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Abstract

Molecular property prediction using a molecule’s structure is a crucial step in drug and novel material
discovery, as computational screening approaches rely on predicted properties to refine the existing design of
molecules. Although the problem has existed for decades, it has recently gained attention due to the advent of
big data and deep learning. On average, one FDA drug is approved for 250 compounds entering the preclin-
ical research stage, requiring screening of chemical libraries containing more than 20000 compounds. In-silico
property prediction approaches using learnable representations increase the pace of development and reduce
the cost of discovery. We propose developing molecule representations using functional groups in chemistry to
address the problem of deciphering the relationship between a molecule’s structure and property. Functional
groups are substructures in a molecule with distinctive chemical properties that influence its chemical character-
istics. These substructures are found by (i) curating functional groups annotated by chemists and (ii) mining a
large corpus of molecules to extract frequent substructures using a pattern-mining algorithm. We show that the
Functional Group Representation (FGR) framework beats state-of-the-art models on several benchmark datasets
while ensuring explainability between the predicted property and molecular structure to experimentalists.

1 Introduction

Molecular property prediction is a task that finds applications in drug discovery, quantum mechanical attribute
prediction of molecules, hydrophobicity prediction, material design and drug toxicity prediction. In the field of
drug discovery and novel material discovery, computational approaches for predicting molecular properties can
boost the processes of finding better drug candidates and materials [1, 2]. Characterising and predicting molecular
properties is one of the most crucial problems in drug discovery. Numerous strategies are being used globally to
enhance efficiency and improve the success of the drug discovery and development process. These strategies use a
wide range of data such as genomics and proteomics, drug molecule structures and properties, and methods such
as pharmaceutical modelling and artificial intelligence [3]. On average, one drug is approved by US FDA for five
compounds entering clinical trials that, in turn, are the result of thorough preclinical testing of 250 compounds
themselves selected by screening 5000-10000 compounds [4]. Experimentally testing many such compounds is both
time and resource-consuming. In recent years, computational methods have significantly increased in the drug
discovery domain [3]. The traditional computational approaches for in-silico molecular property prediction have
relied on extracting fingerprints or hand-engineered features. Since these features are typically designed based on
the property prediction task, it captures features only relevant to the particular task.

In contrast to traditional computational approaches, deep learning-based (DL) approaches can automatically
learn features from molecules directly for the task at hand, and hence, it can reduce the time and cost for property
prediction [5, 6]. Instantaneous molecular property prediction using deep learning algorithms can help generate
novel molecules with desired profiles and engineer artificial synthesis pathways faster and cheaper. Graph neural
networks (GNN) and their variants have been widely used for molecular property prediction tasks due to their
ability to generate better molecular representations [7, 6, 8, 9, 10, 11, 12]. These approaches use the information
on atoms, bonds, topology, interactions and molecular geometry (3D spatial structure) of molecules for learning
molecular representation. However, GNN-based approaches require a large amount of labelled data for a particular
task, and it is impossible to generate such a large number of labelled data for several applications. Several graph-
based self-supervised learning approaches have been proposed to learn molecular representation from unlabelled
molecular data to handle the problem of limited labelled data [9, 13, 14].



Although GNNs and self-supervised learning models have provided promising results on several property pre-
diction tasks, the relationships between properties and molecule structures are challenging to interpret due to the
complex molecular representations generated by these methods for chemists. For novel molecule discovery and drug
repurposing applications, chemically interpretable molecular representation is essential for testing the generated
molecules via wet-lab experiments by chemists. Hence, a chemistry-inspired representation of molecules can be
vital in achieving interpretability and improved predictive performance of these models.

In this work, we propose a molecular representation learning framework that uses the concept of functional
groups in chemistry. The functional groups are substructures in a molecule that are attributed to the chemical
properties of the molecule, including its reactivity. This work proposes a functional group representation (FGR)
framework that allows embedding molecules based on their substructures. Firstly, we introduce two approaches
for the generation of the functional group vocabulary, namely, functional groups (FG) curated from the OCHEM
database [15] and mined functional groups (MFG) from the PubChem database [16]. Then, we develop four different
latent feature encodings using the FG- and MFG-based vocabulary generated in the first step for property prediction
tasks. Further, we investigate the effect of pretraining using unlabelled molecules in the PubChem database on
the property prediction tasks. We perform experiments on several benchmark datasets in the available literature
and compare the results of the proposed FGR framework in this work with other state-of-the-art methods. We
demonstrate that the FGR framework outperforms several property prediction tasks or provides comparable results
on several other tasks compared to the state-of-the-art methods while providing interpretability to chemists and
practitioners.

2 Objectives

O1 Generate a functional group vocabulary characterised by chemists and extract frequent sub-structures from a
large chemical corpus.

