
Appendices

A Background on Linear Temporal Logic
A.1 LTL Semantics

In this section, we give the formal semantics of LTL. Recall
that the satisfaction relation w � φ denotes that the infinite
word w satisfies φ. Equation (A.1) defines this relation.

w � a iff a ∈ w[0] a ∈ Π

w � ¬φ iff w 2 φ
w � φ ∧ ψ iff w � φ ∧ w � ψ

w � Xφ iff w[1:] � φ

w � φ U ψ iff ∃j ≥ 0.
(
w[j:] � ψ ∧

∀k ≥ 0. k < j ⇒ w[k:] � φ
)
.

(A.1)

The rest of the operators are defined as syntactic sugar in
terms of operators in Equation (A.1) as: φ ∨ ψ ≡ ¬(¬φ ∧
¬ψ), Fφ ≡ True U φ, Gφ ≡ ¬F¬φ.

A.2 Complete Description of the LTL Hierarchy

In this section, we describe the key properties of all classes
in the LTL hierarchy (see Figure 1).

• φ∈Finitary iff there exists a horizon H such that infinite
length words sharing the same prefix of length H are ei-
ther all accepted or all rejected by φ. E.g., a ∧ Xa (i.e., a
is true for two steps) is in Finitary .

• φ∈Guarantee iff there exists a language of finite wordsL
(i.e., a Boolean function on finite length words) such that
w � φ if L accepts a prefix of w. Informally, a formula
in Guarantee asserts that something eventually happens.
E.g., F a (i.e., eventually a is true) is in Guarantee.

• φ∈Safety iff there exists a language of finite words L
such thatw � φ ifL accepts all prefixes ofw. Informally, a
formula in Safety asserts that something always happens.
E.g., G a (i.e., a is always true) is in Safety .

• φ∈Obligation iff φ is a logical combination of formulas
in Guarantee and Safety . E.g., F a∧G b is in Obligation .

• φ∈Persistence iff there exists a language of finite words
L such that w � φ if L accepts all but finitely many pre-
fixes of w. Informally, a formula in Persistence asserts
that something happens finitely often. E.g., FG a (i.e., a
is not true for only finitely many times, and eventually a
stays true forever) is in Persistence.

• φ∈Recurrence iff there exists a language of finite words
L such that w � φ if L accepts infinitely many prefixes of
w. Informally, a formula in Recurrence asserts that some-
thing happens infinitely often. E.g., GF a (i.e., a is true for
infinitely many times) is in Recurrence.

• φ∈Reactivity iff φ is a logical combination of formulas
in Recurrence and Persistence . E.g., GF a ∧ FG b is in
Reactivity .

B Proof of Theorem 1: the Forward
Direction

B.1 MDP Family
We first give two constructions of parameterized counterex-
ample MDPs M1 and M2 shown in Figure 3 (repeated in
Figure B.1 for convenience). The key design behind each
pair in the family is that no planning-with-generative-model
algorithm can learn a policy that is simultaneously ε-optimal
on both MDPs without observing a number of samples that
depends on the probability of a specific transition.

Both MDPs are parameterized by the shape parameters k,
l, u, v, m, n, and an unknown transition probability param-
eter p. The actions are {a1, a2}, and the state space is parti-
tioned into three regions: states g0...l (the grey states), states
h0...v (the line-hatched states), and states q0...n (the white
states). All transitions, except gl → h0 and gl → q0, are
the same betweenM1 andM2. The effect of this difference
between the two MDPs is that, forMi:

• Action ai inMi at the state gl will transition to the state
h0 with probability p, inducing a run that cycles in the region
hu...v forever.
• Action a3−i (the alternative to ai) in Mi at the state gl
will transition to the state q0 with probability p, inducing a
run that cycles in the region qm...n forever.

Further, for any policy, a run of the policy on both MDPs
must eventually reach h0 or q0 with probability 1, and ends
in an infinite cycle in either hu...v or qm...n.

B.2 Sample Complexity of Fh0
We next consider the LTL objective ξh0 specified by the LTL
formula Fh0 and the labeling function Lh0 that labels only
the state h0 as true . A sample path on the MDPs (Figure 3)
satisfies this objective iff the path reaches the state h0.

