiff-1 (h) SinSR-1(g) SeeSR-50 (l) HR

(b) FeMaSR (d) PASD-20 (e) StableSR-200(c) RealESRGAN (f) ResShift-15(a) LR

(i) AddSR-1 (k) Ours-1(j) OSEDiff-1 (h) SinSR-1(g) SeeSR-50 (l) HR

Figure 9: Qualitative comparisons of different methods on four synthetic examples of the DIV2K
dataset. SeeSR is the teacher model.
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(b) LDM-15 (d) SinSR-1 (e) Ours-1(c) ResShift-15 (f) GT(a) LR

(b) LDM-15 (d) SinSR-1 (e) Ours-1(c) ResShift-15 (f) GT(a) LR

(b) LDM-15 (d) SinSR-1 (e) Ours-1(c) ResShift-15 (f) GT(a) LR

(b) LDM-15 (d) SinSR-1 (e) Ours-1(c) ResShift-15 (f) GT(a) LR

(b) DifFace-100 (d) SinSR-1 (e) Ours-1(c) ResShift-15 (f) GT(a) LR

(b) DifFace-100 (d) SinSR-1 (e) Ours-1(c) ResShift-15 (f) GT(a) LR

(b) DifFace-100 (d) SinSR-1 (e) Ours-1(c) ResShift-15 (f) GT(a) LR

(b) DifFace-100 (d) SinSR-1 (e) Ours-1(c) ResShift-15 (f) GT(a) LR

Figure 10: The visualizations of images generated by different SR methods, along with their Fourier-
transformed spectrograms, reveal that our method preserves more high-frequency information than
other methods. Please zoom in for a better view.
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(i) ResShift-15 (k) Ours-1(j) SinSR-1

(b) BSRGAN (d) SwinIR (e) RealESRGAN

(h) LDM-15

(c)ESRGAN (f) RealSR-JPEG

(g) DASR(a) LR input

(i) ResShift-15 (k) Ours-1(j) SinSR-1

(b) BSRGAN (d) SwinIR (e) RealESRGAN

(h) LDM-15

(c)ESRGAN (f) RealSR-JPEG

(g) DASR(a) LR input

(i) ResShift-15 (k) Ours-1(j) SinSR-1

(b) BSRGAN (d) SwinIR (e) RealESRGAN

(h) LDM-15

(c)ESRGAN (f) RealSR-JPEG

(g) DASR(a) LR input

Figure 11: Qualitative comparisons of different methods on three real-world examples of the RealSR
and RealSet65 dataset. Please zoom in for a better view.
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(b) SwinIR (d) DASR (e) ESRGAN(c) BSRGAN (f) RealSR-JPEG(a) LR

(i) ResShift-15 (k) Ours-1(j) SinSR-1 (h) LDM-15(g) RealESRGAN (l) HR

(b) SwinIR (d) DASR (e) ESRGAN(c) BSRGAN (f) RealSR-JPEG(a) LR

(i) ResShift-15 (k) Ours-1(j) SinSR-1 (h) LDM-15(g) RealESRGAN (l) HR

(b) SwinIR (d) DASR (e) ESRGAN(c) BSRGAN (f) RealSR-JPEG(a) LR

(i) ResShift-15 (k) Ours-1(j) SinSR-1 (h) LDM-15(g) RealESRGAN (l) HR

(b) SwinIR (d) DASR (e) ESRGAN(c) BSRGAN (f) RealSR-JPEG(a) LR

(i) ResShift-15 (k) Ours-1(j) SinSR-1 (h) LDM-15(g) RealESRGAN (l) HR

Figure 12: Qualitative comparisons of different methods on four synthetic examples of the
ImageNet-Test dataset.
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Huawei Proprietary - Restricted Distribution1

(b) PSFRGAN (d) DFDNet (e) CodeFormer(c) GFPGAN (f) VQFR(a) LR

(i) ResShift-15 (k) Ours-1(j) SinSR-1 (h) DifFace-100(g) RestoreFormer (l) HR

(b) PSFRGAN (d) DFDNet (e) CodeFormer(c) GFPGAN (f) VQFR(a) LR

(i) ResShift-15 (k) Ours-1(j) SinSR-1 (h) DifFace-100(g) RestoreFormer (l) HR

(b) PSFRGAN (d) DFDNet (e) CodeFormer(c) GFPGAN (f) VQFR(a) LR

(i) ResShift-15 (k) Ours-1(j) SinSR-1 (h) DifFace-100(g) RestoreFormer (l) HR

(b) PSFRGAN (d) DFDNet (e) CodeFormer(c) GFPGAN (f) VQFR(a) LR

(i) ResShift-15 (k) Ours-1(j) SinSR-1 (h) DifFace-100(g) RestoreFormer (l) HR

Figure 13: Qualitative comparisons of different methods on four synthetic examples of the CelebA-
Test dataset.
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Huawei Proprietary - Restricted Distribution2

(i) ResShift-15 (k) Ours-1(j) SinSR-1 

(b) PSFRGAN (d) DFDNet (e) CodeFormer

(h) DifFace-100

(c) GFPGAN (f) VQFR

(g) RestoreFormer

(a) LR

(i) ResShift-15 (k) Ours-1(j) SinSR-1 

(b) PSFRGAN (d) DFDNet (e) CodeFormer

(h) DifFace-100

(c) GFPGAN (f) VQFR

(g) RestoreFormer

(a) LR

(i) ResShift-15 (k) Ours-1(j) SinSR-1 

(b) PSFRGAN (d) DFDNet (e) CodeFormer

(h) DifFace-100

(c) GFPGAN (f) VQFR

(g) RestoreFormer

(a) LR

(i) ResShift-15 (k) Ours-1(j) SinSR-1 

(b) PSFRGAN (d) DFDNet (e) CodeFormer

(h) DifFace-100

(c) GFPGAN (f) VQFR

(g) RestoreFormer

(a) LR

Figure 14: Qualitative comparisons of different methods on four real-world examples of the LFW,
WebPhoto and WIDER dataset.
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(i) ResShift-15 (k) Ours-1(j) SinSR-1 

(b) PSFRGAN (d) DFDNet (e) CodeFormer

(h) DifFace-100

(c) GFPGAN (f) VQFR

(g) RestoreFormer

(a) LR

(i) ResShift-15 (k) Ours-1(j) SinSR-1 

(b) PSFRGAN (d) DFDNet (e) CodeFormer

(h) DifFace-100

(c) GFPGAN (f) VQFR

(g) RestoreFormer

(a) LR

(i) ResShift-15 (k) Ours-1(j) SinSR-1 

(b) PSFRGAN (d) DFDNet (e) CodeFormer

(h) DifFace-100

(c) GFPGAN (f) VQFR

(g) RestoreFormer

(a) LR

(i) ResShift-15 (k) Ours-1(j) SinSR-1 

(b) PSFRGAN (d) DFDNet (e) CodeFormer

(h) DifFace-100

(c) GFPGAN (f) VQFR

(g) RestoreFormer

(a) LR

Figure 15: Qualitative comparisons of different methods on four real-world examples of the LFW,
WebPhoto and WIDER dataset.
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