
A Formal Theoretical Results and Proofs

In this section, we provide formal statements of the theorems presented in the main text of the paper
and show their proofs. This section has several subsections. The first subsection introduces General
RVI Q, which will be used in later subsections. The other six subsections correspond to six theorems
presented in the main text.

A.1 General RVI Q

Wan et al. (2021) extended the family of RVI Q-learning algorithms (Abounadi, Bertsekas, and
Borkar et al. 2001) to prove the convergence of their Differential Q-learning algorithm. Unlike RVI
Q-learning, Differential Q-learning does not require a reference function. We further extend Wan et
al.’s extended family of RVI Q-learning algorithms to a more general family of algorithms, called
General RVI Q. We then prove convergence for this family of algorithms and show that inter-option
algorithms and intra-option value learning algorithms are all members of this family.

We first need the following definitions:

1. a set-valued process {Yn} taking values in the set of nonempty subsets of I with the
interpretation: Yn = {i : ith component of Q was updated at time n},

2. ν(n, i)
.
=
∑n
k=0 I{i ∈ Yk}, where I is the indicator function. Thus ν(n, i) = the number

of times the i component was updated up to step n,
3. i.i.d. random vectors Rn, Gn and Fn for all n ≥ 0 satisfying E [Rn(i)] = r(i), where r is a

fixed real vector, E[Gn(Q)(i)] = g(Q)(i) for any Q ∈ R|I| where g : I → I is a function
satisfying Assumption A.1 and E[Fn(Q)(i)] = f(Q) for any i ∈ I and Q ∈ R|I| where
f : I → R is a function satisfying Assumption A.2.

Assumption A.1. 1) g is a max-norm non-expansion, 2) g is a span-norm non-expansion, 3) g(x+
ce) = g(x) + ce for any c ∈ R, x ∈ R|I|, 4) g(cx) = cg(x) for any c ∈ R, x ∈ R|I|.
Assumption A.2. 1) f is L-Lipschitz, 2) there exists a positive scalar u s.t. f(e) = u and f(x+ce) =
f(x) + cu, 3) f(cx) = cf(x).

Assumption A.3. For n ∈ {0, 1, 2, . . . }, E[‖Rn − r‖2] ≤ K, E[‖Gn(Q)− g(Q)‖2] ≤ K(1 +

‖Q‖2) for any Q ∈ R|I|, and E[‖Fn(Q)− f(Q)e‖2] ≤ K(1 + ‖Q‖2) for any Q ∈ R|I| for a
suitable constant K > 0.

The above assumption means that the variances of Rn, Gn(Q), and Fn(Q) for any Q are bounded.

General RVI Q’s update rule is
Qn+1(i)

.
= Qn(i) + αν(n,i)

(
Rn(i)− Fn(Qn)(i) +Gn(Qn)(i)−Qn(i) + εn(i)

)
I{i ∈ Yn},

(A.1)

where αν(n,i) is the stepsize and εn is a sequence of random vectors of size |I|.
We make following assumption on εn.
Assumption A.4 (Noise Assumption). ‖εn‖∞ ≤ K(1 + ‖Qn‖∞) for some scalar K. Further, εn
converges in probability to 0.

We make following assumptions on αν(n,i).

Assumption A.5 (Stepsize Assumption). For all n ≥ 0, αn > 0,
∑∞
n=0 αn =∞, and

∑∞
n=0 α

2
n <

∞.
Assumption A.6 (Asynchronous Stepsize Assumption A). Let [·] denote the integer part of (·), for
x ∈ (0, 1),

sup
i

α[xi]

αi
<∞

and ∑[yi]
j=0 αj∑i
j=0 αj

→ 1

uniformly in y ∈ [x, 1].
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Assumption A.7 (Asynchronous Stepsize Assumption B). There exists ∆ > 0 such that

lim inf
n→∞

ν(n, i)

n+ 1
≥ ∆,

a.s., for all s ∈ S, o ∈ O. Furthermore, for all x > 0, let

N(n, x) = min

{
m > n :

m∑
i=n+1

αi ≥ x
}
,

the limit

lim
n→∞

∑ν(N(n,x),i)
i=ν(n,i) αi∑ν(N(n,x),i′)
i=ν(n,i′) αi

exists a.s. for all s, s′, o, o′.
Assumption A.8. r(i)− r̄ + g(q)(i)− q(i) = 0,∀i ∈ I has a unique solution for r̄ and a unique
for q only up to a constant.

Denoted the unique solution of r̄ by r∞. Further, it can be seen that the solution of q satisfying both
r − r̄e − g(q) − q = 0 and f(q) = r∞ is unique because our assumption on f (Assumption A.2).
Denote the unique solution as q∞. We have,

f(q∞) = r∞. (A.2)

Theorem A.1. Under Assumptions A.1-A.8, General RVI Q converges, almost surely, Qn to q∞ and
f(Qn) to r∞.

Proof. Because (A.1) is in the same form as the asynchronous update (Equation 7.1.2) by Borkar
(2009), we apply the result in Section 7.4 of the same text (Borkar 2009) (see also Theorem 3.2
by Borkar (1998)) which shows convergence for Equation 7.1.2, to show the convergence of (A.1).
This result, given Assumption A.6 and A.7, only requires showing the convergence of the following
synchronous version of the General RVI Q algorithm:

Qn+1(i)
.
= Qn(i) + αn

(
Rn(i)− Fn(Qn)(i) + g(Qn)(i)−Qn(i)

)
∀i ∈ I. (A.3)

Define operators T1, T2:

T1(Q)(i)
.
= r(i) + g(Q)(i)− r∞,

T2(Q)(i)
.
= r(i) + g(Q)(i)− f(Q)

= T1(Q)(i) + (r∞ − f(Q)) .

Consider two ordinary differential equations (ODEs):

ẏt
.
= T1(yt)− yt, (A.4)

ẋt
.
= T2(xt)− xt = T1(xt)− xt + (r∞ − f(xt)) e. (A.5)

Note that because g is a non-expansion by Assumption A.1, both (A.4) and (A.5) have Lipschitz
R.H.S.’s and thus are well-posed.

Because g is a non-expansion, T1 is also a non-expansion. Therefore we have the next lemma, which
restates Theorem 3.1 and Lemma 3.2 by Borkar and Soumyanath (1997).

Lemma A.1. Let ȳ be an equilibrium point of (A.4). Then ‖yt − ȳ‖∞ is nonincreasing, and yt → y∗
for some equilibrium point y∗ of (A.4) that may depend on y0.

Lemma A.2. (A.5) has a unique equilibrium at q∞.

Proof. Because f(q∞) = r∞, we have that q∞ = T1(q∞) = T2(q∞), thus q∞ is a equilibrium
point for (A.5). Conversely, if T2(Q)−Q = 0, then T1Q+ (r∞ − f(Q))e = Q. But the equation
T1Q+ ce = Q only has a solution when c = 0 because of Assumption A.1. We have c = 0 and thus
f(Q) = r∞, which along with T1Q = Q, implies Q = q∞.
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Lemma A.3. Let x0 = y0, then xt = yt+zte, where zt satisfies the ODE żt = −uzt+(r∞−f(yt)),
and k .

= |I|.

Proof. From (A.4), (A.5), by the variation of parameters formula,

xt = exp(−t)x0 +

∫ t

0

exp(τ − t)T1(xτ )dτ +

[∫ t

0

exp(τ − t) (r∞ − f(xτ )) dτ

]
e,

yt = exp(−t)y0 +

∫ t

0

exp(τ − t)T1(yτ )dτ.

Then we have

max
s,o

(xt(s, o)− yt(s, o))

≤
∫ t

0

exp(τ − t) max
s,o

(T1(xτ )(s, o)− T1(yτ )(s, o))dτ +

[∫ t

0

exp(τ − t) (r∞ − f(xτ )) dτ

]
,

min
s,o

(xt(s, o)− yt(s, o))

≥
∫ t

0

exp(τ − t) min
s,o

(T1(xτ )(s, o)− T1(yτ )(s, o))dτ +

[∫ t

0

exp(τ − t) (r∞ − f(xτ )) dτ

]
.

Subtracting, we have

sp(xt − yt) ≤
∫ t

0

exp(τ − t)sp(T1(xτ )− T1(yτ ))dτ,

where sp(x) denotes the span of vector x.

Because we assumed that g is span-norm non-expansion, T1 is also a span-norm non-expansion and
thus

sp(xt − yt) ≤
∫ t

0

exp(τ − t)sp(T1(xτ )− T1(yτ ))dτ ≤
∫ t

0

exp(τ − t)sp(xτ − yτ )dτ.

By Gronwall’s inequality, sp(xt − yt) = 0 for all t ≥ 0. Because sp(x) = 0 if and only if x = ce
for some c ∈ R, we have

xt = yt + zte, t ≥ 0.

for some zt. Also x0 = y0 =⇒ z0 = 0.

Now we show that żt = −uzt + (r∞ − f(yt)). Note that f(xt) = f(yt + zte) = f(yt) + uzt. In
addition, T1(xt)− T1(yt) = T1(yt + zte)− T1(yt) = T1(yt) + zte− T1(yt) = zte, therefore we
have, for zt ∈ R:

żte = ẋt − ẏt
= (T1(xt)− xt + (r∞ − f(xt)) e)− (T1(yt)− yt) (from (A.4) and (A.5))
= −(xt − yt) + (T1(xt)− T1(yt)) + (r∞ − f(xt)) e

= −zte+ zte+ (r∞ − f(xt)) e

= −uzte+ uzte+ (r∞ − f(xt)) e

= −uzte+ (r∞ − f(yt)) e

=⇒ żt = −uzt + (r∞ − f(yt)) .