Given ε > 0and 0 < δ < 1, our goal is to derive a lower
bound on the number of sampled environment transitions
performed by an algorithm, so that the satisfaction proba-
bility of π, the learned policy, is ε-optimal (i.e., V πM,ξh0

≥
V π
∗

M,ξh0
− ε) with probability at least 1− δ.

The key rationale behind the following lemma is that, if a
planning-with-generative-model algorithm has not observed
any transition to either h0 or q0, the learned policy cannot be
ε-optimal in bothM1 andM2.

Lemma B.1. For any planning-with-generative-model al-
gorithm (AS,AL), it must be the case that: min (ζ1, ζ2) ≤
1
2 , where ζi = PT

(
V
AL(T )

Mi,ξ
h0
≥ V π∗Mi,ξ

h0
− ε

∣∣∣ n (T ) = 0
)

and
n(T ) is the number of transitions in T that start from gl and
end in either h0 or q0.

The value ζi is the LTL-PAC probability of a learned pol-
icy on Mi, given that the planning-with-generative-model
algorithm did not observe any information that allows the
algorithm to distinguish betweenM1 andM2.

Proof. We present a proof of Lemma B.1 in Appendix C.



g0 . . . gk . . . gl

a1, 1− p

a2, 1− p

h0 . . . hu . . . hv

q0 . . . qm . . . qn

a2, p

a1, p

a1, p

a2, p

M1

M2

M1 & M2

Figure B.1: Counterexample MDPsM1 andM2, with transitions distinguished by arrow types (see legend). Both MDPs are
parameterized by the parameter p that is in range 0 < p < 1. Unlabeled edges are deterministic (actions a1 and a2 transition
with probability 1). Ellipsis indicates a deterministic chain of states.

A planning-with-generative-model algorithm cannot learn
an ε-optimal policy without observing a transition to either
h0 or q0. Therefore, we bound the sample complexity of the
algorithm from below by the probability that the sampling
algorithm does observe such a transition:

Lemma B.2. For the LTL objective ξh0 , the number of sam-
ples, N , for a planning-with-generative-model algorithm
to be LTL-PAC in both M1 and M2 (for any instantia-
tion of the parameters k, l, u, v,m, n) has a lower bound of
N ≥ log(2δ)

log(1−p) .

Below we give a proof sketch of Lemma B.2; we give the
complete proof in Appendix D.

Proof Sketch of Lemma B.2. First, we assert that the two in-
equalities of Equation (3) for bothM1 andM2 holds true
for a planning-with-generative-model algorithm. Next, by
conditioning on n(T ) = 0, plugging in the notation of ζi,
and relaxing both inequalities, we get (1 − ζi)PT(n(T ) =
0) ≤ δ, for i ∈ {1, 2}. Then, since n(T ) = 0 only occurs
when all transitions from gl end in gk, we have PT(n(T ) =
0) ≥ (1 − p)N . Combining the inequalities, we get (1 −
min(ζ1, ζ2))(1− p)N ≤ δ. Finally, we apply Lemma B.1 to
get the desired lower bound of N ≥ log(2δ)

log(1−p) .

B.3 Sample Complexity of Non-finitary Formulas
The goal of this section is to generalize our lower bound on
Fh0 to all non-finitary LTL formulas. The key observation
we make is that for any non-finitary LTL formula, we can
construct a pair of MDPs,M1 andM2, from our MDP fam-
ily, whose existence implies our established lower bound.

We will use [w1;w2; . . . wn] to denote the concatenation
of the finite length words w1 . . . wn. We will use wi to de-
note the repetition of the finite length wordw by i times, and
w∞ to denote the infinite repetition of w.

Definition 1. An accepting (resp. rejecting) infinite length
word [wa;w∞b ] of φ is uncommittable if there exists fi-
nite length words wc, wd such that φ rejects (resp. accepts)
[wa;wib;wc;w

∞
d ] for all i ∈ N.

