
Under review as a conference paper at ICLR 2024

A DEMON AT WORK: LEVERAGING NEURON DEATH
FOR EFFICIENT NEURAL NETWORK PRUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

When training deep neural networks, the phenomenon of ‘dying neurons’ —units
that become inactive and output zero throughout training—has traditionally been
viewed as undesirable, linked with optimization challenges, and contributing to
plasticity loss in continual learning scenarios. In this paper, we reassess this phe-
nomenon through the lens of network sparsity and pruning. By systematically
exploring the influence of various hyperparameter configurations on the occurrence
of dying neurons, we unveil their potential to facilitate simple yet effective struc-
tured pruning algorithms. We introduce ‘Demon’s Pruning’ (DemP), a method that
controls the proliferation of dead neurons, dynamically sparsifying neural networks
as training progresses. Remarkably, our approach, characterized by its simplicity
and broad applicability, outperforms existing structured pruning techniques, while
achieving results comparable to prevalent unstructured pruning methods. These
findings pave the way for leveraging dying neurons as a valuable resource for
efficient model compression and optimization.

1 INTRODUCTION

Dying neurons, a phenomenon frequently observed during the learning process of neural networks,
are traditionally viewed as detrimental, often leading to suboptimal performance (Maas et al., 2013;
Xu et al., 2015) or loss of plasticity, especially in non-stationary settings (Lyle et al., 2023; Abbas
et al., 2023). In response, alternative activation functions without a hard-saturated state, such as
Leaky ReLU (Maas et al., 2013), Swish (Ramachandran et al., 2018), GELU (Hendrycks & Gimpel,
2016), have been proposed.

In this work, we reexamine the phenomenon of dying neurons through the lens of network sparsity
and pruning. Building upon both intuitive and theoretical insights into neuron death within networks
trained using stochastic optimization methods, we demonstrate how varying hyperparameters such as
learning rate, batch size, and L2 regularization parameter influence the occurrence of dead neurons
during training. We present and validate a method for actively managing the emergence of dead units
and for dynamically pruning them throughout the training process.

Notably, we observe that a higher level of noise or stronger regularization leads to sparser solutions,
characterized by a higher number of dead neurons. Capitalizing on the simplicity of our pruning
criterion –removing the inactive neurons– we introduce at no additional cost a structured pruning
method, Demon Pruning (DemP), both performant and easy to implement. DemP can be seamlessly
integrated into any training algorithm and readily combined with existing pruning techniques.

DemP marks a significant departure from traditional methodologies in pruning. Previous methods
relied on heuristics-based interventions: training is paused to ablate weights (or neurons) based on
a specific criterion. Training then resumes and tries to recover from the intervention. In contrast,
DemP is the first instantiation of a potential family of algorithms that leverage insights into how the
interplay between stochasticity and sparsity affects learning dynamics. With DemP, the optimization
process directly leads to sparse networks, removing the need for direct interventions during training.
Moreover, because the neurons removed by DemP in ReLU networks were inactive, the learning
dynamics are not impacted by the pruning procedure, removing the need for recovery.

Structured pruning methods, even in the absence of specialized sparse computation primitives (Elsen
et al., 2020; Gale et al., 2020), can more effectively exploit the computational advantages of GPU

1

Under review as a conference paper at ICLR 2024

hardware (Wen et al., 2016) compared to unstructured methods. This becomes particularly crucial
as deep learning models continue to grow; as considerations for environmental impacts become
increasingly significant (Strubell et al., 2019; Lacoste et al., 2019; Henderson et al., 2020), developing
methods with reduced energy footprint that can be adopted widely is becoming fundamental.

Our main contributions are:

1. Analysis of Neuron Mortality: We provide insights into the mechanisms underlying neuron
death, highlighting the pivotal role of stochasticity, as well as the influence of varying
hyperparameters such as learning rate, batch size, and regularization parameters (Section 3).

2. A Structured Pruning Method. Leveraging our insights, we introduce DemP, a novel
pruning approach that both promotes the proliferation of dead neurons in a controlled way,
and removes dead neurons in real time as they arise during training, offering substantial
training speedups (Section 4).

3. Empirical Evaluation. Through extensive experiments on various benchmarks, we demon-
strate that DemP, despite its simplicity and broad applicability, surpasses existing structured
pruning methods in terms of accuracy-compression tradeoffs, while achieving comparable
results to prevalent unstructured pruning methods (Section 5).

2 RELATED WORKS

Dead Neurons and Capacity Loss. It is widely recognized that neurons, especially in ReLU
networks, can die during training (Agarap, 2018; Trottier et al., 2017; Lu et al., 2019). In particular,
Evci (2018) noted the connection of the dying rate with the learning rate and derived a pruning
technique from it.

More recently, dead neurons were studied in continual and reinforcement learning through the lens of
plasticity loss (Berariu et al., 2021; Lyle et al., 2022), that progressively makes a model less capable
of adapting to new tasks Kirkpatrick et al. (2016). The inability to adapt has also been observed in
supervised learning (Ash & Adams, 2020).

In some scenarios, a cause of plasticity loss has been attributed to the accumulation of dead units
(Sokar et al., 2023; Lyle et al., 2023; Abbas et al., 2023; Dohare et al., 2021). These works have
shown that under rapid shifts in training distribution, neural network activations can collapse to a
region where the gradient is 0. Although ReLU activation seems to amplify the phenomenon, it
has also been observed for various activation functions that have a saturated regime (Dohare et al.,
2021). Simple solutions such as resetting the dead units (Sokar et al., 2023) or concatenating ReLU
activations (Abbas et al., 2023) have proven effective to mitigate the issue.

Sparsity Induced by Stochasticity. Work by Pesme et al. (2021); Vivien et al. (2022) studied the
impact of Stochastic Gradient Descent’s (SGD) noise on training, following empirical observations
that SGD can be beneficial to generalization over Gradient Descent (GD) (Keskar et al., 2017; Masters
& Luschi, 2018). The noise structure of SGD (Wojtowytsch, 2023; Pillaud-Vivien, 2022) plays a key
role in their observations.

Pruning. Pruning is used to reduce the size and complexity of neural networks by removing redundant
or less important elements, be they neurons or weights while maintaining their performance (LeCun
et al., 1989). Recent advances such as those based on the Lottery Ticket Hypothesis (Frankle &
Carbin, 2019) have demonstrated the existence of subnetworks trainable to comparable performance
as their dense counterpart but with fewer parameters. Pruning techniques can broadly be categorized
into two groups: structured pruning and unstructured pruning.

Structured pruning aims to remove entire structures within a network, such as channels, filters, or
layers. It results in smaller and faster models that maintain compatibility with existing hardware
accelerators and software libraries (Wen et al., 2016; Li et al., 2017). We highlight and benchmark
against recent works that use criteria based on gradient flow to evaluate which nodes to prune
(Verdenius et al., 2020; Wang et al., 2020; Rachwan et al., 2022). Other works employed either L0 or
L1 regularization on gate parameters (or batch normalization scaling parameters) to enforce sparsity
(Liu et al., 2017; Louizos et al., 2018; You et al., 2019), but we do not benchmark them as they are
outperformed by Rachwan et al. (2022).

2

Under review as a conference paper at ICLR 2024

Unstructured pruning, on the other hand, focuses on removing individual weight from the network
(LeCun et al., 1989; Han et al., 2016b). This approach often leads to higher compression rates
but requires specialized hardware or software implementations for efficient execution due to the
irregularity of the resulting sparse models (Han et al., 2016a). One notable method in unstructured
pruning is magnitude-based pruning (Han et al., 2015), where weights with magnitudes below a
certain threshold are removed. More recent approaches include dynamic sparse training methods
such as RigL (Evci et al., 2020; Lasby et al., 2023) and SNFS (Dettmers & Zettlemoyer, 2019), which
iteratively prune and regrow connections during training based on their importance.

