
From global to local MDI variable importances for
random forests and when they are Shapley values

Supplementary materials

Antonio Sutera∗, Gilles Louppe, Van Anh Huynh-Thu, Louis Wehenkel, Pierre Geurts
Dept. of EE & CS, University of Liège, Belgium

{a.sutera,g.louppe,vahuynh,l.wehenkel,p.geurts}@uliege.be

A Proofs

A.1 Proof of Theorem 1

Theorem 1. (MDI are Shapley values) For all feature Xm ∈ V ,

Imp∞(Xm) = ϕSh
v (Xm), (8)

where ϕSh
v (Xm) is the Shapley value of Xm with respect to the characteristic function v(S) =

I(Y ;S) (with S ⊆ V ).

Proof. Let us first note that

v(S ∪ {Xm})− v(S) = I(Y ;S,Xm)− I(Y ;S)

= H(Y )−H(Y |S,Xm)−H(Y ) +H(Y |S)
= I(Xm;Y |S) (1)

Replacing the characteristic functions as defined in this equation in Equation 1 of the main paper,
Shapley values can thus be defined as:

ϕv(Xm) =
∑

S⊆V −m

|S|!(p− |S| − 1)!

p!
I(Xm;Y |S) (2)

The sum can be reorganized according to the size of the subsets S from V −m:

ϕv(Xm) =

p−1∑
k=0

k!(p− k − 1)!

p!

∑
S⊆Pk(V −m)

I(Xm;Y |S) (3)

which is strictly equivalent to Imp∞(Xm) given that:

k!(p− k − 1)!

p!
=

(p− k)!k!

p!

1

p− k

=
1

p!

(p− k)!k!

1

p− k

=
1

Ck
p

1

p− k
(4)
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A.2 Proof of Theorem 2

Theorem 2. (Asymptotic local MDI) The local MDI importance Imp∞(Xm,x) of a variable Xm

with respect to Y for a given sample x as computed with an infinite ensemble of fully developed
totally randomized trees and an infinitely large training sample is

Imp∞(Xm,x) =

p−1∑
k=0

1

Ck
p

1

p− k

∑
B∈P(V −m)

H(Y |B = xB)−H(Y |B = xB , Xm = xm) (11)

Proof. Let B(t) = (Xi1 , . . . , Xik) be the subset of k variables tested in the branch from the root
node to the parent of t and b(t) be the vector of values of these variables. As the number of training
samples grows to infinity, the probability that a sample reaches node t is P (B(t) = b(t)) (according
to P (X1, . . . , Xp, Y )). As the number NT of totally randomized trees also grows to infinity, the
local importance of variable Xm for sample xi can then be written:

Imp(Xm,x) =
∑

B⊆V −m

β (H(Y |B = xb)−H(Y |B = xB , Xm = xm)) (5)

where β is probability that a node t (at depth k) in a totally randomized tree tests the variable Xm and
is such that B(t) = B and b(t) = xB . β is given by [Louppe et al., 2013] as being equal to 1

Ck
p

1
p−k

and remains valid because it only depends on the size k of B and on the number p of variables. Notice
already the similarity with the intermediate formulation in the proof of Theorem 1 from [Louppe
et al., 2013] where Equation 5 reduces the inner sum to a single term, the one corresponding to the
given b = xB . Rewritting Equation 5 in order to group subsets B according to their sizes, we have

Imp∞(Xm,x) =

p−1∑
k=0

1

Ck
p

1

p− k

∑
B∈P(V −m)

H(Y |B = xB)−H(Y |B = xB , Xm = xm) (6)

where the inner sum is over the set of subsets of V −m of cardinality k (i.e., the different paths of
length k leading to a test on Xm), and which completes the proof.

A.3 Proof of Theorem 3

Theorem 3. (Equivalence of irrelevance) A variable Xm is irrelevant with respect to Y if and only if
it is locally irrelevant with respect to Y for all x such that P (V = x) > 0.