Lemma B.3. If φ has an uncommittable word w, there is
an instantiation ofM1 (orM2) in Figure 3 and a labeling
function L, such that, for any policy, the satisfaction proba-
bilities of that policy inM1 (orM2) for the LTL objectives
specified by (L, φ) and (Lh0 ,Fh0) are the same.

Proof. For an uncommittable word w, we first find the finite
length words wa,wb,wc,wd according to Definition 1. We
then instantiateM1 andM2 in Figure 3 as follows.
• If w is an uncommittable accepting word, we set k, l, u,
v, m, n (Figure 3) to |wa|, |wa| + |wb|, 0, |wb|, |wc| and
|wc| + |wd|, respectively. We then set the labeling function
as in Equation (B.1).
• If w is an uncommittable rejecting word, we set k, l, u,
v, m, n (Figure 3) to |wa|, |wa|+ |wb|, |wc|, |wc|+ |wd|, 0
and |wb|, respectively. We then set the labeling function as
in Equation (B.2).

L(s)=


[wa;wb][j] if s=gj
wb[j] if s=hj
[wc;wd][j] if s=qj

(B.1)

L(s)=


[wa;wb][j] if s=gj
[wc;wd][j] if s=hj
wb[j] if s=qj

(B.2)
In words, for an uncommittable accepting word, we label

the states g0...l one-by-one by [wa;wb]; we label the states
h0...v one-by-one bywb (and set u = 0, which eliminates the
chain of states h0...u); we label the states q0...n one-by-one
by [wc;wd]. Symmetrically, for an uncommittable rejecting
word, we label the states g0...l one-by-one by [wa;wb]; we
label the states h0...v one-by-one by [wc;wd]; we label the
states q0...n one-by-one by wb (and set m = 0, which elimi-
nates the chain of states q0...m).

By the above instantiation, the two objectives specified
by (L, φ) and (Lh0 ,Fh0) are equivalent inM1 andM2. In
particular, any path inM1 orM2 satisfies the LTL objective
specified by (L, φ) if and only if the path visits the state
h0 and therefore also satisfies the LTL objective specified
by (Lh0 ,Fh0). Therefore, any policy must have the same
satisfaction probability for both objectives.

Lemma B.4. For φ 6∈Finitary , the number of samples for
a planning-with-generative-model algorithm to be LTL-PAC
has a lower bound of N ≥ log(2δ)

log(1−p) .

Proof. A corollary of Lemma B.3 is: for any φ that has
an uncommittable word, we can construct a pair of MDPs
M1 and M2 in the family of pairs of MDPs in Figure 3,
such that, in both MDPs, a policy is sample efficiently LTL-
PAC for the LTL objective specified by (L, φ) if it is sam-
ple efficiently LTL-PAC for the LTL objective specified by
(Lh0 ,Fh0). This property implies that the lower bound in
Lemma B.2 for the objective specified by (Lh0 ,Fh0) also
applies to the objective specified by (L, φ), provided that
any LTL formula φ 6∈Finitary has an uncommittable word.
In Appendix E, we prove a lemma that any LTL formula



φ 6∈Guarantee has an uncommittable accepting word, and
any LTL formula φ 6∈Safety has an uncommittable reject-
ing word. Since Finitary is the intersection of Guarantee
and Safety , this completes the proof.

B.4 Conclusion
Note that the lower bound N≥ log(2δ)

log(1−p) depends on p, the
transition probability in the constructed MDPs. Moreover,
for δ < 1

2
, as p approaches 0, this lower bound goes to in-

finity. As a result, the bound does not satisfy the definition
of sample efficiently LTL-PAC planning-with-generative-
model algorithm for the LTL objective (Definition 2), and
thus no algorithm is sample efficiently LTL-PAC. Therefore,
LTL formulas not in Finitary are not LTL-PAC-learnable.
This argument proves the forward direction of Theorem 1.

C Proof of Lemma B.1
To the end of proving Lemma B.1, we first observe the fol-
lowing proposition:
Proposition C.1. For any non-stationary policy π, the sat-
isfaction probabilities forM1 andM2 sum to one:

V πM1,ξh0
+ V πM2,ξh0

= 1.

We give a proof of Proposition C.1 in Appendix C.1.