Regularization-based pruning has been popular for both structured and unstructured pruning, with
canonical papers employing L0 or L1 regularization to induce sparsity directly (Louizos et al., 2018;
Liu et al., 2017; Ye et al., 2018) while L2 can help identify the connections to prune with the smallest
weight criterion (Han et al., 2015). Because uniform regularization can quickly degrade performance
(Wen et al., 2016; Lebedev & Lempitsky, 2016), Ding et al. (2018) and Wang et al. (2019) proposed
to adapt the regularization for different parameter groups. Recently, Wang et al. (2021) showed that
growing the L2 regularization can leverage Hessian information to identify the filters to prune in
pre-trained networks.

3 NEURAL DEATH: AN ANALYSIS

In this section, we study the phenomenon of dead neurons accumulation during training in deep
neural networks. Our aim is to provide theoretical insights into this phenomenon and investigate how
various training heuristics and hyperparameters affect neuron mortality.

Given a deep neural network and a set of n training data samples, we denote by aℓj ∈ Rn the vector
of activations of the jth neuron in layer ℓ for each training input. We adopt the following definition
of a “dead neuron” throughout the paper:

Definition: The j-th neuron in layer ℓ is inactive if it consistently outputs zero on the entire training
set, i.e aℓj = 0.1 A neuron that becomes and remains inactive during training is considered as dead. 2

0 10000 20000 30000 40000 50000 60000

Training Step

0

250

500

750

1000

1250

1500

1750

2000

D
ea

d
N

eu
ro

n
s Activation - Learning rate

Swish - 0.05

Swish - 0.01

Leaky ReLU - 0.05

Leaky ReLU - 0.01

ReLU - 0.05

ReLU - 0.01

Figure 1: Dead neurons accumulation for a ResNet-
18 trained on CIFAR-10.

Many modern architectures use activations func-
tions with a saturation region that includes 0
at its boundary. In this case, when a neuron
becomes inactive during training, its incoming
weights also receive zero or very small gradi-
ents, which makes it difficult for the neuron to
recover. In this paper, we mostly work with the
Rectified Linear Unit (ReLU) activation func-
tion, σ(x) = max(0, x). In this case, the ac-
tivity of a neuron depends on the sign of the
corresponding pre-activation feature.

The network with parameter w is trained to min-
imize the training loss L(w) = 1

n

∑n
i=1 ℓi(w),

where ℓi(w) is the loss function on sample i,
using stochastic gradient descent (SGD) based methods. At each iteration, this requires an estimate of
the loss gradient g(w) := ∇L(w), obtained by computing the mean gradient on a random minibatch
b ⊂ {1 · · ·n}. For simple SGD with learning rate η, the update rule takes the form

wt+1 = wt − ηĝ(wt, bt), ĝ(w, b) :=
1

|b|
∑
i∈b

∇ℓi(w). (1)

3.1 NEURONS DIE DURING TRAINING

We begin with some empirical observations. Using the above definition with a fixed thresholding
parameter (ϵ = 0.01), we monitor the accumulation of dead neurons during training of a Resnet-18

1In practice, especially for non-ReLU activation functions, we will be using the notion of ϵ-inactivity, defined
by the condition |aℓ

i | < ϵ, for some threshold parameter ϵ.
2For convolutional layers, we treat the filters as neurons, see Appendix A

3

Under review as a conference paper at ICLR 2024

0 10000 20000 30000 40000
Steps

0

100

200

300
D

ea
d

N
eu

ro
n

s

Learning Rate

0.01

0.025

0.05

(a) SGD noise

0 10000 20000 30000 40000
Steps

0

5

10

15

20

D
ea

d
N

eu
ro

n
s

Learning Rate

0.01

0.025

0.05

(b) Gaussian noise

0 10000 20000 30000 40000
Steps

0

100

200

300

400

D
ea

d
N

eu
ro

n
s

Learning Rate

0.05

0.075

0.1

(c) SGD

Figure 2: A 3-layer MLP trained over a subset on MNIST. (a) The noisy part of the minibatch gradient
is isolated and used exclusively to update the NN. It shows that noisy updates are sufficient to kill
a subset of neurons following standard initialization. Because SGD gradient is 0 for dead neurons,
there is an asymmetry: only live neurons are subject to noisy updates. (b) In contrast, Gaussian
noise does not share the same assymmetry as SGD noise and is much less prone to dead neuron
accumulation (Gaussian noise can revive neurons, contrary to SGD noise). (c) Standard SGD. Dead
neurons accumulate quickly in noisy settings, but they plateau when the NN converges (leading to
zero gradient). Results are averaged over 3 seeds.

(He et al., 2016) on CIFAR-10 (Krizhevsky et al., 2009) with the Adam optimizer (Kingma & Ba,
2015), with various learning rates and different choices of activation functions. We use a negative
slope of α = 0.05 for Leaky ReLU, and a β = 1 for Swish.

Results are shown in Fig.1. We observe a sudden sharp increase in the number of inactive neurons at
the beginning of training; few of these recover later in training (see Appendix C). Overall, this leads
a significant portion of the 3904 neurons/filters in the convolutional layers of the ResNet-18 to die
during training, especially with a high learning rate. Note that this phenomenon is not specific to
ReLU activations.

Intuition. Similar to Maxwell’s demon thought experiment (Maxwell, 1872), one can picture a
playful being, ReLUcifer, overseeing a boundary in the weight space that demarcates active and
inactive neuron regions. Neurons can move freely within the active zone, but entering the inactive
region – where all movement is impeded – is a one-way process governed by ReLUcifer. If the
neuron’s movements include random components, a risk of inadvertent crossover appears. This risk
would be influenced by various factors: noise from the data, being too close to the border, and taking
imprudent gradient steps that are too large. Once in the inactive zone, neurons can only be reactivated
if the boundary itself shifts. This asymmetry makes it more likely for neurons to die than to revive.

This analogy can be formalized as a biased random walk, an exercise that we touch upon in Appendix
B. It also motivates further exploration into how the stochastic nature of various optimizers – related
in particular to learning rate and batch size (He et al., 2019; Smith et al., 2018) — contributes to the
accumulation of dead neurons in neural networks.

Role of noise. Although not all saturated units are due to noise, an important question is how much
can noise contribute to neuron death. We argue that noisy training can significantly contribute to
dead neuron accumulation. To verify that noise in itself is enough to kill neurons, we trained a 3
layers-deep MLP (of size 100-300-10) on a subset of 10 000 images of MNIST dataset. To isolate the
noise from a minibatch (of size 1) gradient (ĝ(wt

j)) we deduced from it the full gradient (g(wt
j)).

Figure 2 shows that noise can indeed contribute to dead neuron accumulation and that we should not
expect that every neuron dying during training did so because of their individual gradient pointing
toward the dead region. We also compare with different noisy regimes to illustrate that the noise
structure of SGD plays an important role in the final amount of dead neurons.

4

Under review as a conference paper at ICLR 2024

3.2 TRAINING HYPERPARAMETERS IMPACT ON DYING RATIOS

We close this section by testing empirically some of the implications of the above discussions. The
main goal is to quantify the impact of hyperparameters on the ratio of dead neurons. The setup is the
same as in Section 3.1. Additional training details can be found J.1.

Learning rate and batch size. Our simple model expose a link between learning rate, batch size,
and dying probability: by influencing the noise variance of the optimizer updates, they both should
impact the ratios of dying neurons. This prediction proves accurate, as depicted in Fig. 3.

Regularization. Regularization is a popular strategy to control the volume of the solution space
that ML optimizers can reach. It restrains the model capacity by favoring solutions with smaller
norms, i.e. solutions that are closer to the origin. We remark that for a NN having ReLU activations,
wt

j = 0 is a point that belongs to the dead region, likewise for the points where all parameters of a
neuron are negative, ensuring ReLU(wjx

T
l) = 0 (since xi

l >= 0, that is the layer inputs are always
positive in ReLU networks).

Even if we do not know where the actual death border lies in parameter space, getting closer to the
origin is expected to bring a neuron closer to it. According to our model, the neuron should become
more likely to die by doing so. As such, regularization can also be an important factor influencing
dead neuron accumulation, as empirically demonstrated in Fig. 10.