Proof. This proof directly stems from the following intuitive observation: the irrelevance property
considers all x while the local irrelevance one only considers one x. If local irrelevance is satisfied
for all x, then irrelevance is satisfied. The other way around is trivial. Thus the irrelevance property is
equivalent to the set of local irrelevance properties corresponding to each x. Mathematically, we can
also prove this equivalence as follows. By definition of irrelevance, Xm ⊥⊥ Y |B for all B ⊆ V −m,
where Xm ⊥⊥ Y |B is the conditional independence and is equivalent (in the case of discrete variables
and assuming P (B = b) > 0) to saying that P (Xm = xm, Y = y|B = b) = P (Xm = xm|B =
b)P (Y = y|B = b) for all y, xm. It comes that P (Y = y|Xm = xm, B = b) = P (Y = y|B = b)
and so both notions are equivalent if the local definition is valid for all y and xm.

Note that this proof can be extended to continuous variables by changing probabilities P (X = x) to
P (X ≤ x).

A.4 Proof of Theorem 4

Theorem 4. If a variable is locally irrelevant at x with respect to Y , then Imp∞(Xm,x) = 0.

Proof. The proof stems from the definition of the local irrelevance. By definition, if Xm is locally
irrelevant at x with respect to the output Y , then P (Y = y|Xm = xm, B = xB) = P (Y = y|B =
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xB) for all B ⊆ V −m and all y ∈ Y . Consequently,

H(Y |B = xB , Xm = xm) = −
∑
y∈Y

P (y|xB , xm) logP (y|xB , xm)

= −
∑
y∈Y

P (y|xB) logP (y|xB)

= H(Y |B = xB).

If Xm is locally irrelevant at x, each collected term is therefore equal to zero, leading to
Imp∞(Xm,x) = 0.

B Examples

Example 1. Let us consider the two binary classification problems, with outputs Y1 and Y2 and two
binary inputs X1 and X2, described in Table 1. One can compute the following conditional mutual
information terms:

I(Y1;X1) = 0.091 (≥) I(Y2;X1) = 0.002,

I(Y1;X1|X2) = 0.269 (≥) I(Y2;X1|X2) = 0.243,

I(Y1;X2) = 0.002 (≤) I(Y2;X2) = 0.016,

I(Y1;X2|X1) = 0.180 (≤) I(Y2;X2|X1) = 0.258.

If K = 2, the forest reduces to a single tree both for Y1 and Y2. For Y1, this tree first splits on X1

and then on X2, resulting in the following importances:

ImpK=2,Y1
∞ (X1) = I(Y1;X1) = 0.091,

ImpK=2,Y1
∞ (X2) = I(Y1;X2|X1) = 0.180.

For Y2, the tree first splits on X2 and then on X1, resulting in the following importances:

ImpK=2,Y2
∞ (X1) = I(Y2;X1|X2) = 0.243,

ImpK=2,Y2
∞ (X2) = I(Y2;X2) = 0.016.

One can see that the strong monotonicity property is violated both for X1 and X2. For example,
although X1 brings more information about Y1 than about Y2 in all contexts, it is more important to
Y2 than Y1. This is due to the fact that in the tree for Y2, X1 appears at the second level of the tree
and it thus receive more credit than in the tree for Y1 where it appears at the top node.

Table 1: Definition of two outputs for which the strong monotonicity constraint is not satisfied, neither
for X1, nor for X2. All input combinations are assumed to be equiprobable.

X1 X2 P (Y1 = 1|X1, X2) P (Y2 = 1|X1, X2)
0 0 0.1 0.1
0 1 0.5 0.8
1 0 0.9 0.7
1 1 0.4 0.3

Example 2. Let us consider a binary classification problem with a single binary input X1 and
assume that P (Y = 0) > P (Y = 1) and P (Y = 0|X1 = 0) = P (Y = 1|X1 = 0). In this case,
Imp∞(X1, 0) = H(Y )−H(Y |X1 = 0), which is negative. Table 2 gives a numerical example of
this.
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Table 2: Definition of X1 and Y such that Imp∞(X1, 0) < 0. Here, Imp∞(X1, 0) = 0.81− 1 =
−0.19. All input combinations are assumed to be equiprobable.