Proof of Lemma B.1. Note that the optimal satisfaction
probabilities in bothM1 andM2 is one, that is, V π

∗

Mi,ξh0
=

1. This is because the policy that always chooses ai inMi

guarantees visitation to the state h0. Therefore, a corollary
of Proposition C.1 is that for any policy π and any ε < 1

2 ,
the policy π can only be ε-optimal in one ofM1 andM2.
Specifically, we have:

1(
V π
M1,ξ

h0
≥V π∗
M1,ξ

h0
−ε

)+1(
V π
M2,ξ

h0
≥V π∗
M2,ξ

h0
−ε

) ≤ 1. (C.1)

Consider a specific sequence of transitions T of length
N sampled from eitherM1 orM2. If n(T ) = 0, we must
have the probability of observing T in M1 equals to the
probability of observing T inM2, that is:

PT∼〈M1,AS〉N (T = T | n(T ) = 0 )

= PT∼〈M2,AS〉N (T = T | n(T ) = 0 ).

This is because the only differences between M1 and M2

are the transitions gl → h0 and gl → q0, and conditioning
on n(T ) = 0 effectively eliminates these differences.

Therefore, we can write the sum of ζ1 and ζ2 as:

ζ1 + ζ2 =
∑
∀T

PT(T = T | n(T ) = 0 )·{
1(

V
AL(T )

M1,ξ
h0
≥V π∗
M1,ξ

h0
−ε

) + 1(
V
AL(T )

M2,ξ
h0
≥V π∗
M2,ξ

h0
−ε

)
}
.

Plugging in Equation (C.1), we get

ζ1 + ζ2 ≤ 1.

This then implies that min(ζ1, ζ2) ≤ 1
2 .

C.1 Proof of Proposition C.1
Proof. We first focus onM1. Consider an infinite run τ =
(s0, a0, s1, a1, . . . ) of the policy π onM1. Let τ [:i] denote
the partial history up to state si; let w denote all the states
(s0, s1, . . . ) in τ . Let Ei denote the event that the visited
state at step i is either h0 or q0: w[i] ∈ {h0, q0}. We have:

V πM1,ξh0
= P(L (w) � Fh0)

=

∞∑
i=1

P(L (w) � Fh0 | Ei ) · P(Ei)

Given that Ei happens, the previous state w[i − 1] must be
gl. Then, the probability of satisfying the formula given the
event Ei is the probability of the learned policy choosing a1

from the state gl after observing the partial history τ [i− 1]:

V πM1,ξh0
=

∞∑
i=1

P(π (τ [:i− 1]) = a1 |Ei ) · P(Ei). (C.2)

Symmetrically forM2 we then have:

V πM2,ξh0
=

∞∑
i=1

P(π (τ [:i− 1]) = a2 |Ei ) · P(Ei). (C.3)

For any policy and any given partial history, the probabil-
ity of choosing a1 or a2 must sum to 1, that is:

P(π (τ [:i− 1]) = a1 |Ei )+P(π (τ [:i− 1]) = a2 |Ei ) = 1

Therefore, we may add Equation (C.2) and Equation (C.3)
to get:

V πM1,ξh0
+ V πM2,ξh0

=

∞∑
i=1

1 · P(Ei).

Finally, since the event Ei must happen for some finitary
i with probability 1 (i.e., either h0 or q0 must be reached
eventually with probability 1), the expression on the right of
the equation sums to 1.

D Complete Proof of Lemma B.2
Proof. First, considerM1. We will derive an inequality that
lower bounds N . We begin by asserting that the inequality
of Equation (3) holds true for a reinforcement-learning algo-
rithm A = (AS,AL). That is:

PT

(
V
AL(T )

M1,ξh0
≥ V π

∗

M1,ξh0
− ε
)
≥ 1− δ.

We expand the left-hand side by conditioning on n(T ) = 0:

PT

(
V
AL(T )

M1,ξ
h0
≥ V π∗M1,ξ

h0 − ε
∣∣∣ n (T ) = 0

)
PT(n (T ) = 0)+

PT

(
V
AL(T )

M1,ξ
h0
≥ V π∗M1,ξ

h0 − ε
∣∣∣ n (T ) > 0

)
(1− PT(n (T ) = 0))

≥ 1− δ.