0.01 0.025 0.05 0.075 0.1

Learning Rate

0.0

0.5

1.0

1.5

2.0

2.5

D
ea

d
N

eu
ro

n
s

V
ar

ia
ti

on

16.0 32.0 64.0 128.0 256.0

Batch Size
0.0 5e-07 5e-06 5e-05 0.0005

Regularization (λ)

Figure 3: Varying the hyperparameters of a ResNet-18 (CIFAR-10) impacts the number of dead
neurons. For the learning rate and batch size histogram, we varied around the combination learning
rate 0.05, batch size 128 and λ=0, which on average led to 388 neurons at the end of training. The
bar heights indicate the multiplicative ratio of dead neurons with respect to this base configuration.
For regularization, we started with learning rate 0.005, batch size 128 and λ = 5× 10−7 (1257 final
dead neurons). For the batch size variation, we kept the number of training steps constant for a fair
comparison. Quantities are averaged over 3 random seeds.

Optimizer. The choice of optimizer inevitably influences the final count of dead neurons post-
training, by altering the effective learning rate per parameter. We observed a notable discrepancy
when using the ADAM optimizer (Kingma & Ba, 2015) as opposed to SGD with momentum (refer to
figure 10). As also highlighted by Lyle et al. (2023), we hypothesize that this discrepancy is primarily
attributed to the specific selection of hyperparameters for the ADAM optimizer (β1, β2, ϵ), which
significantly impacts neuron death. We further discuss this in Appendix E).

4 PRUNING METHOD

The observations collected have a direct application for structured pruning: removing the dead
neurons arising during the training process. This simple pruning criterion comes with the main
advantage of requiring no additional overhead for its implementation. It only requires monitoring the
activation outputs, already computed by the forward pass during training.

5

Under review as a conference paper at ICLR 2024

From the previous section, we know that neuron sparsity can be influenced by the learning rate,
the batch size, the optimizer, and regularization strength. However, the optimizer choice is usually
a design choice, while varying the learning rate and the batch size can cause instability during
optimization (Cohen et al., 2021). Moreover, performing a grid search over all those hyperparameters
would be costly, defeating the purpose of pruning the network during training for acceleration
purposes. The possibility to do so however remains if the intent is to maximize sparsity at inference.
In the rest, for its simplicity and convenience, we decide to resort to controlling the regularization
strength as a mechanism to control sparsity. This choice is backed by the works of Wang et al. (2019)
and Wang et al. (2021) that demonstrated the potential of L2 regularization for structured pruning.
While similar in spirit, there are notable differences between ours and their approaches:

1. Their methods are for doing structured pruning on a pre-trained NN, while the method we
propose is for structured pruning during the initial training phase, recovering a sparse NN
directly after. As such, the analysis to justify their methods relies on the solution properties
at convergence. The justification we provide for our method relies on its observed impact on
the training dynamics.

2. Wang et al. (2021) uses L2 regularization to exploit the underlying Hessian information, and
they use L1-norm as a pruning criterion. We use regularization to promote neuron death
during training and the criterion for pruning is neural activity.

Our approach to pruning intersects with existing criteria, such as saliency (Molchanov et al., 2016)
– dead neurons have a null gradient and would be picked up by this criterion. However, there is
a significant shift in pruning methodology: our method influences the learning dynamics to learn
sparser solutions. The need to score individual neurons for ablation is removed, observing neuron
activations during the forward pass is sufficient to recover the generated sparse subnetwork. We
named our method Demon’s Pruning (DemP), drawing from the analogy that inspired our work and
alluding to the method’s darker aspect, namely, the anticipation of neural death. DemP is derived
from the interplay of a single hyperparameter – regularization – and dead neurons as measured in
section 3. The interplay with the other hyperparameters is not leveraged by DemP, leaving space for
a broader exploration of new methods that act on the learning dynamics to retrieve sparser solutions.
We now describe the specifics of our pruning method.

Dynamic Pruning. To realize computational gain during training, we prune dynamically the NN at
every k steps (with a default of k = 1000). Dead neurons end up removed almost as they appear, not
giving them any chance to be revived. This strategy allows to speed up the training with no significant
change in performance (see Appendix H.1). Additionally, it removes the need for choosing correctly
when to prune Wang et al., 2021; Rachwan et al., 2022: neurons die by themselves during training
and can be removed safely without degrading the current and future performance (Fig. 13). The need
for iterative pruning (Verdenius et al., 2020) also becomes unnecessary since pruning is not done in a
single shot anymore, but instead happens gradually during the early training phase. We note that this
smooth gradual pruning process is compatible with our approach in part because there is no added
cost for computing the pruning criterion.

Dead Criterion Relaxation. The definition we choose for a dead neuron asks for it to be inactive to
the entire dataset. In practice, we found that this criterion could be relaxed and defaulted to using
1024 examples from the training dataset to measure the death state (making the measurement across
multiple minibatches when necessary). Fig. 14 shows that using this proxy for tracking dead neurons
is sufficient.

Regularization Schedule. Because we noticed that neurons tend to die in the early phase of training,
we gradually decay the regularization parameter over the course of training, possibly allowing the
remaining neurons to recover from the earlier high regularization. Empirically, we found that using a
one-cycle scheduler for the regularization parameter (λ) is a good strategy (Appendix H.3).

Weight Decay. Our method defaults back to traditional regularization, with a term added directly to
the loss, as opposed to the weight decay scheme proposed by Loshchilov & Hutter (2019). By doing
so, the adaptive term in optimizers takes into account regularization, and neurons move more quickly
toward their death border. From a pruning perspective, it allows to achieve higher sparsity than weight
decay for the same regularization strength. This is desirable because regularization affects noticeably
the performance at high values.

6

Under review as a conference paper at ICLR 2024

50 60 70 80 90
Neuron Sparsity

0.850

0.875

0.900

0.925

T
es

t
A

cc
u

ra
cy

CroPit-S

EarlyCroP-S

EarlySNAP

SNAP

DemP-L2

(a)

75 80 85 90 95 100
Weight Sparsity

0.90

0.92

T
es

t
A

cc
u

ra
cy

CroPit-S

EarlyCroP-S

EarlySNAP

SNAP

DemP-L2

(b)

Figure 4: For ResNet-18 networks on CIFAR-10 trained with ADAM, DemP can find sparser solutions
maintaining better performance than other structured approaches. Left: Neural sparsity, structured
methods. Right: Weight sparsity, structured methods.

50 60 70 80 90
Neuron Sparsity

0.7

0.8

0.9

T
es

t
A

cc
u

ra
cy

CroPit-S

EarlyCroP-S

EarlySNAP

SNAP

DemP-L2

(a)

75 80 85 90 95 100
Weight Sparsity

0.6

0.7

0.8

0.9

T
es

t
A

cc
u

ra
cy

CroPit-S

EarlyCroP-S

EarlySNAP

SNAP

DemP-L2

(b)

Figure 5: The results on VGG-16 networks trained with ADAM on CIFAR-10. DemP better maintains
performance at higher sparsities than other structured approaches. Left: Neural sparsity, structured
methods. Right: Weight sparsity, structured methods.

5 EMPIRICAL EVALUATION

We focus our experiments on computer vision tasks, which is standard in pruning literature (Gale
et al., 2019). We train ResNet-18 and VGG-16 netowrks on CIFAR-10, and ResNet-50 networks
on ImageNet (He et al., 2016; Simonyan & Zisserman, 2015; Krizhevsky et al., 2009; Deng et al.,
2009). We follow the training regimes from Evci et al. (2020) for ResNet architectures and use a
setting similar to Rachwan et al. (2022) for the VGG to broaden the scope of our experiments. More
details are provided in Appendix J.