X1 P (Y = 0|X1) P (Y = 1|X1)
0 0.5 0.5 H(Y |X1 = 0) = 1
1 1.0 0.0 H(Y |X1 = 1) = 0

P (Y )
0 0.75

H(Y ) = 0.811 0.25

C Code and data

Tree-based models are computed using Scikit-Learn [Pedregosa et al., 2011] (BSD-3-Clause License)
and other importance measures are computed using the corresponding latest available source code:
Saabas (BSD-3-Clause License) from TREEINTERPRETER ‘v0.1.0’, TreeSHAP from SHAP ‘v0.38.2’
(MIT License), and SAGE from its Github repository (MIT License). As there is no versioning of
the SAGE package, the code used was lastly downloaded on the 6th of February 2021. Global MDI
is computed using Scikit-Learn. Source code (BSD-3-Clause License) to compute local MDI is
available (open-source) at https://github.com/asutera/Local-MDI-importance.

D Supplementary results for global importance measures

Figure 1 reports normalized importance scores derived from an ensemble of trees with increasing K
(i.e., the randomization parameter) on the Led dataset for SAGE with the mean squared loss (mse) as
loss function, and the mean of the absolute value of TreeSHAP (for the predicted class) with both
available parameters for feature perturbations. It appears that all three methods reflect the impact of
K on the measured importance scores similarly as the global MDI and SAGE using the cross-entropy
loss function (Figure 1).

E Supplementary results for local importance measures

This section presents additional results and experiments that compare local importance measures.

E.1 Local importances for led and digits

Figure 3 shows the correlation between the (absolute value) of local importance scores of all pairs of
methods for several values of the randomization parameter K. Figures 2 reports the local importances
for three values of K for led (left) and digits (right), showing more samples (all samples of led
and one of each class for digits) than Figure 3.

E.2 Local importances on other datasets

In addition to the led and digits datasets already used in Section 6, we consider here a few
additional classification datasets. led (sampled) is a variant of the foretold problem where the
learning set is made of (200) samples randomly drawn from the data distribution. The remaining
datasets have been chosen from Scikit-learn datasets to cover mixed settings and differ by their
dimensionality and their feature types (both discrete and continuous). Table 3 summarizes their
characteristics.

Table 3: Datasets in classification

Name
Nb of

samples
Nb of

features
Feature
types

Led 10 7 Binary
Led (sampled) 200 7 Binary

Digits 1797 64 Integer
Iris 150 4 Real
Wine 178 13 Integer, Real

Breast cancer 569 30 Real
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Figure 1: Normalized importance scores derived from an ensemble of totally and non-totally random-
ized Extra-Trees (with K = 1, . . . , p) for the global MDI importance measure and SAGE.

For every dataset, local feature importances are derived from a forest of 1000 totally randomized
Extra-Trees (K = 1). As in Section 6, Saabas and TreeSHAP are computed with respect to the
predicted class.

For each sample, Pearson and Spearman correlations are computed between the local MDI and Saabas
importances and between the local MDI and treeSHAP importances.

Figure 4 shows the correlations across all samples that are reordered by increasing correlation values.
Table 4 summarizes these results.

It can be observed that a large fraction of samples are associated to correlations close to 1 suggesting
that most of importance vectors are similar. More than 90% importance vectors are similar (correlation
≥ 0.75) in four datasets (out of six) and more than 80% in two datasets. Note that this also shows that
a fraction of samples (roughly 1% to 10% depending on the dataset) are associated with uncorrelated
importance scores. This may come from the importance scores with respect to the predicted class
(used in TreeSHAP and Saabas) that differs from the importance scores over all classes (local MDI).
More experiments should be carried out to better understand the origin of these differences.
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(b) DIGITS

Figure 2: Local importances derived by local measures from a forest of 1000 Extra-Trees with
K ∈ {1,√p, p}) for led (left) and digits (right).
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Figure 3: Mean correlation (over the samples) w.r.t. increasing K for between absolute importance
scores for led ([min,max] is shaded).