Lemma A.4. q∞ is the globally asymptotically stable equilibrium for (A.5).

Proof. We have shown that q∞ is the unique equilibrium in Lemma A.2.

With that result, we first prove Lyapunov stability. That is, we need to show that given any ε > 0, we
can find a δ > 0 such that ‖q∞ − x0‖∞ ≤ δ implies ‖q∞ − xt‖∞ ≤ ε for t ≥ 0.
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First, from Lemma A.3 we have żt = −uzt + (r∞ − f(yt)). By variation of parameters and z0 = 0,
we have

zt =

∫ t

0

exp(u(τ − t)) (r∞ − f(yτ )) dτ.

Then

‖q∞ − xt‖∞ = ‖q∞ − yt − ztue‖∞
≤ ‖q∞ − yt‖∞ + u |zt|

≤ ‖q∞ − y0‖∞ + u

∫ t

0

exp(u(τ − t)) |r∞ − f(yτ )| dτ

= ‖q∞ − x0‖∞ + u

∫ t

0

exp(u(τ − t)) |f(q∞)− f(yτ )| dτ (from (A.2)). (A.6)

Because f is L-lipschitz, we have

|f(q∞)− f(yτ )| ≤ L ‖r∞ − yτ‖∞
≤ L ‖r∞ − y0‖∞ (from Lemma A.1)
= L ‖r∞ − x0‖∞ .

Therefore∫ t

0

exp(u(τ − t)) |f(q∞)− f(yτ )| dτ ≤
∫ t

0

exp(u(τ − t))L ‖q∞ − x0‖∞ dτ

= L ‖q∞ − x0‖∞
∫ t

0

exp(u(τ − t))dτ

= L ‖q∞ − x0‖∞
1

u
(1− exp(−ut))

=
L

u
‖q∞ − x0‖∞ (1− exp(−ut)).

Substituting the above equation in (A.6), we have

‖q∞ − xt‖∞ ≤ (1 + L) ‖q∞ − x0‖∞ .

Lyapunov stability follows.

Now in order to prove the asymptotic stability, in addition to Lyapunov stability, we need to show
that there exists δ > 0 such that if ‖x0 − q∞‖∞ < δ , then limt→∞ ‖xt − q∞‖∞ = 0. Note that

lim
t→∞

zt = lim
t→∞

∫ t

0

exp(u(τ − t)) (r∞ − f(yτ )) dτ

= lim
t→∞

∫ t
0

exp(uτ)(r∞ − f(yτ ))dτ

exp(ut)

= lim
t→∞

exp(ut)(r∞ − f(yt))

u exp(ut)
(by L’Hospital’s rule)

=
r∞ − f(y∞)

u
(by Lemma A.1).

Because xt = yt + zte (Lemma A.3) and yt → y∞ (Lemma A.1), we have xt → y∞ + (r∞ −
f(y∞))e/u, which must coincide with q∞ because that is the only equilibrium point for (A.5)
(Lemma A.2). Therefore limt→∞ ‖xt − q∞‖∞ = 0 for any x0. Asymptotic stability is shown and
the proof is complete.

Lemma A.5. Equation A.3 converges a.s. Qn to q∞ as n→∞.
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Proof. The proof uses Borkar’s (2008) Theorem 2 in Section 2 and is essentially the same as Lemma
3.8 by Abounadi et al. (2001). For completeness, we repeat the proof (with more details) here.

First write the synchronous update (A.3) as

Qn+1 = Qn + αn(h(Qn) +Mn+1 + εn),

where

h(Qn)(i)
.
= r(i)− f(Qn) + g(Qn)(i)−Qn(i)

= T2(Qn)(i)−Qn(i),

Mn+1(i)
.
= Rn(i)− Fn(Qn)(i) +Gn(Qn)(i)− T2(Qn)(i).

It can be shown that εn is asymptotically negligible and therefore does not affect the conclusions of
Theorem 2 (text after Equation B.66 by Wan et al. 2021).

Theorem 2 requires verifying following conditions and concludes that Qn converges to a (possibly
sample path dependent) compact connected internally chain transitive invariant set of ODE ẋt =
h(xt). This is exactly the ODE defined in (A.5). Lemma A.2 and A.4 conclude that this ODE has
q∞ as the unique globally asymptotically stable equilibrium. Therefore the (possibly sample path
dependent) compact connected internally chain transitive invariant set is a singleton set containing
only the unique globally asymptotically stable equilibrium. Thus Theorem 2 concludes thatQn → q∞
a.s. as n→∞. We now list conditions required by Theorem 2:

• (A1) The function h is Lipschitz: ‖h(x)− h(y)‖ ≤ L ‖x− y‖ for some 0 < L <∞.

• (A2) The sequence {αn} satisfies αn > 0, and
∑
αn =∞,

∑
α2
n <∞.

• (A3) {Mn} is a martingale difference sequence with respect to the increasing family of
σ-fields

Fn .
= σ(Qi,Mi, i ≤ n), n ≥ 0.

That is

E[Mn+1 | Fn] = 0 a.s., n ≥ 0.

Furthermore, {Mn} are square-integrable

E[‖Mn+1‖2 | Fn] ≤ K(1 + ‖Qn‖2) a.s., n ≥ 0,

for some constant K > 0.

• (A4) supn ‖Qn‖ ≤ ∞ a.s..

Let us verify these conditions now.

(A1) is satisfied because T2 is Lipschitz.

(A2) is satisfied by Assumption A.5.

(A3) is also satisfied because for any i ∈ I
E[Mn+1(i) | Fn] = E [Rn(i)− Fn(Qn)(i) +Gn(i)− T2(Qn)(i) | Fn]

= E [Rn(i)− Fn(Qn)(i) +Gn(Qn)(i) | Fn]− T2(Qn)(i)

= 0,

and E[‖Mn+1‖2 | Fn] ≤ E[‖Rn − r‖2 | Fn] + E[‖Fn(Qn)− f(Qn)e‖2 | Fn] +

E[‖Gn(Qn)− g(Qn)‖2 | Fn] ≤ K(1 + ‖Qn‖2) for a suitable constant K > 0 can be verified
by a simple application of triangle inequality.

To verify (A4), we apply Theorem 7 in Section 3 by Borkar (2008), which shows supn ‖Qn‖ ≤ ∞
a.s., if (A1), (A2), and (A3) are all satisfied and in addition we have the following condition satisfied:

(A5) The functions hd(x)
.
= h(dx)/d, d ≥ 1, x ∈ Rk, satisfy hd(x)→ h∞(x) as d→∞, uniformly

on compacts for some h∞ ∈ C(Rk). Furthermore, the ODE ẋt = h∞(xt) has the origin as its unique
globally asymptotically stable equilibrium.
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Note that

h∞(x) = lim
d→∞

hd(x) = lim
d→∞

(T2(dx)− dx) /d = g(x)− f(x)e− x,

because g(cx) = cg(x) and f(cx) = cf(x) by our assumption.

The function h∞ is clearly continuous in every x ∈ Rk and therefore h∞ ∈ C(Rk).

Now consider the ODE ẋt = h∞(xt) = g(xt)− f(xt)e− xt. Clearly the origin is an equilibrium.
This ODE is a special case of (A.5), corresponding to the r(s, o)∀s ∈ S, o ∈ O being always
zero. Therefore Lemma A.2 and A.4 also apply to this ODE and the origin is the unique globally
asymptotically stable equilibrium.

(A1), (A2), (A3), (A4) are all verified and therefore

Qn → q∞ a.s. as n→∞.

A.2 Theorem 1

For simplicity, we will only provide formal theorems and proofs for our control learning and planning
algorithms. The formal theorems and proofs for our prediction algorithms are similar to those for
the control algorithms and are thus omitted. To this end, we first provide a general algorithm that
includes both learning and planning control algorithms. We call it General Inter-option Differential
Q. We first formally define it and then explain why both inter-option Differential Q-learning and
inter-option Differential Q-planning are special cases of General Inter-option Differential Q. We then
provide assumptions and the convergence theorem of the general algorithm. The theorem would lead
to convergence of the special cases. Finally, we provide a proof for the theorem.

Given an SMDP M̂ = (S,O, L̂, R̂, p̂), for each state s ∈ S , option o ∈ O, and discrete step n ≥ 0,
let R̂n(s, o), Ŝ′n(s, o), L̂n(s, o) ∼ p̂(·, ·, ·|s, o) denote a sample of resulting state, reward and the
length. We hypothesize a set-valued process {Yn} taking values in the set of nonempty subsets of
S × O with the interpretation: Yn = {(s, o) : (s, o) component of Q was updated at time n}. Let
ν(n, s, o)

.
=
∑n
k=0 I{(s, o) ∈ Yk}, where I is the indicator function. Thus ν(n, s, o) = the number

of times the (s, o) component was updated up to step n. The update rules of General Inter-option
Differential Q are

Qn+1(s, o)
.
= Qn(s, o) + αν(n,s,o)δn(s, o)/Ln(s, o)I{(s, o) ∈ Yn}, ∀s ∈ S, o ∈ O, (A.7)

R̄n+1
.
= R̄n + η

∑
s,o

αν(n,s,o)δn(s, o)/Ln(s, o)I{(s, o) ∈ Yn}, (A.8)

Ln+1(s, o)
.
= Ln(s, o) + βn(s, o)(L̂n(s, o)− Ln(s, o))I{(s, o) ∈ Yn}, (A.9)

where

δn(s, o)
.
= R̂n(s, o)− R̄nLn(s, o) + max

o′
Qn(Ŝ′n(s, o), o′)−Qn(s, o) (A.10)

is the TD error.