Since PT

(
V
AL(T )

M1,ξh0
≥ 1− ε

∣∣∣ n (T ) > 0
)
≤ 1, we may re-

lax the inequality to:

(1− ζ1)PT(n (T ) = 0) ≤ δ,



where we also plugged in our definition of ζi (see
Lemma B.1). This relaxation optimistically assumes that
a reinforcement-learning algorithm can learn an ε-optimal
policy by observing at least one transition to h0 or q0.

Since there are at most N transitions initiating from the
state gl, and n(T ) = 0 only occurs when all those transi-
tions end up in gk, we have PT(n (T ) = 0) ≥ (1 − p)N .
Incorporating this into the inequality we have:

(1− ζ1) (1− p)N ≤ δ.
Symmetrically, forM2 we have:

(1− ζ2) (1− p)N ≤ δ.
Since both inequalities need to be satisfied, we may combine
them by using min to always choose the tighter inequality:

(1−min (ζ1, ζ2)) (1− p)N ≤ δ.
By applying Lemma B.1, we finally remove the inequality’s
dependence on ζi, and get the desired lower bound of

N ≥ log(2δ)

log (1− p)
,

which completes the proof of Lemma B.2.

E Uncommittable Words for non-Finitary
Formulas

In this section, we prove the following lemma:
Lemma E.1. Any LTL formula φ 6∈Guarantee has an un-
committable accepting word. Any LTL formula φ 6∈Safety
has an uncommittable rejecting word.

E.1 Preliminaries
We will review some preliminaries to prepare for our proof
of Lemma E.1.

We will use an automaton-based argument for our proof
of Lemma E.1. To that end, we recall the following defini-
tions for automatons.

Deterministic Finite Automaton A deterministic finite
automaton (DFA) is a tuple (S,A, P, s0, sacc), where
(S,A, P, s0) is a deterministic MDP (i.e., P degenerated to
a deterministic function (S × A) → S), and sacc ∈ S is an
accepting state.

Deterministic Rabin Automaton A deterministic Rabin
automaton (DRA) is a tuple (S,Π, T, s0,Acc), where
• S is a finite set of states.
• Π is the atomic propositions of φ.
• T is a transition function (S × 2Π)→ S.
• s0 ∈ S is an initial state.
• Acc is a set of pairs of subsets of states (Bi, Gi) ∈ (2S)2.

An infinite length word w over the atomic propositions Π
is accepted by the DRA, if there exists a run of the DRA
such that there exists a (Bi, Gi) ∈ Acc where the run visits
all states in Bi finitely many times and visits some state(s)
in Gi infinitely many times.

For any LTL formula φ, one can always construct an
equivalent DRA that accepts the same set of infinite length
words as φ (Safra 1988).

E.2 Proof of Lemma E.1 for φ 6∈Guarantee

Given an LTL formula φ, we first construct its equivalent
DRAR = (S,Π, T, s0,Acc) (Safra 1988).

A path in a DRA is a sequence of transitions in the DRA.
A cycle in a DRA is a path that starts from some state and
then returns to that state. A cycle is accepting if there ex-
ists a pair (Bi, Gi) ∈ Acc, such that the cycle does not visit
states in Bi and visits some states in Gi. Conversely, a cy-
cle is rejecting if it is not accepting. With the above defini-
tions and to the end of proving Lemma E.1 for the case of
φ 6∈Guarantee, we state and prove the following lemma.

Lemma E.2. For any LTL formula φ 6∈Guarantee and its
equivalent DRA R, it must be the case that R contains an
accepting cycle that is reachable from the initial state and
there exists a path from a state in the accepting cycle to a
rejecting cycle.

Proof. Suppose, for the sake of contradiction, there does not
exist an accepting cycle that 1. is reachable from the initial
state and 2. has a path to a rejecting cycle in the equivalent
DRAR. Then there are two scenarios:

• R does not have any accepting cycle that is reachable
from the initial state.

• All accepting cycles reachable from the initial state do
not have any path to any rejecting cycle.