F Generalization to other impurity measures and to regression

We have considered in most of our developments in the paper a categorical output Y (i.e., a classifica-
tion problem) and the use of Shannon entropy as impurity measure. Louppe et al. [2013] show that
Equation 4 and the link between the irrelevance of Xm and Imp∞(Xm) remain valid for other impu-
rity measures in classification, such as the Gini index, and can be extended to regression problems
using variance as the impurity measure. Similarly, the local MDI measure can be extended to other
impurity measures and thus in particular also to regression problems (i.e., a numerical output Y ).
Definition 8 is indeed generic and valid whatever the function i(Y |t) ≥ 0 that measures the impurity
of the output Y at a tree node t. The link between local and global MDI as expressed in Equation 9
(main paper) is also generic. Asymptotic results in Sections 4.2 and 4.3, i.e., the decomposition in
Theorem 2 and the link with Shapley value, remain valid with entropy H replaced by the population
version of the choosen impurity measure, denoted I∞ in what follows. Results in Section 4.4 requires
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Figure 4: Correlations between feature importance vectors across the samples ordered by increasing
values.

to redefine the notion of local irrelevance from the impurity function directly. If one defines a variable
Xm as locally irrelevant at x w.r.t. Y iff I∞(Y |Xm = xm, B = xB) = I∞(Y |B = xB) for all
B ⊆ V −m 2, then Theorem 4 still applies.

As an illustration, if one considers regression using the empirical variance as the impurity measure:

i(Y |t) = 1

Nt

∑
i∈t

(yi −
1

Nt

∑
i∈t

yi)
2,

where Nt is the number of instances in node t and yi are their output values, then I∞ is the
(conditional) population variance and the decomposition in Equation 10 (main paper) becomes:

Imp∞(Xm,x) =

p−1∑
k=0

1

Ck
p

1

p− k

∑
B∈P(V −m)

Var(Y |B = xB)− Var(Y |B = xB , Xm = xm), (7)

where Var(Y |B = xB) is the conditional variance of the output:

Var(Y |B = xB) = EY |B=xB
{(Y − EY |B=xB

{Y })2}. (8)
Global and local MDI importances of totally randomized trees are in this case Shapley values
respectively with respect to the following characteristic functions:

v(S) = Var(Y )− ES{Var(Y |S)} (9)
vloc(S;x) = Var(Y )− Var(Y |S = xS), (10)

and the decomposition in Equation 12 therefore becomes:

Var(Y )− ES{Var(Y |X)} =

p∑
m=1

∑
x∈V

P (V = x)Imp∞(Xm,x). (11)

Finally, locally irrelevant variables (null players) are such that Var(Y |Xm = xm, B = xB) =
Var(Y |B = xB) for all B ∈ V −m.

2This definition matches Definition 2 when I∞ is the entropy H .
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Table 4: Summary of results on classification datasets.

Saabas

Dataset Correlation Avg. corr. (±std) Fraction of samples
w/ correlation ≥ 0.9 w/ correlation ≥ 0.75

Wine Pearson 0.906 (±0.101) 72.47% 91.57%
Spearman 0.843 (±0.128) 44.38% 80.90%

Iris Pearson 0.949 (±0.156) 89.33% 95.33%
Spearman 0.892 (±0.231) 67.33% 91.33%

Breast cancer Pearson 0.899 (±0.220) 79.96% 91.04%
Spearman 0.857 (±0.255) 68.19% 84.71%

Led Pearson 0.980 (±0.025) 100.00% 100.00%
Spearman 0.989 (±0.016) 100.00% 100.00%

Led (sampled) Pearson 0.970 (±0.034) 100.00% 87.00%
Spearman 0.978 (±0.017) 100.00% 100.00%

Digits Pearson 0.915 (±0.045) 69.84% 99.44%
Spearman 0.899 (±0.045) 55.65% 99.50%

TreeSHAP

Dataset Correlation Avg. corr. (±std) Fraction of samples
w/ correlation ≥ 0.9 w/ correlation ≥ 0.75