Here αν(n,s,o) is the stepsize at step n for state-action pair (s, o). The quantity αν(n,s,o) depends
on the sequence {αn}, which is an algorithmic design choice, and also depends on the visitation
of state-option pairs ν(n, s, o). To obtain the stepsize, the algorithm could maintain a |S × O|-size
table counting the number of visitations to each state-option pair, which is exactly ν(·, ·, ·). Then the
stepsize αν(n,s,o) can be obtained as long as the sequence {αn} is specified.

Q0 and R0 can be initialized arbitrarily. Note that L0 can not be initialized to 0 because it is the
divisor for both (A.7) and (A.8) for the first update. Because the expected length of all options would
be greater than or equal to 1, we choose L0 to be 1. In this way, Ln will never be 0 because it
is initialized to 1 and all the sampled option lengths are greater than or equal to 1. Therefore the
problem of division by 0 will not happen in the updates.
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Now we show inter-option Differential Q-learning and inter-option Differential Q-planning are
special cases of General Inter-option Differential Q. Consider a sequence of real experience
. . . , Ŝn, Ôn, R̂n, L̂n, Ŝn+1, . . ..

Yn(s, o) = 1, if s = Ŝn, o = Ôn,

Yn(s, o) = 0 otherwise,

and Ŝ′n(Ŝn, Ôn) = Ŝn+1, R̂n(Ŝn, Ôn) = R̂n+1, L̂n(Ŝn, Ôn) = L̂n, update rules (A.7), (A.8), and
(A.10) become

Qn+1(Ŝn, Ôn)
.
= Qn(Ŝn, Ôn) + αν(n,Ŝn,Ôn)δ̂n/Ln(Ŝn, Ôn) , and Qn+1(s, o)

.
= Qn(s, o),∀s 6= Ŝn, o 6= Ôn,

R̄n+1
.
= R̄n + ηαν(n,Ŝn,Ôn)δ̂n/Ln(Ŝn, Ôn),

δ̂n
.
= R̂n − R̄nL̂n + max

o′
Qn(Ŝn+1, o

′)−Qn(Ŝn, Ôn),

Ln+1(Ŝn, Ôn)
.
= Ln(Ŝn, Ôn) + βn(Ŝn, Ôn)(L̂n − Ln(Ŝn, Ôn))

which are inter-option Differential Q-learning’s update rules (Section 3) with stepsize α in the n-th
update being αν(n,Ŝn,Ôn), and the stepsize β being β(Ŝn, Ôn).

If we consider a sequence of simulated experience . . . , S̃n, Õn, R̃n, L̃n, S̃′n, . . ..

Yn(s, o) = 1, if s = S̃n, o = Õn,

Yn(s, o) = 0 otherwise,

and Ŝ′n(s, o) = S̃′n, R̂n(s, o) = R̃n, L̂n(s, o) = L̃n, update rules (A.7)-(A.10) become

Qn+1(S̃n, Õn)
.
= Qn(S̃n, Õn) + αν(n,S̃n,Õn)δ̃n/Ln , and Qn+1(s, o)

.
= Qn(s, o),∀s 6= S̃n, o 6= Õn,

R̄n+1
.
= R̄n + ηαν(n,S̃n,Õn)δ̃n/Ln,

δ̃n
.
= R̃n − R̄nL̃n + max

o′
Qn(S̃′n, o

′)−Qn(S̃n, Õn),

Ln+1(S̃n, Õn)
.
= Ln(S̃n, Õn) + βn(S̃n, Õn)(L̃n − Ln(S̃n, Õn)).

Now, in the planning setting, the model can produce an expected length, instead of a sampled one.
And there estimating the expected length using Ln is no longer needed. The above updates reduce to

Qn+1(S̃n, Õn)
.
= Qn(S̃n, Õn) + αν(n,S̃n,Õn)δ̃n/L̃n , and Qn+1(s, o)

.
= Qn(s, o),∀s 6= S̃n, o 6= Õn,

R̄n+1
.
= R̄n + ηαν(n,S̃n,Õn)δ̃n/L̃n,

δ̃n
.
= R̃n − R̄nL̃n + max

o′
Qn(S̃′n, o

′)−Qn(S̃n, Õn).

The above update rules are our inter-option Differential Q-planning’s update rules with stepsize at
planning step n being αν(n,S̃n,Õn).

We now provide a theorem, along with its proof, showing the convergence of General Inter-option
Differential Q.

Theorem A.2. Under Assumptions 1, A.5, A.6, A.7, and that 0 ≤ βn(s, o) ≤ 1,
∑
n βn(s, o) =∞,

and
∑
n β

2
n(s, o) < ∞, and βn(s, o) = 0 unless s = Ŝn, General Inter-option Differential Q

(Equations A.7-A.10) converges, almost surely, Qn to q satisfying both (2) and

η(
∑

q −
∑

Q0) = r∗ − R̄0,

R̄n to r∗, and r(µn) to r∗ where µn is a greedy policy w.r.t. Qn.
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Proof. At each step, the increment to R̄n is η times the increment to Qn and
∑
Qn. Therefore, the

cumulative increment can be written

R̄n − R̄0 = η

n−1∑
i=0

∑
s,o

αν(i,s,o)δi(s, o)/Li(s, o)I{(s, o) ∈ Yi}

= η
(∑

Qn −
∑

Q0

)
=⇒ R̄n = η

∑
Qn − η

∑
Q0 + R̄0 = η

∑
Qn − c, (A.11)

where c .= η
∑

Q0 − R̄0. (A.12)

Now substituting R̄n in (A.7) with (A.11), we have ∀s ∈ S, o ∈ O:

Qn+1(s, o) = Qn(s, o) + αν(n,s,o)

R̂n(s, o)− Ln(s, o)(η
∑
Qn − c) + maxo′ Qn(Ŝ′n(s, o), o′)−Qn(s, o)

Ln(s, o)
I{(s, o) ∈ Yn}

= Qn(s, o) + αν(n,s,o)(
R̂n(s, o)− ln(s, o)(η

∑
Qn − c) + maxo′ Qn(Ŝ′n(s, o), o′)−Qn(s, o)

l(s, o)
+ εn(s, o)

)
I{(s, o) ∈ Yn},

(A.13)

where l(s, o) is the expected length of option o, starting from state s, and εn(s, o)
.
= (R̂n(s, o) −

Ln(s, o)(η
∑
Qn−c)+maxo′ Qn(Ŝ′n(s, o), o′)−Qn(s, o))/L(s, o)−(R̂n(s, o)−l(s, o)(η∑Qn−

c) + maxo′ Qn(Ŝ′n(s, o), o′)−Qn(s, o))/l(s, o).

Standard stochastic approximation result can be applied to show that Ln converges to l. Further, it
can be seen that εn satisfies that ‖εn‖∞ ≤ K(1 + ‖Qn‖) for some positive K and, by continuous
mapping theorem, converges to 0 almost surely (and thus in probability).

We now show that (A.13) is a special case of (A.1). To see this point, let

i = (s, o),

Rn(i) =
R̂n(s, o)

l(s, o)
+ c,

Gn(Qn)(i) =
maxo′ Qn(Ŝ′n(s, o), o′)

l(s, o)
+
l(s, o)− 1

l(s, o)
Qn(s, o),

F (Qn)(i) = η
∑

Qn,

εn(i) = εn(s, o).

We now verify the assumptions of Theorem A.1 for Inter-option General Differential Q. Assump-
tion A.1 and Assumption A.2 can be verified easily. Assumption A.3 satisfies because the MDP
is finite. Assumption A.4 is satisfied as shown above. Assumption A.5-A.7 are satisfied due to
assumptions of the theorem being proved. Assumption A.8 is satisfied because

r(i)− r̄ + g(q)(i)− q(i)
= E[Rn(i)− r̄ +Gn(q)(i)− q(i)]

= E

[
R̂n(s, o) + cl(s, o)− r̄l(s, o) + maxo′ q(Ŝ

′
n(s, o), o′) + (l(s, o)− 1)q(s, o)− l(s, o)q(s, o)
l(s, o)

]

=
E
[
R̂n(s, o) + cl(s, o)− r̄l(s, o) + maxo′ q(Ŝ

′
n(s, o), o′)− q(s, o)

]
l(s, o)

.

From (2) we know if the above equation equals to 0, then under Assumption 1, r̄ = r∗ + c is the
unique solution and the solutions for q form a set q = q∗ + ce.
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All the assumptions are verified and thus from Theorem A.1 we conclude thatQn converges to a point
satisfying η

∑
q = r∗+c = r∗+η

∑
Q0−R̄0 and R̄n = η

∑
Qn−c to η

∑
q−c = r∗+c−c = r∗.

Finally, in order to show r(µn)→ r∗, we first extend Theorem 8.5.5 by Puterman (1994) to deal with
SMDP.

Lemma A.6. Under Assumption 1, ∀Q ∈ R|S×O|

min
s,o

TQ(s, o) ≤ r(µQ) ≤ r∗ ≤ max
s,o

TQ(s, o),

where TQ(s, o)
.
=
∑
s′,r,l p̂(s

′, r, l | s, o)(r+ maxo′ Q(s′, o′)) and µQ denotes a greedy policy w.r.t.
Q.