Our method is a structured one, removing entire neurons at a time. The pruning happens during
training, going from a dense network to a sparse one. The methods we compare with also fall into
this paradigm, excluding methods like Lasby et al. (2023) which achieves impressive performance,
but remains essentially unstructured pruning followed by structured reorganization. We employ the
following structured pruning baselines: Crop-it/EarlyCrop (Rachwan et al., 2022), SNAP (Verdenius
et al., 2020) and a modified version using the early pruning strategy from Rachwan et al. (2022)
(identified as EarlySNAP). The baselines were trained using the recommended configuration of the
original authors, and are not subjected to the regularization schedule employed by our method. In all
scenarios, our method matches or outperforms those other structured pruning methods (Fig. 4, 5, 6, 7,
and Table 1).

We included results from Lee et al. (2023) and Evci et al. (2020) in Table 1 to better illustrate the trade-
off between structured and unstructured pruning methods. While unstructured methods currently
offer more potential to maintain performance at higher parameter sparsity, structured methods offer
direct speedup advantages.

7

Under review as a conference paper at ICLR 2024

50 60 70 80
Neuron Sparsity

0.65

0.70

0.75

T
es

t
A

cc
u

ra
cy

EarlyCroP-S

EarlySNAP

DemP-L2

(a)

75 80 85 90
Weight Sparsity

0.650

0.675

0.700

0.725

0.750

T
es

t
A

cc
u

ra
cy

EarlyCroP-S

EarlySNAP

DemP-L2

(b)

Figure 6: DemP also outperforms other structured approaches for ResNet-50 networks trained with
ADAM on ImageNet, identifying more neurons that can be removed without degrading performance.
SNAP and CroPit-S are excluded since they underperform considerably in this setting (see Table 1).
Left: Neural sparsity, structured methods. Right: Weight sparsity, structured methods.

50 60 70 80 90
Neuron Sparsity

0.80

0.85

0.90

T
es

t
A

cc
u

ra
cy

EarlyCroP-S

EarlySNAP

SNAP

DemP-L2

(a)

75 80 85 90 95 100
Weight Sparsity

0.82

0.84

0.86

0.88

0.90

T
es

t
A

cc
u

ra
cy

EarlyCroP-S

EarlySNAP

SNAP

DemP-L2

(b)

Figure 7: ResNet-18 networks with Leaky ReLU trained on CIFAR 10. DemP again outperforms
the baseline structured pruning methods. Left: Neural sparsity, structured methods. Right: Weight
sparsity, structured methods.

Leaky ReLU. Dead neurons, and thus the pruning mechanism behind our method, are naturally
defined with ReLU activation functions, in which neurons can completely deactivate. However,
multiple activation functions, such as Leaky ReLU (Maas et al., 2013), also exhibit a “soft” saturated
region. We postulate that neurons firing solely from the saturated region do not contribute much to
the predictions and can be considered almost dead. We test this hypothesis by employing our method
in a network with Leaky ReLU activations (Fig. 7), removing neurons with only negative activation
across a large minibatch. Again, our method is able to outperform other structured methods.

6 CONCLUSION

In this work, we have revealed how stochasticity can lead to sparsity in neural networks optimized
with SGD-like methods. We have empirically demonstrated—and elucidated intuitively—how factors
such as learning rate, batch size, and regularization, along with architectural and optimizer choices,
collectively impact the sparsity of trained neural networks by influencing the number of neurons
that die throughout the learning process. We highlighted that such effects, indicative of a loss in
plasticity, can paradoxically be advantageous in a supervised learning setting, contrasting sharply
with continual and reinforcement learning settings where they are deemed detrimental. Exemplifying
this, we showed how the relationship between regularization and dead neurons can be leveraged to
devise a simple yet effective pruning method.

This simplicity makes us confident to be able to adapt the method to a variety of situations. To make
it compatible with settings specifying the desired level of sparsity in advance, we could continuously

8

Under review as a conference paper at ICLR 2024

Table 1: Comparison between different criteria when pruning a ResNet-50 trained on ImageNet
around 80% (first line) and 90% (second line) weight sparsity. Because structured pruning methods
do not have precise control of weight sparsity, we reported the numbers closest to these target values
that we have obtained. ± indicates the standard deviation, computed from 3 seeds for the structured
methods. The sparsity numbers indicate the removed ratio.

Method Test
accuracy

Neuron
sparsity

Weight
sparsity

Training
speedup

Training
FLOPs

Inference
FLOPs

Dense 74.98% ±0.08 - - 1.0x 1.0x (3.15e18) 1.0x (8.2e9)

St
ru

ct
ur

ed

SNAP
28.28% ±0.08 36.9% 81.4% 0.51x 0.32x 0.32x

27.17% ±0.07 56.0% 90.1% 0.48x 0.25x 0.25x

CroPit-S
28.34% ±0.52 36.9% 81.4% 0.52x 0.32x 0.32x

27.36% ±0.16 53.2% 89.9% 0.47x 0.27x 0.27x

EarlySNAP
68.67% ±0.15 51.70% 80.37% 0.95x 0.63x 0.63x

63.80% ±0.58 66.6% 90.06% 0.75x 0.46x 0.45x

EarlyCroP-S
68.26% ±0.31 51.60% 79.97% 0.94x 0.66x 0.66x

64.20% ±0.27 66.6% 90.37% 0.82x 0.51x 0.50x

DemP-L2
71.52% ±0.09 61.83% 80.13% 0.81x 0.57x 0.49x

66.34% ±0.16 74.1% 89.93% 0.61x 0.42x 0.34x

Dense† 76.67% - - - - -

Dense* 76.8 ±0.09 % - - - 1.0x (3.2e18) 1.0x (8.2e9)

U
ns

tr
uc

tu
re

d Mag† 75.53% - 80% - - -

Sal† 74.93% - 80% - - -

SET*
72.9%±0.39 - 80% - 0.23x 0.23x

69.6%±0.23 - 90% - 0.10x 0.10x

RigL (ERK)*
75.10%±0.05 - 80% - 0.42x 0.42x

73.00%±0.04 - 90% - 0.25x 0.24x
†values obtained from Lee et al. (2023)
*values obtained from Evci et al. (2020)

increase regularization before cutting it off at the target ratio. It is also easy to extend existing
pruning methods with it. Multiple pruning criteria will better identify the parameters to prune if they
belong to a dead neuron. Unstructured methods could leverage the added structure sparsity of high
regularization to achieve better computational gains.

Moreover, our experiments with Leaky ReLU exemplify that the methodology is compatible with
activation functions that feature a softer saturation region than ReLU. This opens up the possibility to
sparsify transformer architectures (Vaswani et al., 2017) during training since they commonly rely
on activation functions such as GELU and Swish. Due to the model sizes involved in their typical
training regimes, the computational gains and environmental benefits of applying our methodology
there could be considerable.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C. Machado. Loss of plasticity
in continual deep reinforcement learning. CoRR, abs/2303.07507, 2023. doi: 10.48550/arXiv.2303.
07507.

Abien Fred Agarap. Deep learning using rectified linear units (relu). CoRR, abs/1803.08375, 2018.

Naman Agarwal, Rohan Anil, Elad Hazan, Tomer Koren, and Cyril Zhang. Disentangling adaptive
gradient methods from learning rates. CoRR, abs/2002.11803, 2020.

Russell W. Anderson. Chapter 7 - biased random-walk learning: A neurobiological correlate to
trial-and-error. In Neural Networks and Pattern Recognition, pp. 221–244. Academic Press, San
Diego, 1998. ISBN 978-0-12-526420-4. doi: https://doi.org/10.1016/B978-012526420-4/50008-2.

Jordan T. Ash and Ryan P. Adams. On warm-starting neural network training. In Advances in Neural
Information Processing Systems, NeurIPS 2020, 2020.

Tudor Berariu, Wojciech Czarnecki, Soham De, Jorg Bornschein, Samuel Smith, Razvan Pascanu, and
Claudia Clopath. A study on the plasticity of neural networks. arXiv preprint arXiv:2106.00042,
2021.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang.
JAX: composable transformations of Python+NumPy programs, 2018.

Xiang Cheng, Dong Yin, Peter Bartlett, and Michael Jordan. Stochastic gradient and Langevin
processes. In Proceedings of the 37th International Conference on Machine Learning, volume 119
of Proceedings of Machine Learning Research, pp. 1810–1819. PMLR, 13–18 Jul 2020.