For the first scenario, R must not accept any infinite
length word. Therefore φ must be equal to F (i.e., the con-
stant falsum). However, F is in the Finitary LTL class,
which is a subset of Guarantee, so this is a contradiction.

For the second scenario, consider any infinite length
word w. Consider the induced infinite path P =
(s0, w[0], s1, w[1], . . . ) by w on the DRA starting from the
initial state s0.

If φ accepts the word w, the path P must reach some state
in some accepting cycle.

Conversely, if φ rejects the wordw, the path must not visit
any state in any accepting cycle. This is because otherwise
the path can no longer visit a rejecting cycle once it visits the
accepting cycle, thereby causing the word to be accepted.

Therefore, φ accepts the word w as soon as the path P
visits some state in some accepting cycle. This degenerates
the DRA to a DFA, where the accepting states are all the
states in the accepting cycles of the DRA. Then, an infinite
length word w is accepted by φ if and only if there exists a
prefix of w that is accepted by the DFA.

By the property of the Guarantee class (see Appendix A),
for φ∈Guarantee, there exists a language of finite length
words, L, such that w � φ if L accepts a prefix of w (Manna
and Pnueli 1987). Since a DFA recognizes a regular lan-
guage, the formula must be in the Guarantee LTL class.
This is also a contradiction.

Therefore, there must exist an accepting cycle that is
reachable from the initial state and has a path to a rejecting
cycle in the equivalent DRA.

We are now ready to give a construction of wa, wb, wc
and wd that directly proves Lemma E.1 for φ 6∈Guarantee.
Consider the equivalent DRA R of the LTL formula. By



Lemma E.2,Rmust contain an accepting cycle that is reach-
able from the initial state and has a path to a rejecting cycle.
We can thus define the following paths and cycles:

• Let Pa be the path from the initial state to the accepting
cycle.

• Let Pb be the accepting cycle.
• Let Pc be a path from the last state in the accepting cycle

to the rejecting cycle.
• Let Pd be the rejecting cycle.

For a pathP = (si, w[i], . . . sj , w[j], sj+1), letw(P) denote
the finite length word consisting only of the characters in be-
tween every other state (i.e., each character is a tuple of truth
values of the atomic propositions): w(P) = w[i] . . . w[j].
Consider the assignments of wa = w(Pa), wb = w(Pb),
wc = w(Pc) and wd = w(Pd). Notice that:

• The formula φ accepts the infinite length word [wa;w∞b ]
because P b is an accepting cycle.

• The formula φ rejects all infinite length words
[wa;wib;wc;w

∞
d ] for all i ∈ N because P d is a reject-

ing cycle.

By Definition 1, the infinite length word [wa;w∞b ] is an
uncommittable accepting word. This construction proves
Lemma E.1 for φ 6∈Guarantee.

E.3 Proof of Lemma E.1 for φ 6∈Safety
The proof for φ 6∈Safety is symmetrical to φ 6∈Guarantee.
For completeness, we give the proof below.

Given an LTL formula φ, we again first construct its
equivalent DRAR = (S,Π, T, s0,Acc).

To the end of proving Lemma E.1 for the case of
φ 6∈Safety , we state and prove the following lemma.

Lemma E.3. For any LTL formula φ 6∈Safety and its equiv-
alent DRAR, it must be the case thatR contains a rejecting
cycle that is reachable from the initial state and has a path
from any state in the rejecting cycle to an accepting cycle.

Proof. Suppose, for the sake of contradiction, there does not
exist a rejecting cycle that 1. is reachable from the initial
state and 2. has a path to an accepting cycle in the equivalent
DRAR. Then there are two scenarios:

• R does not have any rejecting cycle that is reachable
from the initial state.

• All rejecting cycles reachable from the initial state do not
have any path to any accepting cycle.

For the first scenario,Rmust not reject any infinite length
word. Therefore φ must be equal to T (i.e., the constant
truth). However, T is in the Finitary LTL class, which is
a subset of Safety , so this is a contradiction.

For the second scenario, consider any infinite length
word w. Consider the induced infinite path P =
(s0, w[0], s1, w[1], . . . ) by w on the DRA starting from the
initial state s0.