Proof. Note that

r(µQ) =
∑
s′,r,l

p̂(s′, r, l | s, o)(r +
∑
o′

µQ(o′ | s′)Q(s′, o′)−Q(s, o)).

Therefore

min
s,o

(TQn(s, o)−Qn(s, o)) ≤ r(µn) ≤ r∗ ≤ max
s,o

(TQn(s, o)−Qn(s, o))

=⇒ |r∗ − r(µn)| ≤ sp(TQn −Qn).

Because Qn → q∞ a.s., and sp(TQn −Qn) is a continuous function of Qn, by continuous mapping
theorem, sp(TQn −Qn)→ sp(Tq∞ − q∞) = 0 a.s. Therefore we conclude that r(µn)→ r∗.

The convergence of General Inter-option Differential Q that we showed above implies Theorem 1
when there are no transient states (S ′ = S) and thus all states can be visited for an infinite number of
times. When S ′ ⊂ S, option values associated states in S − S ′ do not converge to a solution of the
Bellman equation. However, the option values associated with recurrent states S ′ still converge to a
solution of the Bellman equation, the reward rate estimator converges to r∗, and the r(µn) converges
to r∗. The point that option values (associated with recurrent states) converge to depends on the
sample trajectory. Specifically, it depends on the transient states visited in the trajectory.

A.3 Theorem 2

The proof for the intra-option evaluation equation is simple. First note that these equations can be
written in the vector form:

0 = r − r̄e+ (Pµ − I)q,

where r(s, o) = E[Rt+1 | St = s,Ot = o], Pµ((s, o), (s′, o′))
.
= Pr(St+1 = s′, Ot+1 = o′|St =

s,Ot = o, µ) = β(s′, o)µ(o′ | s′) + (1− β(s′, o))I(o = o′), and e is a all-one vector. Intuitively, the
intra-option evaluation equation can be viewed as the evaluation equation for some average-reward
MRP with reward and dynamics being defined as r and Pµ.

By Theorem 8.2.6 and Corollary 8.2.7 in Puterman (1994), the intra-option evaluation equation part
in Theorem 2 is shown as long as the Markov chain associated with Pµ is unichain. Note that by
our Assumption 1, there is only one recurrent class of states under any policy. Therefore no matter
what the start state-option pair is, the agent will enter in the same recurrent class of states. Therefore
we have, for every state s̄ in the recurrent class and an option ō such that µ(ō | s̄) > 0, the MDP
visits (s̄, ō) an an infinite number of times. This shows that any two state-option pairs can not be in
two separate recurrent sets of state-option pairs. Therefore the Markov chain associated with Pµ is
unichain.

The proof for the Intra-option Optimality Equations is more complicated. First, similar as what we
know in the discounted primitive action case, we have the following lemma for the discounted option
case.
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Lemma A.7. For every 0 < γ < 1, there exists a stationary deterministic discount optimal policy.

The proof uses similar arguments as Theorem 6.2.10 and Proposition 4.4.3 by Puterman (1994).

Now choose a sequence of discount factors {γn}, 0 ≤ γn < 1 with the property that γn ↑ 1. By
lemma A.7, for each γn, there exists a stationary discount optimal policy. Because the total number
of Markov deterministic policies is finite, we can choose a subsequence {γ′n} for which the same
Markov deterministic policy, µ, is discount optimal for all γ′n. Denote this subsequence by {γn}.
Because µ is discount optimal for γn,∀n, qγn∗ = qγnµ ,∀n. By intra-option optimality equations in the
discounted case (Sutton et al., 1999), for all s ∈ S, o ∈ O,

0 =
∑
a

π(a|s, o)
∑
s′,r

p(s′, r|s, a)
(
r + γnβ(s′, o)qγnµ (s′, µ(s′)) + γn(1− β(s′, o))qγnµ (s′, o)

)
− qγnµ (s, o)

=
∑
a

π(a|s, o)
∑
s′,r

p(s′, r|s, a)
(
r + γnβ(s′, o) max

o′
qγnµ (s′, o′) + γn(1− β(s′, o))qγnµ (s′, o)

)
− qγnµ (s, o).

(A.14)

By corollary 8.2.4 by Puterman (1994),

qγnµ = (1− γn)−1r(µ)e+ qµ + f(γn), (A.15)

where r(µ) and qµ are the reward rate and differential value function under policy µ, and f(γ) is a
function of γ that converges to 0 as γ ↑ 1.

Substituting (A.15) into (A.14), we have

0 =
∑
a

π(a|s, o)
∑
s′,r

p(s′, r|s, a)(r + γnβ(s′, o) max
o′

[(1− γn)−1r(µ) + qµ(s′, o′) + f(γn, s
′, o′)]

+ γn(1− β(s′, o))[(1− γn)−1r(µ) + qµ(s′, o) + f(γn, s
′, o)])

− [(1− γn)−1r(µ) + qµ(s, o) + f(γn, s, o)]

=
∑
a

π(a|s, o)
∑
s′,r

p(s′, r|s, a)(r − r(µ) + γnβ(s′, o) max
o′

[qµ(s′, o′) + f(γn, s
′, o′)]

+ γn(1− β(s′, o))[qµ(s′, o) + f(γn, s
′, o)])

− [qµ(s, o) + f(γn, s, o)]

=
∑
a

π(a|s, o)
∑
s′,r

p(s′, r|s, a)(r − r(µ) + β(s′, o) max
o′

[qµ(s′, o′) + f(γn, s
′, o′)]

+ (γn − 1)β(s′, o) max
o′

[qµ(s′, o′) + f(γn, s
′, o′)]

+ (1− β(s′, o))[qµ(s′, o) + f(γn, s
′, o)]

+ (γn − 1)(1− β(s′, o))[qµ(s′, o) + f(γn, s
′, o)]

− [qµ(s, o) + f(γn, s, o)].

Note that (γ − 1)β(s′, o) maxo′ [qµ(s′, o′) + f(γ, s′, o′)] and (γ − 1)(1 − β(s′, o))[qµ(s′, o) +
f(γ, s′, o)] both converge to 0 as γ ↑ 1.

Now take n→∞, then γn ↑ 1, we have

0 =
∑
a

π(a|s, o)
∑
s′,r

p(s′, r|s, a)
(
r − r(µ) + β(s′, o) max

o′
qµ(s′, o′) + (1− β(s′, o))qµ(s′, o)

)
− qµ(s, o).

We see that r̄ = r(µ) and q = qµ is a solution of (11)-(12).

Now we show that the solution for r̄ is unique. Define

B(r̄, q)
.
=
∑
a

π(a|s, o)
∑
s′,r

p(s′, r|s, a)
(
r − r̄ + β(s′, o) max

o′
q(s′, o′) + (1− β(s′, o))q(s′, o)

)
− q(s, o).
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First we show if B(r̄, q) = 0, then r̄ ≥ r∗.
0 = B(r̄, q)

=
∑
a

π(a|s, o)
∑
s′,r

p(s′, r|s, a)(r − r̄ + β(s′, o) max
o′

q(s′, o′) + (1− β(s′, o))q(s′, o))− q(s, o)

≥ sup
µ∈ΠMR

∑
a

π(a|s, o)
∑
s′,r

p(s′, r|s, a)

(
r − r̄ + β(s′, o)

∑
o′

µ(o′|s′)q(s′, o′) + (1− β(s′, o))q(s′, o)

)
− q(s, o),

where ΠMR denotes the set of all Markov randomized policies. In vector form, the above equation
can be written as:

0 ≥ sup
µ∈ΠMR

{r − r̄e+ (Pµ − I)q}.

Therefore ∀µ ∈ ΠMR,

r̄e ≥ r + (Pµ − I)q.

Apply Pµ to both sides,

Pµr̄e ≥ Pµr + Pµ(Pµ − I)q,

r̄e ≥ Pµr + Pµ(Pµ − I)q.

Repeating this process we have:

r̄e ≥ Pnµ r + Pnµ (Pµ − I)q.

Summing these expressions from n = 0 to n = N − 1 we have:

Nr̄e ≥
N−1∑
n=0

(Pnµ r + Pnµ (Pµ − I)q) =

N−1∑
n=0

Pnµ r + (PNµ − PN−1
µ )q.

Because limN→∞
1
N (PNµ − PN−1

µ )q = 0,

r̄e ≥ lim
N→∞

1

N

N−1∑
n=0

Pnµ r = r(µ)e,

for all µ ∈ ΠMR. Therefore r̄ ≥ r∗.
Then we show that if 0 = B(r̄, q) then r̄ ≤ r∗. As we proved above, if (r̄, q) satisfies that 0 = B(r̄, q)
then there exists a policy µ such that r̄e = r + (Pµ − I)q is true. Therefore,

Pnµ r̄e = Pnµ r + Pnµ (Pµ − I)q,

lim
N→∞

1

N

N−1∑
n=0

Pnµ r̄e = lim
N→∞

1

N

N−1∑
n=0

(Pnµ r + Pnµ (Pµ − I)q),

r̄e = lim
N→∞

N−1∑
n=0

Pnµ r = r(µ)e ≤ r∗e.

Therefore r̄ ≤ r∗. Combining r̄ ≥ r∗ and r̄ ≤ r∗ we have r̄ = r∗.