Jeremy Cohen, Simran Kaur, Yuanzhi Li, J. Zico Kolter, and Ameet Talwalkar. Gradient descent
on neural networks typically occurs at the edge of stability. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA, pp. 248–255. IEEE
Computer Society, 2009. doi: 10.1109/CVPR.2009.5206848.

Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training without losing
performance. CoRR, abs/1907.04840, 2019.

Xiaohan Ding, Guiguang Ding, Jungong Han, and Sheng Tang. Auto-balanced filter pruning for
efficient convolutional neural networks. In Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence
(IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-
18), New Orleans, Louisiana, USA, February 2-7, 2018, pp. 6797–6804. AAAI Press, 2018. doi:
10.1609/aaai.v32i1.12262.

Shibhansh Dohare, A. Rupam Mahmood, and Richard S. Sutton. Continual backprop: Stochastic
gradient descent with persistent randomness. CoRR, abs/2108.06325, 2021.

Erich Elsen, Marat Dukhan, Trevor Gale, and Karen Simonyan. Fast sparse convnets. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 14629–14638, 2020.

Utku Evci. Detecting dead weights and units in neural networks. CoRR, abs/1806.06068, 2018.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine
Learning Research, pp. 2943–2952. PMLR, 2020.

10

Under review as a conference paper at ICLR 2024

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net, 2019.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. CoRR,
abs/1902.09574, 2019.

Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. Sparse gpu kernels for deep learning.
In SC20: International Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1–14. IEEE, 2020.

Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections for
efficient neural network. In Advances in Neural Information Processing Systems 28: Annual
Conference on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal,
Quebec, Canada, pp. 1135–1143, 2015.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz, and William J.
Dally. EIE: efficient inference engine on compressed deep neural network. In 43rd ACM/IEEE
Annual International Symposium on Computer Architecture, ISCA 2016, Seoul, South Korea, June
18-22, 2016, pp. 243–254. IEEE Computer Society, 2016a. doi: 10.1109/ISCA.2016.30.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding. In 4th International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, 2016b.

Fengxiang He, Tongliang Liu, and Dacheng Tao. Control batch size and learning rate to generalize
well: Theoretical and empirical evidence. In Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, pp. 1141–1150, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 770–778. IEEE Computer Society, 2016. doi:
10.1109/CVPR.2016.90.

Peter Henderson, Jieru Hu, Joshua Romoff, Emma Brunskill, Dan Jurafsky, and Joelle Pineau.
Towards the systematic reporting of the energy and carbon footprints of machine learning. The
Journal of Machine Learning Research, 21(1):10039–10081, 2020.

Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities and stochastic regularizers with gaussian
error linear units. CoRR, abs/1606.08415, 2016.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Combining
improvements in deep reinforcement learning. In Proceedings of the Thirty-Second AAAI Confer-
ence on Artificial Intelligence, (AAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pp.
3215–3222. AAAI Press, 2018.

Ioannis Karatzas and Steven E Shreve. Brownian motion and stochastic calculus. Springer New York,
NY, 2014.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015.

11

Under review as a conference paper at ICLR 2024

James Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz, Joel Veness, Guillaume Desjardins, An-
drei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis
Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic
forgetting in neural networks. CoRR, abs/1612.00796, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quantifying the
carbon emissions of machine learning. CoRR, abs/1910.09700, 2019.

Mike Lasby, Anna Golubeva, Utku Evci, Mihai Nica, and Yani A. Ioannou. Dynamic sparse training
with structured sparsity. CoRR, abs/2305.02299, 2023. doi: 10.48550/arXiv.2305.02299.

Vadim Lebedev and Victor S. Lempitsky. Fast convnets using group-wise brain damage. In 2016
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA,
June 27-30, 2016, pp. 2554–2564. IEEE Computer Society, 2016. doi: 10.1109/CVPR.2016.280.

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In Advances in Neural
Information Processing Systems 2, [NIPS Conference, Denver, Colorado, USA, November 27-30,
1989], pp. 598–605. Morgan Kaufmann, 1989.

Joo Hyung Lee, Wonpyo Park, Nicole Mitchell, Jonathan Pilault, Johan S. Obando-Ceron, Han-Byul
Kim, Namhoon Lee, Elias Frantar, Yun Long, Amir Yazdanbakhsh, Shivani Agrawal, Suvinay Sub-
ramanian, Xin Wang, Sheng-Chun Kao, Xingyao Zhang, Trevor Gale, Aart J. C. Bik, Woohyun Han,
Milen Ferev, Zhonglin Han, Hong-Seok Kim, Yann Dauphin, Karolina Dziugaite, Pablo Samuel
Castro, and Utku Evci. Jaxpruner: A concise library for sparsity research. 2023.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692, 2019.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning
efficient convolutional networks through network slimming. In IEEE International Conference on
Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017, pp. 2755–2763. IEEE Computer
Society, 2017. doi: 10.1109/ICCV.2017.298.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.

Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural networks through
l 0 regularization. 2018.

Lu Lu, Yeonjong Shin, Yanhui Su, and George Em Karniadakis. Dying relu and initialization: Theory
and numerical examples. arXiv preprint arXiv:1903.06733, 2019.

Clare Lyle, Mark Rowland, and Will Dabney. Understanding and preventing capacity loss in
reinforcement learning. In International Conference on Learning Representations, 2022.

Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Ávila Pires, Razvan Pascanu, and Will Dabney.
Understanding plasticity in neural networks. In International Conference on Machine Learning,
ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine
Learning Research, pp. 23190–23211. PMLR, 2023.

Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier nonlinearities improve neural
network acoustic models. In in ICML Workshop on Deep Learning for Audio, Speech and
Language Processing, 2013.

Dominic Masters and Carlo Luschi. Revisiting small batch training for deep neural networks. CoRR,
abs/1804.07612, 2018.

12

Under review as a conference paper at ICLR 2024

J.C. Maxwell. Theory of Heat. Textbooks of science. Longmans, Green, and Company, 1872. ISBN
9780598862662.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient transfer learning. CoRR, abs/1611.06440, 2016. URL
http://arxiv.org/abs/1611.06440.

Bernt Karsten Oksendal. Stochastic differential equations: an introduction with applications. 6th
edition. Springer Berlin, Heidelberg, 2010.

Scott Pesme, Loucas Pillaud-Vivien, and Nicolas Flammarion. Implicit bias of sgd for diagonal
linear networks: a provable benefit of stochasticity. In Advances in Neural Information Processing
Systems, volume 34, pp. 29218–29230. Curran Associates, Inc., 2021.

Loucas Pillaud-Vivien. Rethinking sgd’s noise. https://francisbach.com/
implicit-bias-sgd/, 2022. Accessed: 2023-08-26.

John Rachwan, Daniel Zügner, Bertrand Charpentier, Simon Geisler, Morgane Ayle, and Stephan
Günnemann. Winning the lottery ahead of time: Efficient early network pruning. In International
Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA,
volume 162 of Proceedings of Machine Learning Research, pp. 18293–18309. PMLR, 2022.

Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation functions. In 6th
International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Workshop Track Proceedings. OpenReview.net, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Leslie N. Smith and Nicholay Topin. Super-convergence: Very fast training of neural networks using
large learning rates, 2018.

Samuel L. Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V. Le. Don’t decay the learning rate,
increase the batch size. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net,
2018.

Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron phe-
nomenon in deep reinforcement learning. In International Conference on Machine Learning, ICML
2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning
Research, pp. 32145–32168. PMLR, 2023.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
learning in NLP. In Proceedings of the 57th Conference of the Association for Computational
Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pp.
3645–3650. Association for Computational Linguistics, 2019. doi: 10.18653/v1/p19-1355.

Ludovic Trottier, Philippe Giguere, and Brahim Chaib-Draa. Parametric exponential linear unit for
deep convolutional neural networks. In 2017 16th IEEE international conference on machine
learning and applications (ICMLA), pp. 207–214. IEEE, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008, 2017.