Wine Pearson 0.900 (±0.104) 70.22% 90.45%
Spearman 0.852 (±0.121) 47.75% 82.02%

Iris Pearson 0.947 (±0.150) 88.00% 96.67%
Spearman 0.881 (±0.186) 56.67% 92.00%

Breast cancer Pearson 0.888 (±0.223) 79.26% 90.33%
Spearman 0.841 (±0.254) 62.57% 84.18%

Led Pearson 1.000 (±0.000) 100.00% 100.00%
Spearman 1.000 (±0.000) 100.00% 100.00%

Led (sampled) Pearson 0.990 (±0.009) 100.00% 100.00%
Spearman 0.988 (±0.017) 100.00% 100.00%

Digits Pearson 0.881 (±0.047) 38.01% 98.39%
Spearman 0.891 (±0.041) 44.80% 99.55%

G Notations, and definitions of entropies and mutual information

As a minimal introduction to information theory, we recall in this section several definitions from
information theory (see Cover and Thomas [2012], for further properties). The presentation below is
largely based on the Supplementary material of [Louppe et al., 2013], which is reproduced here for
the convenience of the reader.

We suppose that we are given a probability space (Ω, E ,P) and consider random variables defined on
it taking a finite number of possible values. We use upper case letters to denote such random variables
(e.g. X,Y, Z,W . . .) and calligraphic letters (e.g. X ,Y,Z,W . . .) to denote their image sets (of
finite cardinality), and lower case letters (e.g. x, y, z, w . . .) to denote one of their possible values. For
a (finite) set of (finite) random variables X = {X1, . . . , Xi}, we denote by PX(x) = PX(x1, . . . , xi)
the probability P({ω ∈ Ω | ∀ℓ : 1, . . . , i : Xℓ(ω) = xℓ}), and by X = X1 × · · · × Xi the set of joint
configurations of these random variables. Given two sets of random variables, X = {X1, . . . , Xi}
and Y = {Y1, . . . , Yj}, we denote by PX|Y (x | y) = PX,Y (x, y)/PY (y) the conditional density of
X with respect to Y .3

With these notations, the joint (Shannon) entropy of a set of random variables X = {X1, . . . , Xi} is
thus defined by

H(X) = −
∑
x∈X

PX(x) log2 PX(x),

3To avoid problems, we suppose that all probabilities are strictly positive, without fundamental limitation.

8



while the mean conditional entropy of a set of random variables X = {X1, . . . , Xi}, given the values
of another set of random variables Y = {Y1, . . . , Yj} is defined by

H(X | Y ) = −
∑
x∈X

∑
y∈Y

PX,Y (x, y) log2 PX|Y (x | y).

The mutual information among the set of random variables X = {X1, . . . , Xi} and the set of random
variables Y = {Y1, . . . , Yj} is defined by

I(X;Y ) = −
∑
x∈X

∑
y∈Y

PX,Y (x, y) log2
PX(x)PY (y)

PX,Y (x, y)

= H(X)−H(X | Y )

= H(Y )−H(Y | X).

The mean conditional mutual information among the set of random variables X = {X1, . . . , Xk}
and the set of random variables Y = {Y1, . . . , Yj}, given the values of a third set of random variables
Z = {Z1, . . . , Zi}, is defined by

I(X;Y | Z) = H(X | Z)−H(X | Y, Z)

= H(Y | Z)−H(Y | X,Z)

= −
∑
x∈X

∑
y∈Y

∑
z∈Z

PX,Y,Z(x, y, z) log2
PX|Z(x | z)PY |Z(y | z)

PX,Y |Z(x, y | z)
.

We also recall the chaining rule

I(X,Z;Y | W ) = I(X;Y | W ) + I(Z;Y | W,X),

and the symmetry of the (conditional) mutual information among sets of random variables

I(X;Y | Z) = I(Y ;X | Z).
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assumptions are detailed in Section 2. Then each theoretical result is given with its
main and additional assumptions.

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix A.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] All practical
instructions (e.g., model hyperparameters, used versions) are given. Data are open-
source and fully available. Codes (URL) are provided (see Appendix C).

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]
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4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] See Section 6 and Appendix C for

details.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

As a URL, see Appendix C.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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