Finally, we show that the solution for q is unique only up to a constant. Note that one could iteratively
replace q in the r.h.s. of the intra-option Optimality equation (11)-(12) by the entire r.h.s. of the
intra-option Optimality equation, resulting to the inter-option Optimality equation (2). Therefore any
solution of (11)-(12) must be a solution of (2). But we know that the solutions for q in (2) is unique
only up to a constant. Therefore the solutions for q in (11)-(12) can not differ by a non-constant.
Further, it is easy to see that if q is a solution, then q + ce,∀c is also a solution. The theorem is
proved.

�
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A.4 Theorem 3

For simplicity, we will only provide formal theorems and proofs for our control learning and planning
algorithms. The formal theorems and proofs for our prediction algorithms are similar to those for
the control algorithms and are thus omitted. To this end, we first provide a general algorithm that
includes both learning and planning control algorithms. We call it General Intra-option Differential
Q. We first formally define it and then explain why both Intra-option Differential Q-learning and
Intra-option Differential Q-planning are special cases of General Intra-option Differential Algorithm.
We then provide assumptions and the convergence theorem of the general algorithm. The theorem
would lead to convergence of the special cases. Finally, we provide a proof for the theorem.

Given an MDPM .
= (S,A,R, p) and a set of options O, for each state s ∈ S , option o ∈ O, a refer-

ence option ō, and discrete step n ≥ 0, letAn(s, ō) ∼ π(· | s, ō),Rn(s,An(s, ō)), S′n(s,An(s, ō)) ∼
p(·, · | s,An(s, ō)) denote, given state-option pair (s, ō), a sample of the chosen action and the result-
ing state and reward. We hypothesize a set-valued process {Yn} taking values in the set of nonempty
subsets of S ×O with the interpretation: Yn = {(s, o) : (s, o) component of Q was updated at time
n}. Let ν(n, s, o)

.
=
∑n
k=0 I{(s, o) ∈ Yk}, where I is the indicator function. Thus ν(n, s, o) =

the number of times the (s, o) component was updated up to step n. In addition, we hypothesize a
set-valued process {Zn} taking values in the set of nonempty subsets of O with the interpretation:
Zn = {ō : ō component was visited at time n}. ∑ō I{ō ∈ Zn} means the number of reference
options used at update step n. For simplicity, we assume this number is always 1.
Assumption A.9.

∑
ō I{ō ∈ Zn} = 1 for all discrete n ≥ 0.

The update rules of General Intra-option Differential Q are

Qn+1(s, o)
.
= Qn(s, o) + αν(n,s,o)

∑
ō

ρn(s, o, ō)δn(s, o, ō)I{(s, o) ∈ Yn}I{ō ∈ Zn}, ∀s ∈ S, and o ∈ O

(A.16)

R̄n+1
.
= R̄n + η

∑
s,o

αν(n,s,o)

∑
ō

ρn(s, o, ō)δn(s, o, ō)I{(s, o) ∈ Yn}I{ō ∈ Zn}, (A.17)

where ρn(s, o, ō)
.
= π(An(s, ō) | s, o)/π(An(s, ō) | s, ō) and

δn(s, o, ō)
.
= Rn(s,An(s, ō))− R̄n + β(S′n(s,An(s, ō)), o) max

o′
Qn(S′n(s,An(s, ō)), o′)

+ (1− β(S′n(s,An(s, ō)), o))Qn(S′n(s,An(s, ō)), o)−Qn(s, o) (A.18)

is the TD error.

Here αν(n,s,o) is the stepsize at step n for state-option-option triple (s, o). The quantity αν(n,s,o)

depends on the sequence {αn}, which is an algorithmic design choice, and also depends on the
visitation of state-option pairs ν(n, s, o). To obtain the stepsize, the algorithm could maintain a
|S × O|-size table counting the number of visitations to each state-option pair, which is exactly
ν(·, ·, ·). Then the stepsize αν(n,s,o) can be obtained as long as the sequence {αn} is specified.

Now we show Intra-option Differential Q-learning and Intra-option Differential Q-planning are
special cases of General Intra-option Differential Q. Consider a sequence of real experience
. . . , St, Ot, At, Rt+1, St+1, . . .. By choosing step n = time step t,

Yn(s, o) = 1, if s = St
Yn(s, o) = 0 otherwise,
Zn(ō) = 1, if ō = Ot
Zn(ō) = 0 otherwise,

and An(St, Ot) = At, S′n(St, An(St, Ot)) = St+1, Rn(St, An(St, Ot)) = Rt+1, update rules
(A.16), (A.17), and (A.18) become

Qt+1(St, o)
.
= Qt(St, o) + αν(t,St,o)ρt(o)δt(o),∀o ∈ O , and Qt+1(s, o)

.
= Qt(s, o),∀o ∈ O and ∀s 6= St,

R̄t+1
.
= R̄t + η

∑
o

αν(t,St,o)ρt(o)δt(o),

δt(o)
.
= Rt+1 − R̄t + β(St+1, o) max

o′
Qt(St+1, o

′) + (1− β(St+1, o))Qt(St+1, o)−Qt(St, o),
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where ρt(o)
.
= π(At | St, o)/π(At | St, Ot). The above equations are Intra-option Differential

Q-learning’s update rules (Equations 14, 15, 16) with stepsize at time t being αν(t,St,o) for each
option o.

If we consider a sequence of simulated experience . . . , S̃n, Õn, Ãn, R̃n, S̃′n, . . ., by choosing step
n = planning step n,

Yn(s, o) = 1, if s = S̃n
Yn(s, o) = 0 otherwise,

Zn(ō) = 1, if ō = Õn
Zn(ō) = 0 otherwise,

and An(S̃n, Õn) = Ãn, S′n(S̃n, An(S̃n, Õn)) = S̃′n, Rn(S̃n, An(S̃n, Õn)) = R̃n, update rules
(A.16), (A.17), and (A.18) become

Qn+1(S̃n, o)
.
= Qn(S̃n, o) + αν(n,S̃n,o)

ρn(o)δn(o),∀o ∈ O , and Qn+1(s, o)
.
= Qn(s, o),∀s 6= S̃n,∀o ∈ O

R̄n+1
.
= R̄n + η

∑
o

αν(n,S̃n,o)
ρn(o)δn(o),

δn(o)
.
= R̃n − R̄n + β(S̃′n, o) max

o′
Qn(S̃′n, o

′) + (1− β(S̃′n, o))Qn(S̃′n, o)−Qn(S̃n, o),

where ρn(o)
.
= π(An | Sn, o)/π(An | Sn, On). The above equations are Intra-option Differential

Q-planning’s update rules (Equations 14, 15, 16) with stepsize at planning step n being αν(n,Sn,o)

for each option o.

Finally, note that for both Intra-option Differential Q-learning and Q-planning algorithms, because
for each time step t or update step n, there is only one option which is actually chosen to generate
data, Assumption A.9 is satisfied.

Theorem A.3. Under Assumptions 1, A.5, A.6, A.7, A.9, General Intra-option Differential Q (Equa-
tions A.16-A.18) converges, almost surely, Qn to q satisfying both (11)-(12) and

η(
∑

q −
∑

Q0) = r∗ − R̄0, (A.19)

R̄n to r∗, and r(µn) to r∗ where µn is a greedy policy w.r.t. Qn.

Proof. At each step, the increment to R̄n is η times the increment to Qn and
∑
Qn. Therefore, the

cumulative increment can be written as:

R̄n − R̄0 = η

n−1∑
i=0

∑
s,o

αν(i,s,o)

∑
ō

ρi(s, o, ō)δi(s, o, ō)I{(s, o) ∈ Yi}I{ō ∈ Zi}

= η
(∑

Qn −
∑

Q0

)
=⇒ R̄n = η

∑
Qn − η

∑
Q0 + R̄0 = η

∑
Qn − c, (A.20)

where c .= η
∑

Q0 − R̄0.

Now substituting R̄n in (A.16) with (A.20), we have ∀s ∈ S, o ∈ O:

Qn+1(s, o) = Qn(s, o) + αν(n,s,o)

∑
ō

π(An(s, ō) | s, o)
π(An(s, ō) | s, ō)(

Rn(s,An(s, ō))− η
∑

Qn + c+ β(S′n(s,An(s, ō)), o) max
o′

Qn(S′n(s,An(s, ō)), o′)

+ (1− β(S′n(s,An(s, ō)), o))Qn(S′n(s,An(s, ō)), o)−Qn(s, o)

)
I{(s, o) ∈ Yn}I{ō ∈ Zn}. (A.21)
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We now show that (A.21) is a special case of (A.1). To see this point, let i = (s, o),

Rn(i) =
∑
ō

π(An(s, ō) | s, o)
π(An(s, ō) | s, ō)I{ō ∈ Zn}(Rn(s,An(s, ō)) + c),

Fn(Qn)(i) =
∑
ō

π(An(s, ō) | s, o)
π(An(s, ō) | s, ō)I{ō ∈ Zn}η

∑
Qn,

Gn(Qn)(i) =
∑
ō

π(An(s, ō) | s, o)
π(An(s, ō) | s, ō)I{ō ∈ Zn}

(
β(S′n(s,An(s, ō)), o) max

o′
Qn(S′n(s,An(s, ō)), o′)

+ (1− β(S′n(s,An(s, ō)), o))Qn(S′n(s,An(s, ō)), o)−Qn(s, o)
)
,

εn(i) = 0.