Stijn Verdenius, Maarten Stol, and Patrick Forré. Pruning via iterative ranking of sensitivity statistics.
CoRR, abs/2006.00896, 2020.

Loucas Pillaud Vivien, Julien Reygner, and Nicolas Flammarion. Label noise (stochastic) gradient
descent implicitly solves the lasso for quadratic parametrisation. In Proceedings of Thirty Fifth
Conference on Learning Theory, volume 178 of Proceedings of Machine Learning Research, pp.
2127–2159. PMLR, 02–05 Jul 2022.

13

http://arxiv.org/abs/1611.06440
https://francisbach.com/implicit-bias-sgd/
https://francisbach.com/implicit-bias-sgd/

Under review as a conference paper at ICLR 2024

Chaoqi Wang, Guodong Zhang, and Roger B. Grosse. Picking winning tickets before training by
preserving gradient flow. In 8th International Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

Huan Wang, Qiming Zhang, Yuehai Wang, Lu Yu, and Haoji Hu. Structured pruning for efficient
convnets via incremental regularization. In International Joint Conference on Neural Networks,
IJCNN 2019 Budapest, Hungary, July 14-19, 2019, pp. 1–8. IEEE, 2019. doi: 10.1109/IJCNN.
2019.8852463.

Huan Wang, Can Qin, Yulun Zhang, and Yun Fu. Neural pruning via growing regularization. In 9th
International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021. OpenReview.net, 2021.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in deep
neural networks. In Advances in Neural Information Processing Systems 29: Annual Conference
on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pp.
2074–2082, 2016.

Stephan Wojtowytsch. Stochastic gradient descent with noise of machine learning type part I: discrete
time analysis. J. Nonlinear Sci., 33(3):45, 2023. doi: 10.1007/s00332-023-09903-3.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. Association for
Computational Linguistics.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations in
convolutional network. CoRR, abs/1505.00853, 2015.

Jianbo Ye, Xin Lu, Zhe Lin, and James Z. Wang. Rethinking the smaller-norm-less-informative
assumption in channel pruning of convolution layers. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net, 2018.

Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping Wang. Gate decorator: Global filter pruning
method for accelerating deep convolutional neural networks. In Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp. 2130–2141, 2019.

14

Under review as a conference paper at ICLR 2024

A DEAD NEURONS IN CONVOLUTIONAL LAYERS

In convolutional layers, ReLU is applied element-wise to the pre-activation feature map. We consider
an individual neuron (filter) dead if all elements of the feature map post-activation are 0. Formally,

Definition: The j-th neuron/filter in the convolutional layer ℓ is inactive if it consistently outputs a
feature map (post-activation) with elements summing to zero on the entire training set, i.e

∑
k,l F

ℓ
jkl =

0. A neuron/filter that becomes and remains inactive during training is considered as dead.

B BIASED RANDOM WALK MODEL

To formalize the intuition from section 3.1, we follow a standard line of work (Cheng et al., 2020)
taking the view of SGD in Eq. 1 as a biased random walk (Anderson, 1998), described by the
Langevin process,

wt+1 = wt − ηg(wt) +
√
η ξ̂(wt, bt) (2)

where the zero mean variable ξ̂(w, b) :=
√
η (g(w) − ĝ(w, b)) represents the gradient noise. In

the limit of small learning rate, Eq. 2 is well approximated (Cheng et al., 2020, Theorem 2) by the
following stochastic differential equation (SDE),

dwt = −g(wt) +M(wt)dBt, (3)

where Bt denotes a standard Brownian motion and M(w) :=

√
Eb[ξ̂(w, b)ξ̂(w, b)⊤].

A key aspect of the gradient noise in SGD is that it is multiplicative, i.e., it depends on the parameter.
Now, a well-known property of systems with multiplicative noise is that regions of lower noise
magnitude can act as attractors (Oksendal, 2010). Intuitively, this is because the noise pushes the
system away from regions where it has a higher impact, leading to a higher probability of staying
in regions where it has a lower impact. Mathematically, this is characterized by a tendency for the
invariant distribution to have higher probability density in regions of lower noise magnitude.

We illustrate this on a simplified version of Eq. 3, which partially captures the effect we want to
highlight.

Absorbing Brownian motion. We consider a one-dimensional absorbing Brownian motion with a
boundary at zero, which can be described by the SDE:

dwt =

{√
ηdBt as long aswt > 0

0 otherwise
(4)

It models a system subject to noise in an ‘active’ region w > 0, which gets stopped at 0 – and
remains there, hence ‘dies’ – once it hits 0. This illustrative example can be thought of as a simplified
description of a regime where the dynamics (4) is dominated by noise, such as e.g., a neuron encoding
features with very low correlation to the task.

In this case, the probability that the system is still active at time t, i.e wt > 0, is related to the
distribution of the first hitting time at 0 of a standard Brownian motion: it is given by P (T0 > t),
where T0 = inf{t ≥ 0 : Bt = 0}. A well-known property of Brownian motion (Karatzas &
Shreve, 2014) is limt→∞ P (T0 > t) = 0, which shows that the system Eq. (4) eventually dies with
probability 1. More generally, the following result specifies the dependence on initialization:

Proposition 1. Consider the system 4 initialized at w0 > 0. Then the probability that the system is
still active at a given time t > 0 is given by

P (wt > 0 |w0) =

√
2

π

∫ w0/
√
t

0

e
−u2

2η du (5)

Prop. 1 implies that (i) the system eventually dies almost surely, (ii) for any given finite horizon time
t, the smaller the initialization, the more likely the system is dead at t, limw0→0+ P (wt = 0 |w0) = 1.
Finally, the dependence on the scaling η, which represents the learning rate, illustrates how a noisier
environment can accelerate this dying process.

15

Under review as a conference paper at ICLR 2024

C FEW DEAD NEURONS REVIVE

While empirical observations have shown a gradual accumulation of dead neurons (Fig. 1), we
also observed that neurons can revive (Appendix D.1). To better assess the potential impact of
reviving neurons on performance, we measured the overlap ratio (|X ∩ Y |/min(|X|, |Y |)) between
the historical set of dead neurons at previous iterations and the set of dead neurons at the current
iteration. This methodology directly follows Sokar et al. (2023). The results in figure 8 show that
most neurons (over 90%) inactive at any point during training end up dead at the final iteration. This
– coupled with our results showing that dying neurons can be dynamically pruned during training
without impacting performance (Appendix H.1) – strongly suggests that neurons becoming inactive
at any point during training in ReLU networks do not contribute significantly to the final performance
of the trained model.

20000 30000 40000 50000 60000 70000 80000 90000

Training Step

0.80

0.85

0.90

0.95

1.00

D
ea

d
N

eu
ro

n
s

O
ve

rl
ap

Regularization Strength (λ)

0.0001

0.001

1e-05

1e-06

Figure 8: Overlap ratio of dead neurons during training, as measured across all layers of a ResNet-18
trained with ADAM on CIFAR-10 at various regularization strengths. Results are shown for training
steps bigger than 15k because no dead neurons were observed previously for the lowest regularization
strength. We observe that the vast majority (over 85%) of neurons dying early never revive. More
importantly, even if they may have been revived earlier, ≈ 95% of neurons that became inactive at
any point during training are dead when training finishes.

D HYPERPARAMETERS IMPACT, ADDITIONAL RESULTS

D.1 TRAINING TIME

The relation with training time, asserting that the probability of a neuron dying increases as training
progresses (Prop. 1) doesn’t entirely align with practical applications. Modern overparameterized
architectures often have the capacity to memorize the entire training dataset, achieving zero loss in
the process. Given that the gradient signal is proportional to the loss, it would concurrently diminish
to zero for all neurons, preventing any further death.

We observe a pattern consistent with this idea (Fig. 1), where the total count of dead neurons spikes
sharply in early training to then fluctuate slightly before stabilizing. The fluctuations demonstrate
that neurons can indeed revive. However, additional experiments with ReLU networks revealed that
most reviving neurons die again later (Fig. 8) and that their dynamic elimination has negligible to no
impact on performance (Fig. 13).