If φ rejects the word w, the path P must reach some state
in some rejecting cycle.

Conversely, if φ accepts w, the path must not visit any
state in any rejecting cycle. This is because otherwise the
path can no longer visit a accepting cycle once it visits the
rejecting cycle, thereby causing the word to be rejected.

Therefore, φ rejects the word w as soon as the path P
visits some state in some rejecting cycle. This degenerates
the DRA to a DFA, where the accepting states are all the
states except those in the rejecting cycles of the DRA. Then,
an infinite length wordw is accepted by φ if and only if there
all prefixes of w are accepted by the DFA.

By the property of the Safety class (see Appendix A), for
φ∈Safety , there exists a language of finite length words, L,
such that w � φ if L accepts all prefixes of w (Manna and
Pnueli 1987). Since a DFA recognizes a regular language,
the formula must be in the Safety LTL class. This is also a
contradiction.

Therefore, there must exist a rejecting cycle that is reach-
able from the initial state and has a path to an accepting cycle
in the equivalent DRA.

We are now ready to give a construction ofwa,wb,wc and
wd that directly proves Lemma E.1 for φ 6∈Safety . Consider
the equivalent DRA R of the LTL formula. By Lemma E.3,
R must contain a rejecting cycle that is reachable from the
initial state and has a path to an accepting cycle. We can thus
define the following paths and cycles:
• Let Pa be the path from the initial state to the rejecting

cycle.
• Let Pb be the rejecting cycle.
• Let Pc be a path from the last state in the rejecting cycle

to the accepting cycle.
• Let Pd be the accepting cycle.

Consider the assignments of wa = w(Pa), wb = w(Pb),
wc = w(Pc) and wd = w(Pd). Notice that:
• The formula φ rejects the infinite length word [wa;w∞b ]

because P b is a rejecting cycle.
• The formula φ accepts all infinite length words

[wa;wib;wc;w
∞
d ] for all i ∈ N because P d is an accept-

ing cycle.
By Definition 1, the infinite length word [wa;w∞b ] is an
uncommittable rejecting word. This construction proves
Lemma E.1 for φ 6∈Safety .

F Proof of Theorem 1: the Reverse Direction
In this section, we give a proof sketch to the reverse direction
of Theorem 1.

F.1 Proof Outline
• Reduction to Infinite-horizon Cumulative Rewards.

First, given an LTL formula in Finitary and an environ-
ment MDP, we will construct an augmented MDP with
rewards similar to Giacomo et al. (2019); Camacho et al.
(2019). We reduce the problem of finding the optimal
non-stationary policy for satisfying the formula in the
original MDP to the problem of finding the optimal sta-
tionary policy that maximizes the infinite-horizon (undis-
counted) cumulative rewards in this augmented MDP.



• Reduction to Finite-horizon Cumulative Rewards.
Next, we reduce the infinite-horizon cumulative rewards
to a finite-horizon cumulative rewards, using the fact that
the formula is finitary.

• Sample Complexity Upper Bound. Lastly, Dann and
Brunskill (2015) have derived an upper bound on the
sample complexity for a reinforcement-learning algo-
rithm for finite-horizon MDPs. We thus specialize this
known upper bound to our problem setup of the aug-
mented MDP and conclude that any finitary formula is
PAC-learnable.

F.2 Proof
Reduction to Infinite-horizon Cumulative Rewards
Given an LTL formula φ in Finitary with atomic propo-
sitions Π, one can compile φ into a DFA M̄ =
(S̄, 2Π, P̄ , s̄0, ¯sacc) that decides the satisfaction of φ (Latvala
2003). In particular, for a given sample path w of DTMC in-
duced by a policy and the environment MDP, L(w) satisfies
φ if and only if the DFA, upon consuming L(w), eventually
reaches the accept state sacc. Here, the DFA has a size (in the
worst case) doubly exponential to the size of the formula:
|S̄| = O(2exp(|φ|)) (Kupferman and Vardi 1999).