Then we have:
r(i) = E[Rn(i)]

= E

[∑
ō

π(An(s, ō) | s, o)
π(An(s, ō) | s, ō)I{ō ∈ Zn}(Rn(s,An(s, ō)) + c)

]

=
∑
ō

E
[
π(An(s, ō) | s, o)
π(An(s, ō) | s, ō)I{ō ∈ Zn}(Rn(s,An(s, ō)) + c)

]
=
∑
ō

I{ō ∈ Zn}
∑
a

π(a | s, o)E[Rn(s, a) + c]

=
∑
a

π(a | s, o)
∑
r,s′

p(r, s′ | s, a)(r + c), By Assumption A.9,

f(q) = E[F (q)(i)] = η
∑

q,

g(q)(i) = E[Gn(q)(i)]

= E

[∑
ō

π(An(s, ō) | s, o)
π(An(s, ō) | s, ō)I{ō ∈ Zn}

(
β(S′n(s,An(s, ō)), o) max

o′
q(S′n(s,An(s, ō)), o′)

+ (1− β(S′n(s,An(s, ō)), o))q(S′n(s,An(s, ō)), o)− q(s, o)
)]

=
∑
ō

I{ō ∈ Zn}
∑
a

π(a | s, o)

E[(β(S′n(s, a), o) max
o′

q(S′n(s, a), o′) + (1− β(S′n(s, a), o))q(S′n(s, a), o)− q(s, o))]

=
∑
a

π(a | s, o)
∑
s′,r

p(s′, r | s, a)(β(s′, o) max
o′

q(s′, o′) + (1− β(s′, o))q(s′, o)− q(s, o))],

for any i ∈ I.

We now verify the assumptions of Theorem A.1 for Intra-option General Differential
Q. Assumption A.1 can be verified for g(q)(s, o) =

∑
a π(a | s, o)

∑
s′,r p(s

′, r |
s, a)(β(s′, o) maxo′ q(s

′, o′) + (1 − β(s′, o))q(s′, o)) easily. Assumption A.2 is satisfied for
f(q) = η

∑
q. Assumption A.3 satisfies because the MDP is finite. Assumption A.4 is satis-

fied for εn = 0. Assumption A.5-A.7 are satisfied due to assumptions of the theorem being proved.
Assumption A.8 is satisfied because

r(i)− r̄ + g(q)(i)− q(i)
=
∑
a

π(a|s, o)
∑
s′,r

p(s′, r|s, a)(r − r̄ + β(s′, o) max
o′

q(s′, o′) + (1− β(s′, o))q(s′, o)).

By Theorem 2, we know that if the above equation equals to 0, then under Assumption 1, r̄ = r∗ + c
is the unique solution and the solutions for q form a set q = q∗ + ke for all k ∈ R.

Therefore Theorem A.1 applies and we conclude that Qn converges to a point satisfying η
∑
q =

r∗ + c = r∗ + η
∑
Q0 − R̄0 and R̄n = η

∑
Qn − c to η

∑
q − c = r∗ + c − c = r∗. Finally, by

Lemma A.6, we have r(µn)→ r∗.
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Applying a similar argument as one presented in the last paragraph of Section A.2 finishes the proof
of Theorem 3.

A.5 Theorem 4

Proof. We will show that there exists a unique solution for (18). Results for (19) and (20) can
be shown in a similar way. To show that (18) has a unique solution, we apply a generalized
version of the Banach fixed point theorem (see, e.g., Theorem 2.4 by Almezel, Ansari, and Khamsi
2014). Once the unique existence of the solution is shown, we easily verify that mp is the unique
solution by showing that it is one solution to (18) as follows. With a little abuse of notation, let
p̂(s′, r | s, o) .

=
∑
r,l p̂(x, r, l | s, o), we have

mp(x|s, o) =
∑
r,l

p̂(x, r, l|s, o)

=

∞∑
l=1

p̂(x, l|s, o) =
∑
a

π(a|s, o)
∑
r

p(s′, r|s, a)β(s′, o)I(x = s′) +

∞∑
l=2

p̂(x, l|s, o)

=
∑
a

π(a|s, o)
∑
r

p(s′, r|s, a)
(
β(s′, o)I(x = s′) + (1− β(s′, o))

∞∑
l=1

p̂(x, l|s′, o)
)

=
∑
a

π(a|s, o)
∑
r

p(s′, r|s, a)
(
β(s′, o)I(x = s′) + (1− β(s′, o))mp(x|s′, o)

)
.

To apply the generalized version of the Banach fixed point theorem to show the unique
existence of the solution, we first define operator T : R|S|×|S|×|O| → R|S|×|S|×|O|
such that for any m ∈ R|S|×|S|×|O| and any x, s ∈ S, o ∈ O, Tm(x | s, o)

.
=∑

a π(a|s, o)∑s′,r p(s
′, r|s, a)(β(s′, o)I(x = s′) + (1 − β(s′, o))m(x|s′, o))). We further define

Tnm
.
= T (Tn−1m) for any n ≥ 2 and any m ∈ R|S|×|S|×|O|. The generalized Banach fixed point

theorem shows that if Tn is a contraction mapping for any integer n ≥ 1 (this is called a n-stage
contraction), then Tm = m has a unique fixed point. The unique fixed point immediately leads to
the existence of the unique solution of (18). The existence of the unique solution and that mp is a
solution imply that mp is the unique solution.

The only work left is to verify the following contraction property:

∥∥∥T |S|m1 − T |S|m2

∥∥∥
∞
≤ γ ‖m1 −m2‖∞ , (A.22)

where m1 and m2 are arbitrary members in R|S|×|S|×|O|, and γ < 1 is some constant.
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Consider the difference between T |S|m1 and T |S|m2 for arbitrary m1,m2 ∈ R|S×S×O|. For any
x, s ∈ S, o ∈ O, we have

T |S|m1(x | s, o)− T |S|m2(x | s, o)
=
∑
a

π(a | s, o)
∑
s′,r

p(s′, r|s, a)(1− β(s′, o))(T |S|−1m1(x | s′, o)− T |S|−1m2(x | s′, o))

=
∑
s1

Pr(St+1 = s1 | St = s,Ot = o)(1− β(s1, o))(T
|S|−1m1(x | s1, o)− T |S|−1m2(x | s1, o))

=
∑
s1

Pr(St+1 = s1 | St = s,Ot = o)(1− β(s1, o))
∑
s2

Pr(St+2 = s2 | St+1 = s1, Ot+1 = o)(1− β(s2, o))

(T |S|−2m1(x | s2, o)− T |S|−2m2(x|s2, o))

...

=
∑

s1,··· ,s|S|

Pr(St+1 = s1, · · · , St+|S| = s|S| | St = s,Ot = o)

|S|∏
i=1

(1− β(si, o))(m1(x | s|S|, o)−m2(x|s|S|, o))

≤
∑

s1,··· ,s|S|

Pr(St+1 = s1, · · · , St+|S| = s|S| | St = s,Ot = o)

|S|∏
i=1

(1− β(si, o)) ‖m1 −m2‖∞ .

Here p̃(s, o) .
=
∑
s1,··· ,s|S|

Pr(St+1 = s1 · · · , St+|S| = s|S| | St = s,Ot = o)
∏|S|
i=1(1− β(si, o))

is the probability of executing option o for |S| steps starting from swithout termination. If p̃(s, o) = 0,
then option o will surely terminate within the first |S| steps and if p̃(s, o) = 1, then option o will
surely not terminate within the first |S| steps.

If option o would surely not terminate within the first |S| steps (p̃(s, o) = 1), then it would surely not
terminate forever. This is because there are only |S| number of states, and thus an option could visit
all states that are possible to be visited by the option within the first |S| steps. p̃(s, o) = 1 means that
option o has a zero probability of terminating in all states that are possible to be visited by option o.
This non-termination of a state-option pair implies that the expected option length is infinite, which is
contradict to our assumption of finite expected option lengths (Section 2). Therefore p̃(s, o) = 1 is
not allowed by our assumption and thus p̃(s, o) < 1. So there must exist some γ(s, o) < 1 such that
p̃(s, o) ≤ γ(s, o). With γ .

= maxs,o γ(s, o), we obtain (A.22).

A.6 Theorem 5

We first provide a formal statement of Theorem 5. The formal theorem statement needs stepsizes to
be specific for each state-option pair. We rewrite (21–23) to incorporate such stepsizes:

Mp
t+1(x | St, o)

.
= Mp

t (x | St, o) + αt(St, o)ρt(o)
(
β(St+1, o)I(St+1 = x)

+
(
1− β(St+1, o)

)
Mp
t (x | St+1, o)−Mp

t (x | St, o)
)
, ∀ x ∈ S, (A.23)

Mr
t+1(St, o)

.
= Mr

t (St, o) + αt(St, o)ρt(o)
(
Rt+1 +

(
1− β(St+1, o)

)
Mr
t (St+1, o)−Mr

t (St, o)
)

(A.24)

M l
t+1(St, o)

.
= M l

t(St, o) + αt(St, o)ρt(o)
(

1 +
(
1− β(St+1, o)

)
M l
t(St+1, o)−M l

t(St, o)
)
.

(A.25)

Theorem A.4 (Convergence of the intra-option model learning algorithm, formal). If 0 ≤ αt(s, o) ≤
1,
∑
t αt(s, o) = ∞ and

∑
t α

2
t (s, o) < ∞, and αt(s, o) = 0 unless s = St, then the intra-option

model-learning algorithm (A.23–A.25) converges almost surely, Mp
t to mp, Mr

t to mr, and M l
t to

ml.