16

Under review as a conference paper at ICLR 2024

10 20 30 40 50 60

First Layer Width

0.6

0.7

0.8

0.9

1.0

L
iv

e
N

eu
ro

n
s

R
at

io

Optimizer - Learning rate

ADAM - 0.05

ADAM - 0.01

SGDM - 0.3

SGDM - 0.5

(a)

Figure 9: An increased width leads to a higher ratio of neurons dying, independently of the optimizer.
We use the number of channels in the initial layer of the ResNet-18 to indicate the width, with 64
being the typical number of channels in the first convolution layer.

D.2 NETWORK WIDTH

The widths of a neural network’s layers also influence the ratio of live neurons (live neurons to total
neurons in the network) post-training (see figure 9). Typically, this ratio increases with the width;
however, the total number of live neurons continues to rise with increased width. This phenomenon is
somewhat anticipated as incorporating more neurons with random initialization in any given layer can
only amplify the training noise, especially in the initial phase. Moreover, since initialization functions

usually adjust their standard deviation proportionally to the number of channels (σ ∝
√

1
fan in+fan out),

widening the network places neurons closer to their death border right from the initialization. The
connection between width and dead neurons maintains its significance as neural network sizes are
inclined to increase over time with the availability of more computational resources. If this trend
persists, the accumulation of dead neurons could potentially become increasingly pervasive.

D.3 REGULARIZATION

We also experimented with a slightly modified version of L2, that solely regularizes the positive
weights. The intuition behind it was that by regularizing only the positive weights, the average
pre-activation output of a ReLU network would gradually shift toward negative outputs. We dubbed
it the coup de grâce L2 normalization (CDG L2), and describe it further in Appendix F. It proved
more aggressive than classical L2 regularization, except when using batch normalization (BN) layers
with ADAM optimizer (fig.10 and Appendix G).

The particular impact of normalization layers is interesting. Without regularization and with every-
thing else left equal, BN leads to less dead neuron accumulation (Appendix G). But with regularization,
two distinct modalities appear in neuron pre-activations distribution: one centered around 0 and an-
other toward the positive values. Normalization then shifts the mean of this distribution to 0, bringing
the modality that was previously close to the origin on the negative (dead) side. Normalization paired
with regularization can therefore be a very effective strategy for promoting neuron death.

17

Under review as a conference paper at ICLR 2024

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

Regularization parameter (λ)

0.2

0.4

0.6

0.8

1.0

L
iv

e
n

eu
ro

n
s

ra
ti

o

L2

CDG L2

(a)

0.000 0.002 0.004 0.006 0.008 0.010

Regularization parameter (λ)

0.0

0.2

0.4

0.6

0.8

1.0

L
iv

e
n

eu
ro

n
s

ra
ti

o

L2

CDG L2

(b)

Figure 10: Increasing the regularization parameter (λ) quickly increases the number of dead units
that accumulate during training by bringing the neurons closer to their death border. BN was used
in the experiments that generated both figures. Left: When using ADAM optimizer, dead neurons
accumulate more quickly with classical L2 regularization. ADAM is particularly effective for killing
neurons, indicated by the much steeper decrease in live neurons when regularization is increased.
Right: The situation is reversed when using momentum, with CDG L2 generating more dead
neurons.

E ADAM IS A NEURON KILLER

The greater impact of ADAM over the dying ratio compared to momentum must be due to the
second-moment term, which is the only significant difference with momentum. Recall that ADAM
update is (Kingma & Ba, 2015):

mt = β1 ·mt−1 + (1− β1) · gt
vt = β2 · vt−1 + (1− β2) · g2t
m̂t =

mt

1− βt
1

v̂t =
vt

1− βt
2

θt+1 = θt −
η√

v̂t + ϵ
· m̂t

Earlier, we hypothesized that the neurons ending up dead were the ones experiencing very small
gradients, such that the noise dominated their update trajectories. If this is the case, g2t (the squared
gradient) would be very small for those neurons’ parameters, eventually leading to a very small
second-moment estimation v̂t. In such a scenario, ϵ would end up dominating

√
v̂t, effectively

multiplying the learning rate by ϵ which is typically set to 1 × 10−8. Moreover, as the decay
(β2 = 0.99) of v̂t is usually slower than the one of m̂t (β1 = 0.9), a few sudden noisier updates
would be sufficient to make huge random steps.

It is worth noting that RL practitioners typically set epsilon to a higher value (Hessel et al., 2018), as it
has empirically been found to perform better. Higher ϵ values should reduce the number of dead neu-
rons induced by ADAM optimizer, which could be the cause for the improved performance/stability
observed in RL. Also, because of constant distribution shifts, rapid accumulation of dead neurons
often occurs in RL tasks.

Also notable, HuggingFace Transformers library (Wolf et al., 2020) default ϵ ADAM parameter to
1× 10−6, following RoBERTa example (Liu et al., 2019). Manipulating the ϵ parameter of AdaGrad
was also observed to impact significantly a transformer performance model (Agarwal et al., 2020).
Verifying if those heuristic choices are due to their impact on dead neuron accumulation would be
quite interesting.

18

Under review as a conference paper at ICLR 2024

F CDG L2

Although we don’t know where the actual death border lies in a neural network using ReLU, a
unit is certain to be dead (except in the initial layer) if all of its weights are smaller than zero, i.e.
if wi

j <= 0 ∀i. This is because the output of neuron j will then always be negative wjx
T
l since

xi
l >= 0, that is the layer inputs are always positive in ReLU networks.

Therefore, by pushing a neuron’s parameters toward the negative side, we should make it more
probable to die. It is to that end that we introduce the coup de grâce L2 normalization (CDG L2).
Formally, we define it as:

CDG L2 = λ
∑
wi>0

w2
i (6)

It is in essence L2 regularization applied only to the positive weights of the network. The intuition
behind it is that by regularizing only the positive weights, the average pre-activation output of a ReLU
network will gradually shift toward negative outputs. This simple change proved enough to push over
the dead border neurons that otherwise activated sporadically.

G NORMALIZATION LAYERS

To study the impact of normalization layers on dead neurons, we monitored the number of inputs for
which individual neurons were activated after training a NN. The experiences were performed with
a ResNet-18 trained with ADAM on CIFAR-10, making the range for activation count between 0
and 50,000. This allows us to monitor the amount of dead neurons, the ones for which the activation
count is zero. We plotted those results as density histograms. Figure 11 shows the results when using
L2 and CDG L2 with BN layers and in figure 12 we display the results when there are no BN layers
in the network. Dead neurons are the ones belonging to the leftmost bucket.

A first observation is that when BN layers are present, there are more neurons activating for all or
almost all of the entire dataset. This supports our claim that BN layers can help reduce the amount of
dead neurons when everything else is kept equal. But we can also observe that BN layers make the
first modality much more light-tailed, meaning that fewer neurons are activated for a small portion
of the dataset. We believe this is due to the normalization process that puts the distribution mean at
the origin. This brings the entire heavy-tailed, pre-normalized first modality in the negative regions
before ReLU. Thus, when BN layers are used, neurons either activate almost all the time or never
activate. This in turn makes the dead neuron criterion that we use, i.e. neurons that do not activate for
the entire training dataset, particularly appropriate when BN layers are used.

Finally, we also observe that CDG L2 ”drains” the rightmost modality more quickly than L2,
supporting our claim that the CDG variant is generally more aggressive for neuron killing.

H PRUNING METHOD DETAILS

We validate and justify the heuristic choices made for our pruning method via empirical observation
exposed in this section. We used the same setup as before for a ResNet-18 trained on CIFAR-10.

H.1 DYNAMIC PRUNING

To verify the impact of dynamic pruning, we measured if there were any performance discrepancies
when it was enabled or not. Across runs, we varied the regularization strength while measuring
accuracy and sparsity. The results, in figure 13, show that enabling dynamic pruning does not affect
the final performance. The very slight variations between runs fall well between the expected variance
across different runs. This experiment really reinforces the hypothesis that neurons that die and later
revive during training do not contribute significantly to the learning process.