02 Learn functions fx. : Xg — zZg using autoencoders [17] where x¢ is a multi-hot vector of appropriate
dimension (say p) depending on the input representation and zg € R! is the learnt latent vector.

03 Decode the predicted property and molecular structure relationship using gradient-based model agnostic
interpretability methods.

3 Methodology

In this work, a set of SMILES strings for n molecules, & = {57, So, ..., S} which might be associated with a
property y is considered. Furthermore, we also incorporate 2D global molecular descriptors to augment the learnt
representation (FGR-Desc) and increase the performance of downstream property prediction tasks. The methods
are summarised in Figure 1.

e Generation of Functional Group vocabulary: In this study, we use the OCHEM [15] database, which
has a collection of 2786 functional groups (FG) characterised by chemists and frequent sub-structures are
recognised using a sequential pattern mining algorithm applied on S from the PubChem database (n > 114
million). Based on the frequency threshold 7, 3000 mined functional groups are identified (MFG). Then, any
molecule S; € S can be represented by a multi-one-hot encoded vector, [x1, Zo,..., zp]7 where z; = 1 if

e Pretraining and Property Prediction: Pretraining is decoupled from the downstream property prediction
to develop a global representation capable of interpreting the chemical space that can be applied to any task.
For the pretraining step, the autoencoder is trained separately from the downstream property prediction
task. The reconstruction loss of the training phase in is minimized for all the molecules in the database
for the pretraining purpose. One of the preliminary challenges of the encoder-decoder pretraining is the
determination of the dimension of the latent feature vector. Hyper-parameter optimization is performed to
obtain the dimension of the latent feature vectors for all four types of encodings. A fully connected neural
network is used to compute a probability score p(xg) € [0, 1] based on zs (latent feature vector) for property
prediction.

e Interpretability: We evaluate each input feature’s contribution to the model’s output using primary attri-
bution methods like feature permutation, integrated gradients and gradient SHAP [18, 19]. The goodness of
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Figure 1: Overview of the Proposed Methodology: A) FG Representation, B) MFG Representation, C)
Descriptor Representation, D) Latent Representation for FGR and Property Prediction Module

goo'

CHZ_CH_NHQ
+
HO

OH

r—— CH,—~CH—NH;

e of Interest| +

HO

o 0 0 o
LN,
& o'.c}‘:-o'o 0
@ 0.5‘:5.0 °
W o

OH

Attribution Score

0

Figure 2: Overview of Interpretability Analysis: For any given property, attribution scores for input features
are calculated and the substructures can be visualised overlapped with the scores

explanations is quantified using infidelity and sensitivity metrics. A visualisation tool is also developed to
highlight essential substructures that contribute to predicting desired properties, as shown in Figure 2.

4 Results

Extensive evaluation of the model was done for robustness and generalizability on classification and regression tasks
using five-fold random and scaffold splits. The results are summarized in Table 1 and Table 2.

5 Conclusion

This work presents a functional group representation (FGR) framework using functional groups in chemistry for
molecular representation learning. The framework allows four types of molecular representations: FG, MFG,
FG-MFG-based and FG-MFG-descriptors-based representation. The proposed FGR framework-based molecular
embeddings have been evaluated on several benchmark datasets. The proposed framework performs at par and
sometimes better than the state-of-the-art algorithms in classification tasks. The FGR framework also provides
chemically interpretable encoding as it is inspired by rules of chemistry to maintain explainability with the encoding.
In the proposed framework, autoencoders are used to learn latent representations. Also, we demonstrated that the
pretraining in the FGR framework could be performed due to decoupling between the latent representation learning



Scaffold Split Classification (ROC-AUC) *

Dataset FGR DMPNN GEM
BACE 0.89 +0.01 | 0.86+0.05 0.86 £ 0.01
BBBP 0.96 &+ 0.008 | 0.92 +0.02 0.72 £0.00
Tox21 0.71 +£0.01 0.694+0.01 | 0.78 £+ 0.001

ClinTox | 0.99 4 0.002 | 0.88 =0.03 0.90 £0.01
SIDER 0.72+£0.07 | 0.63+£0.03 | 0.67 =+ 0.004

Table 1: Comparison of ROC-AUC scores for FGR, DMPNN [6], and GEM [§]

Scaffold Split Regression (RMSE) |

Dataset FGR DMPNN GEM
ESOL 0.62 +0.06 | 1.05+0.008 | 0.79 £0.02
FreeSolv | 0.78 £0.19 | 2.08 £0.082 | 1.87 +0.094

Lipo 0.64 +0.035 | 0.68 £0.016 | 0.66 + 0.008

Table 2: Comparison of RMSE scores for FGR, DMPNN [6], and GEM [§]

task and the property prediction task. It is envisaged to extend the FGR framework for building pre-trained models
with explainability using self-supervised learning on large-scale molecular data.
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