Here the assumptions on αt guarantee that each state-option pair is updated for an infinite number of
times. Because the three update rules are independent, we only show convergence of the first update
rule; the other two can be shown in the same way.
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Proof. We apply a slight generalization of Theorem 3 by Tsitsiklis (1994) to show the above theorem.
The generalization replaces Assumption 5 (an assumption for Theorem 3) by:

Assumption A.10. There exists a vector x∗ ∈ Rn, a positive vector v, a positive integer m, and a
scalar β ∈ [0, 1), such that

‖Fm(x)− x∗‖v ≤ β ‖x− x∗‖v , ∀x ∈ Rn.

That is, we replace the one-stage contraction assumption by a m-stage contraction assumption. The
proof of Tsitsiklis’ Theorem 3 also applies to its generalized form and is thus omitted here.

Notice that our update rule (A.23) is a special case of the general update rule considered by Theorem
3 (equations 1-3), and is thus a special case of its generalized version. Therefore we only need to
verify the above m−stage contraction assumption, as well as Assumption 1, 2, and 3 required by
Theorem 3. According to the proof in Appendix A.5, the operator T associated with the update rule
(21) is a |S|−stage contraction (and thus is a |S|−stage pseudo-contraction). Other assumptions
(Assumptions 1, 2, 3) required by Theorem 3 are also satisfied given our step-size, and finite MDP
assumptions.

A.7 Theorem 6

Proof. We first show that∑
o′

µ′(o′ | s)
∑
s′,r,l

p̂(s′, r, l | s, o′)(r − lr(µ) + vµ(s′))

≥
∑
o

µ(o | s)
∑
s′,r,l

p̂(s′, r, l | s, o)(r − lr(µ) + vµ(s′)) = vµ(s). (A.26)

Note that for all s, o and its corresponding o′, µ(o | s) = µ′(o′ | s). In order to show (A.26), we
show

∑
s′,r,l p̂(s

′, r, l | s, o′)(r− lr(µ) + vµ(s′)) ≥∑s′,r,l p̂(s
′, r, l | s, o)(r− lr(µ) + vµ(s′)) for

all s, o and corresponding o′.∑
s′,r,l

p̂(s′, r, l | s, o′)(r − lr(µ) + vµ(s′))

= E[R̂n − L̂nr(µ) + vµ(Ŝn+1) | Sn = s,On = o′]

= E[R̂n − L̂nr(µ) + vµ(Ŝn+1) | Sn = s,On = o′,Not encountering an interruption]

+ E[R̂n − L̂nr(µ) + vµ(Ŝn+1) | Sn = s,On = o′,Encountering an interruption]

≥ E[R̂n − L̂nr(µ) + vµ(Ŝn+1) | Sn = s,On = o′,Not encountering an interruption]

+ E[β(s′)(R̂n − L̂nr(µ) + vµ(Ŝn+1)) + (1− β(s′))(R̂n − L̂nr(µ) + qµ(Ŝn+1, o))

| Sn = s,On = o′,Encountering an interruption]

=
∑
s′,r,l

p̂(s′, r, l | s, o)(r − lr(µ) + vµ(s′)).

The above inequality holds because Ŝn+1 is the state where termination happens and thus
qµ(Ŝn+1, o) ≤ vµ(Ŝn+1). The last equality holds because E[β(s′)(R̂n − L̂nr(µ) + vµ(Ŝn+1)) +

(1 − β(s′))(R̂n − L̂nr(µ) + qµ(Ŝn+1, o)) | Sn = s,On = o′,Encountering an interruption] is the
expected differential return when the agent could interrupt its old option but chooses to stick on the
old option. (A.26) is shown.

Now write the l.h.s. of (A.26) in the matrix form∑
o′

µ′(o′ | s)
∑
s′,r,l

p̂(s′, r, l|s, o′)(r − lr(µ) + vµ(s′)) = rµ′(s)− lµ′(s)r(µ) + (Pµ′vµ)(s),

where rµ′(s)
.
=
∑
o′ µ
′(o′ | s)∑s′,r,l p̂(s

′, r, l|s, o′)r is the expected one option-transition reward,
lµ′(s)

.
=
∑
o′ µ
′(o′ | s)∑s′,r,l p̂(s

′, r, l|s, o′)l is the expected one option-transition length, and
Pµ′(s, s′)

.
=
∑
o′ µ
′(o′ | s)∑r,l p̂(s

′, r, l|s, o′) is the probability of terminating at s′.
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Combined with the r.h.s. of (A.26), we have

rµ′(s)− lµ′(s)r(µ) + (Pµ′vµ)(s) ≥ vµ(s).

Iterating the above inequality for K − 1 times, we have

K−1∑
k=0

(P kµ′rµ′(s)− P kµ′ lµ′(s)r(µ)) + PKµ′ vµ(s) ≥ vµ(s)

K−1∑
k=0

(P kµ′rµ′(s)− P kµ′ lµ′(s)r(µ)) ≥ vµ(s)− PKµ′ vµ(s).

Divide both sides by
∑K−1
k=0 P kµ′ lµ′(s) and take K →∞:

lim
K→∞

1∑K−1
k=0 P kµ′ lµ′(s)

K−1∑
k=0

(P kµ′rµ′(s)− P kµ′ lµ′(s)r(µ)) ≥ lim
K→∞

1∑K−1
k=0 P kµ′ lµ′(s)

(vµ(s)− PKµ′ vµ(s)).

For the l.h.s.:

lim
K→∞

1∑K−1
k=0 P kµ′ lµ′(s)

K−1∑
k=0

(P kµ′rµ′(s)− P kµ′ lµ′(s)r(µ))) = lim
K→∞

∑K−1
k=0 P kµ′rµ′(s)∑K−1
k=0 P kµ′ lµ′(s)

− r(µ) = r(µ′)− r(µ).

For the r.h.s.:

lim
K→∞

1∑K−1
k=0 P kµ′ lµ′(s)

(vµ(s)− PKµ′ vµ(s)) = 0.

Therefore r(µ′)− r(µ) ≥ 0.

Finally, note that a strict inequality holds if the probability of interruption when following policy µ′
is non-zero.
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B Additional Empirical Results

B.1 Inter-option Learning
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Figure B.1: Plots showing a parameter study for inter-option Differential Q-learning and the set of
options O = H + A in the continuing Four-Room domain when the goal was to go to G1. Same
experimental setups are used as what was described in Section 3. The x-axis denotes step size α; the
y-axis denotes the rate of the rewards averaged over all 200,000 steps of training, reflecting the rate
of learning. The error bars denote one standard error. The algorithm’s rate of learning varied little
over a broad range of its parameters α, β and η. Small standard error bars show that the algorithm’s
performance varied little over multiple runs.
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Figure B.2: Plots showing a parameter study for inter-option Differential Q-learning and the set
of options O = H in the continuing Four-Room domain when the goal was to go to G1. The
experimental setting and the plot axes are the same as mentioned in Figure B.1. Compared with
Figure B.1, it can be seen that the algorithm’s rate of learning with O = H was worse than it with
O = H + A. This is because there is no hallway option from H can takes the agent to G1. The
algorithm’s rate of learning varied little over a broad range of its parameters α, β and η, and also
varied little over multiple runs.
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Figure B.3: Plots showing a parameter study for inter-option Differential Q-learning and the set of
options O = A in the continuing Four-Room domain when the goal was to go to G1. Note that with
options being primitive actions, the algorithm becomes exactly the same as Differential Q-learning by
Wan et al. (2021). The experimental setting and the plot axes are the same as mentioned in Figure B.1.
Compared with Figure B.1, it can be seen that the algorithm’s rate of learning withO = A was worse
than it with O = H+A, particularly for small α. The algorithm’s rate of learning did not vary too
much over a broad range of its parameters β and η, and also varied little over multiple runs. The
algorithm’s performance is more sensitive to the choice of α.
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B.2 Intra-option Q-learning
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Figure B.4: Plots showing a parameter study for intra-option Differential Q-learning with the set of
options O = H in the continuing Four-Room domain when the goal was to go to G2. The algorithm
used a behavior policy consisting only of primitive actions. The hallway options were never executed..
The experimental setting and the plot axes are the same as mentioned in Section 4. The algorithm’s
rate of learning varied little over a broad range of its parameters α and η, and also varied little over
multiple runs.

B.3 Interruption
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Figure B.5: Plots showing parameter studies for intra-option Differential Q-learning with and without
interruption in the continuing Four-Room domain when the goal was to go to G3. The algorithm
used the set of hallway options O = H. The experimental setting and the plot axes are the same as
mentioned in Section 6. The algorithm’s rate of learning with interruption was higher than it without
interruption for medium sized choices of α. When a large or small α was used, interruption produced
a worse rate of learning. The algorithm’s rate of learning varied not too much over a broad range of
its parameters η and varied little over multiple runs, regardless of interruption. The algorithm’s rate
of learning was more sensitive to α when interruption is used.