H.2 DEAD CRITERION RELAXATION

To measure if a minibatch could be used to measure the death state instead of the entire dataset,
we tracked the number of dead neurons during training with both metrics. We used a minibatch

19

Under review as a conference paper at ICLR 2024

0.0

1e-06

5e-06

1e-05

5e-05

0.0001

0.0005

0.001

0 10000 20000 30000 40000 50000

0.005

(a)

0.0

1e-06

5e-06

1e-05

5e-05

0.0001

0.0005

0.001

0 10000 20000 30000 40000 50000

0.005

(b)

Figure 11: Histogram of individual neuron’s activation count across the training dataset (CIFAR-10)
for a ResNet-18 with BN layers. Distributions are shown for different values of the regularization
parameter (λ). Regularization increases toward the front, with the specific value indicated on the
far left of the figure. The leftmost modalities are single peaks at 0 when BN layers are present,
indicating that neurons either never activate, or activate almost all the time with normalization. Top:
L2 regularization. Bottom: CDG L2 regularization.

20

Under review as a conference paper at ICLR 2024

0.0

1e-06

5e-06

1e-05

5e-05

0.0001

0.0005

0.001

0.005

0.01

0 10000 20000 30000 40000 50000

0.05

(a)

0.0

1e-06

5e-06

1e-05

5e-05

0.0001

0.0005

0.001

0.005

0.01

0 10000 20000 30000 40000 50000

0.05

(b)

Figure 12: Same experiments as figure 11, but for a ResNet-18 without BN layers. When BN
is removed, the leftmost modalities become more heavy-tailed, indicating that a portion of the
neurons activate very sparsely across the training dataset. Top: L2 regularization. Bottom: CDG L2
regularization.

21

Under review as a conference paper at ICLR 2024

0 20 40 60 80 100

Sparsity Level (%)

0.86

0.88

0.90

0.92

T
es

t
A

cc
u

ra
cy

Dynamic Pruning

False

True

Figure 13: Measuring final accuracy vs. sparsity when dynamic pruning is enabled or not. There are
barely any variations between the two strategies, allowing us to conclude that using dynamic pruning
does not affect performance. Different symbols were associated to different regularization strengths.
Experiment performed with ResNet-18 on CIFAR-10 for 3 seeds.

containing 512 inputs from the training dataset for the proxy measurement. We can see that both
curves closely track each other. More importantly, they match at the end of the training, indicating
that overall the same amount of neurons would be removed when performing the death check over
the minibatch. Dynamic pruning was disabled for this experiment.

H.3 DECAYING THE REGULARIZATION PARAMETER

Finally, we also empirically tested different schedules over the regularization parameter, trying to
mitigate the impact of high regularization by decaying the parameter over the course of the training.
We settled on using a one-cycle scheduler for the regularization strength because of slightly better
performance in the higher sparsity level. However, we remark that even a constant schedule over the
regularization parameter is sound with our method

I ADDITIONAL COMPARISON WITH UNSTRUCTURED METHODS

We employ the JaxPruner package (Lee et al., 2023) to illustrate further trade-off of our method
against some unstructured methods. Our method is capable of achieving similar performance to
unstructured ones for the ResNet-18 and VGG-16 experiments (Fig. 16). The comparisons with
the unstructured methods use their default configuration from JaxPruner, which was tuned for a
ResNet-50. We expect their performance on ResNet-18 and VGG-16 to be improved by tuning
the pruning distribution, the pruning schedule, and the pruning iterations scheme (Lee et al., 2023).
However, for those not interested in expensive tuning, our method becomes an interesting default
choice.

22

Under review as a conference paper at ICLR 2024

0 20000 40000 60000 80000
Training Step

0

500

1000

1500

2000

2500
D

ea
d

N
eu

ro
n

s

Measured over the entire dataset

Measured over 512 examples

Figure 14: Instead of validating the death state of neurons against the entire training dataset, it proves
sufficient to use a smaller dataset. The curves meet at the end of the training, indicating that the
same final number of neurons would be removed for both strategies. Experiment performed with
ResNet-18 on CIFAR-10 for 3 seeds.

J IMPLEMENTATION DETAILS

J.1 RESNET-18/RESNET-50

We mostly followed the training procedure of Evci et al. (2020) for the ResNet architectures.

ResNet-18. We train all networks for 250 epochs using a batch size of 128. The learning rate is
initially set to 0.005 and is thereafter divided by 5 every 77 epochs. We use ADAM optimizer because
it induces higher sparsity. While varying regularization (L2 or CDG L2) is used with our method,
we default to a constant weight decay (0.0005) for all other methods than ours. Random crop and
random horizontal flips are used for data augmentation.

ResNet-50. We trained the ResNet-50 for 100 epochs, with a batch size of 256 instead of 4096. The
initial learning rate is set to 0.005, before being decayed by a factor of 10 at epochs 30, 70, and 90.
Label smoothing (0.1) and data augmentation (random resize to either 256 × 256 or 480 × 480,
before randomly cropping to 224 × 224. Followed by random horizontal flip and input normalization)
are also used. We again use ADAM, vary the regularization with our method but use a constant
weight decay (0.0001) for other methods.

J.2 VGG-16

We followed a training procedure similar to Rachwan et al. (2022). We used ADAM with a learning
rate of 0.005 and a batch size of 256, with the One Cycle Learning Rate scheduler (Smith & Topin,
2018). The networks are trained for 80 epochs. CIFAR-10 images are normalized and resized to 64
× 64 before applying random crop and random horizontal flip for data augmentation.

23

Under review as a conference paper at ICLR 2024

90 92 94 96 98 100

Sparsity Level (%)

0.89

0.90

0.91

0.92

0.93

T
es

t
A

cc
u

ra
cy

Regularization parameter schedule

Constant

One-Cycle

Piecewise Constant

Figure 15: We studied the impact of different schedules over the regularization parameter for our
method, settling down on a one-cycle scheduler as default. Experiment performed with ResNet-18 on
CIFAR-10 across 3 seeds.

75 80 85 90 95 100
Weight Sparsity

0.75

0.80

0.85

0.90

T
es

t
A

cc
u

ra
cy

RigL

SET

Mag

Sal

DemP-L2

(a)

75 80 85 90 95 100
Weight Sparsity

0.825

0.850

0.875

0.900

0.925

T
es

t
A

cc
u

ra
cy

RigL

SET

Mag

Sal

DemP-L2

(b)

Figure 16: At default configuration DemP competes with common unstructured methods for networks
trained on CIFAR-10, especially at high sparsity. Left: Weight sparsity in a ResNet-18. Right:
Weight sparsity in a VGG-16.

J.3 STRUCTURED METHODS

We closely reimplement in JAX (Bradbury et al., 2018) the structured methods from Rachwan et al.
(2022), keeping all the hyperparameters specific to every method as is. The training hyperparameters
are the same as specified in J.1 and J.2.

J.4 UNSTRUCTURED METHODS

For the unstructured methods, we rely on Lee et al. (2023) implementations, using their method’s
configuration for pruning a ResNet-50 for all our experiments. The training hyperparameters are the
same as specified in J.1 and J.2.

24

	Introduction
	Related Works
	Neural Death: An Analysis
	Neurons Die During Training
	Training Hyperparameters Impact on Dying Ratios

	Pruning Method
	Empirical Evaluation
	Conclusion
	Dead neurons in convolutional layers
	Biased Random Walk Model
	Few Dead Neurons Revive
	Hyperparameters Impact, Additional Results
	Training Time
	Network Width
	Regularization

	ADAM is a Neuron Killer
	CDG_L2
	Normalization Layers
	Pruning Method Details
	Dynamic Pruning
	Dead Criterion Relaxation
	Decaying the Regularization Parameter

	Additional Comparison with Unstructured Methods
	Implementation details
	ResNet-18/ResNet-50
	VGG-16
	Structured Methods
	Unstructured Methods