B.4 Prediction Experiments

We also performed a set of experiments to show that both inter- and intra-option Differential Q-
evaluation can learn the reward rate well. The tested environment is the same as the one used to
test inter-option Differential Q-learning (with G1). The set of options consists of 4 primitive actions
and 8 hallway options. For each state, the behavior policy randomly picks an option. The target
policy is an optimal policy, which induces a reward rate 0.0625. We ran both inter- and intra option
Differential Q-evaluation in this problem. The parameters used are the same with those used in inter-
and intra-option Differential Q-learning experiments. The sensitivity of the two algorithms w.r.t. the
parameters is shown in Figure B.6 and Figure B.7. Inter-option algorithm’s reward rate error is quite
robust to β. Intra-option algorithm’s reward rate error is generally better than Inter-option algorithm’s
reward rate error unless a large stepsize α = 0.5 is used.
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Figure B.6: Plots showing parameter studies for inter-option Differential Q-evaluation in the con-
tinuing Four-Room domain when the goal was to go to G1. The algorithm used the set of primitive
actions and the set of hallway options O = A+H. The y-axis is the absolute difference between the
optimal reward rate 0.0625 and the estimated reward rate, averaged over all 200,000 steps.
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Figure B.7: Plots showing parameter studies for intra-option Differential Q-evaluation in the continu-
ing Four-Room domain when the goal was to go to G1. The setting is the same as the one used for
intra-option Differential Q-evaluation.
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C Additional Discussion

C.1 Two Failed Attempts on Extending Differential Q-learning to an Inter-option Algorithm

The authors have tried two other ways of extending Differential Q-learning to an Inter-option
Algorithm (cf. Section 3). While these two ways appear to work properly at the first glance, they do
not actually. We now show these two approaches and explain why they do not work properly.

The first extension uses, for each option, the average-reward rate per-step instead of the total reward
as the reward of the option. In particular, such an extension use update rules (3) and (4), but with TD
error defined as:

δ′n
.
= R̂n/L̂n − R̄n + max

o
Qn(Ŝn+1, o)−Qn(Ŝn, Ôn) (C.1)

Unfortunately, such an extension can not guarantee convergence to a desired point. Specifically, the
extension, if converges, will converge to a solution of E[δ′n] = 0, which is not necessarily a solution
of the Bellman equation E[δn] = 0 (Equation 2).

An alternative approach to avoid the instability issue is to shrink the entire update, not the option’s
cumulative reward, by the sample length:

Qn+1(Ŝn, Ôn)
.
= Qn(Ŝn, Ôn) + αnδn/L̂n, (C.2)

R̄n+1
.
= R̄n + ηαnδn/L̂n. (C.3)

Still, the above two updates can not guarantee convergence to the desired values because, again,
E[δn/L̂n] = 0 does not imply that the Bellman equation E[δn] = 0 is satisfied.

C.2 Pseudocodes

Algorithm 1: Inter-option Differential Q-learning
Input: Behavioral policy µb’s parameters (e.g., ε for ε-greedy)
Algorithm parameters: step-size parameters α, η, β

1 Initialize Q(s, o) ∀ s ∈ S, o ∈ O, R̄ arbitrarily (e.g., to zero); L(s, o)← 1 ∀ s ∈ S, o ∈ O
2 Obtain initial S
3 while still time to train do
4 Initialize L̂← 0, R̂← 0, Stmp ← S
5 O ← option sampled from µb(· | S)
6 do
7 Sample primitive action A ∼ π(· | S,O)
8 Take action A, observe R,S′

9 L̂← L̂+ 1

10 R̂← R̂+R
11 S ← S′

12 while O doesn’t terminate in S′
13 S ← Stmp
14 L(S,O)← L(S,O) + β

(
L̂− L(S,O)

)
15 δ ← R̂− R̄ · L(S,O) + maxoQ(S′, o)−Q(S,O)
16 Q(S,O)← Q(S,O) + αδ/L(S,O)
17 R̄← R̄+ ηαδ/L(S,O)
18 S ← S′

19 end
20 return Q
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Algorithm 2: Inter-option Differential Q-evaluation (learning)
Input: Behavioral policy µb, target policy µ
Algorithm parameters: step-size parameters α, η, β

1 Initialize Q(s, o) ∀ s ∈ S, o ∈ O, R̄ arbitrarily (e.g., to zero); L(s, o)← 1 ∀ s ∈ S, o ∈ O
2 Obtain initial S
3 while still time to train do
4 Initialize L̂← 0, R̂← 0, Stmp ← S
5 O ← option sampled from µb(· | S)
6 do
7 Sample primitive action A ∼ π(· | S,O)
8 Take action A, observe R,S′

9 L̂← L̂+ 1

10 R̂← R̂+R
11 S ← S′

12 while O doesn’t terminate in S′
13 S ← Stmp
14 L(S,O)← L(S,O) + β

(
L̂− L(S,O)

)
15 δ ← R̂− R̄ · L(S,O) +

∑
o µ(o | S′)Q(S′, o)−Q(S,O)

16 Q(S,O)← Q(S,O) + αδ/L(S,O)
17 R̄← R̄+ ηαδ/L(S,O)
18 S ← S′

19 end
20 return Q

Algorithm 3: Intra-option Differential Q-learning
Input: Behavioral policy µb’s parameters (e.g., ε for ε-greedy)
Algorithm parameters: step-size parameters α, η

1 Initialize Q(s, o) ∀ s ∈ S, o ∈ O, R̄ arbitrarily (e.g., to zero)
2 Obtain initial S
3 while still time to train do
4 O ← option sampled from µb(· | S)
5 do
6 Sample primitive action A ∼ π(· | S,O)
7 Take action A, observe R,S′
8 ∆ = 0
9 for all options o do

10 ρ← π(A | S, o)/π(A | S,O)

11 δ ← R− R̄+
((

1− β(S′, o)
)
Q(S′, o) + β(S′, o) maxo′ Q(S′, o′)

)
−Q(S, o)

12 Q(S, o)← Q(S, o) + αρδ
13 ∆← ∆ + ηαρδ
14 end
15 R̄← R̄+ ∆
16 S ← S′

17 while O doesn’t terminate in S
18 end
19 return Q
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Algorithm 4: Intra-option Differential Q-learning with interruption
Input: Behavioral policy µb’s parameters (e.g., ε for ε-greedy)
Algorithm parameters: step-size parameters α, η

1 Initialize Q(s, o) ∀ s ∈ S, o ∈ O, R̄ arbitrarily (e.g., to zero)
2 Obtain initial S
3 O ← option sampled from µb(·|S)
4 while still time to train do
5 if O /∈ argmaxQ(S, ·) then
6 O ← option sampled from µb(·|S)
7 end
8 Sample primitive action A ∼ π(·|S,O)
9 Take action A, observe R,S′

10 ∆ = 0
11 for all options o do
12 ρ← π(A|S, o)/π(A|S,O)

13 δ ← R− R̄+
((

1− β(S′, o)
)
Q(S′, o) + β(S′, o) maxo′ Q(S′, o′)

)
−Q(S, o)

14 Q(S, o)← Q(S, o) + αρδ
15 ∆← ∆ + ηαρδ
16 end
17 R̄← R̄+ ∆
18 S = S′

19 end
20 return Q

Algorithm 5: Intra-option Differential Q-evaluation (learning)
Input: Behavioral policy µb, target policy µ
Algorithm parameters: step-size parameters α, η

1 Initialize Q(s, o) ∀ s ∈ S, o ∈ O, R̄ arbitrarily (e.g., to zero)
2 Obtain initial S
3 while still time to train do
4 O ← option sampled from µb(· | S)
5 do
6 Sample primitive action A ∼ π(· | S,O)
7 Take action A, observe R,S′
8 ∆ = 0
9 for all options o do

10 ρ← π(A | S, o)/π(A | S,O)

11 δ ← R−R̄+
((

1−β(S′, o)
)
Q(S′, o)+β(S′, o)

∑
o′ µ(o′ | S′)Q(S′, o′)

)
−Q(S, o)

12 Q(S, o)← Q(S, o) + αρδ
13 ∆← ∆ + ηαρδ
14 end
15 R̄← R̄+ ∆
16 S ← S′

17 while O doesn’t terminate in S
18 end
19 return Q
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Algorithm 6: Combined Algorithm: Intra-option Model-learning + Inter-option Q-planning
Input: Behavioral policy µb’s parameters (e.g., ε for ε-greedy)
Algorithm parameters: step-size parameters α, β, η; number of planning steps per time step n

1 Initialize Q(s, o), P (x | s, o), R(s, o) ∀ s, x ∈ S, o ∈ O, R̄, arbitrarily (e.g., to zero);
L(s, o) = 1 ∀ s ∈ S, o ∈ O; T ← False

2 while still time to train do
3 S ← current state
4 O ← option sampled from µb(· | S)
5 while T is False do
6 Sample primitive action A ∼ π(· | S,O)
7 Take action A, observe R′, S′
8 for all options o such that π(A | S, o) > 0 do
9 ρ← π(A | S, o)/π(A | S,O)

10 for all states x ∈ S do
11 P (x | S, o)← P (x | S, o) + βρ

(
β(S′, o)I(S′ = x) +

(
1− β(S′, o)

)
P (x |

S′, o)− P (x | S, o)
)

12 end
13 R(S, o)← R(S, o) + βρ

(
R′ +

(
1− β(S′, o)

)
R(S′, o)−R(S, o)

)
14 L(S, o)← L(S, o) + βρ

(
1 +

(
1− β(S′, o)

)
L(S′, o)− L(S, o)

)
15 end
16 T ← indicator of termination sampled from β(S′, O)
17 for all of the n planning steps do
18 S ← a random previously observed state
19 O ← a random option previously taken in S
20 S′ ← a sampled state from P (· | S,O)
21 δ ← R(S,O)− L(S,O)R̄+ maxoQ(S′, o)−Q(S,O)
22 Q(S,O)← Q(S,O) + αρδ/L(S,O)
23 R̄← R̄+ ηαρδ/L(S,O)
24 end
25 end
26 end
27 return Q
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