We then use the following product construction to form
an augmented MDP with rewards M̂ = (Ŝ, Â, P̂ , ŝ0, R̂).
Specifically,

• The states and actions are: Ŝ = S × S̄ and Â = A.
• The transitions follow the transitions in the environment

MDP and the DFA simultaneously, where the action of
the DFA come from labeling the current state of the en-
vironment MDP: P̂ ((s, s̄), a, (s′, s̄′)) = P (s, a, s′) and
s̄′ = P̄ (s̄,L(s)).

• The reward function gives a reward of one to any tran-
sition from a non-accepting state that reaches sacc in
the DFA, and zero otherwise: R((s, ŝ), a, (s′, ŝ′)) =
1s6=sacc∧ŝ′=sacc .

By construction, each run of the augmented MDP gives
a reward of 1 iff the run satisfies the finitary formula φ.
The expected (undiscounted) infinite-horizon cumulative re-
wards thus equals the satisfaction probability of the formula.
Therefore, maximizing the infinite-horizon cumulative re-
wards in the augmented MDP is equivalent to maximizing
the satisfaction probability of φ in the environment MDP.

Reduction to Finite-horizon Cumulative Rewards By
the property of LTL hierarchy (Manna and Pnueli 1987), for
any LTL formula φ in Finitary and an infinite length word
w, one can decide if φ accepts w by inspecting a length-H
prefix of w. Here, H is a constant that is computable from
φ. In particular, H equals the longest distance from the start
state to a terminal state in the DFA in the above construc-
tion1. Thus, the infinite-horizon cumulative rewards is fur-
ther equivalent to the finite-horizon (of length H) cumula-
tive rewards, since the product construction gives no reward
after the horizon H . This implies that finding the optimal

1Note that since φ is finitary, the DFA does not have any cycles
except at the terminal states (Duret-Lutz et al. 2016).

policy for φ is further equivalent to finding the optimal pol-
icy that maximizes the cumulative rewards for a finite hori-
zon H in this augmented MDP.

Sample Complexity Upper Bound Lastly, Dann
and Brunskill (2015) derived that with at most
Õ
(
|S|2|A||H3

ε2 log 1
δ

)
number of state-action samples2,

a particular reinforcement-learning algorithm called UCFH
is sample efficiently PAC3. Incorporating the fact that the
augmented MDP has |Ŝ| = |S| · O(2exp(|φ|)) number
of states, we obtain a sample complexity upper bound of
Õ
(
|S|2 2exp(|φ|)2|A|H3

ε2 log 1
δ

)
for the overall reinforcement-

learning algorithm.
Since for any finitary formula, we have constructed a rein-

forcement-learning algorithm that is sample efficiently LTL-
PAC for all environment MDPs, this concludes our proof
that any formula in Finitary is LTL-PAC-learnable.

G Empirical Justifications
In this section, we empirically demonstrate our main result.
Previous work has introduced various reinforcement-learn-
ing algorithms for LTL objectives (Sadigh et al. 2014; Hahn
et al. 2019; Hasanbeig et al. 2019; Bozkurt et al. 2020). We
therefore ask the research question: Do the sample complex-
ities for reinforcement-learning algorithms for LTL objec-
tives introduced by previous work depend on the transition
probabilities of the environment?

Methodology We consider a set of recent reinforcement-
learning algorithms for LTL objectives (Hahn et al. 2019;
Bozkurt et al. 2020), about which we give more details in
Appendix H. These algorithms are all implemented in the
Mungojerrie toolbox (Hahn et al. 2021).

We consider two pairs of LTL formulas and environment
MDPs. The first pair is the formula Fh and its counterex-
ample MDP as in Figure 2. The second is a formula and an
MDP adapted from a case study in prior work (Sadigh et al.
2014). In this section, we focus on the first pair and defer the
complete methodology and results to Appendix H.

We ran the considered algorithms on the chosen MDP
with a range of values for the parameter p and let the al-
gorithms perform N environment samples. We vary p by
a geometric progression from 10−1 to 10−3 in 5 steps:
p(i) = 10−

i+1
2 for 1 ≤ i ≤ 5. We vary N by a geometric

progression from 101 to 105 in 21 steps: N(j) = 10
j+4
5 for

1 ≤ j ≤ 21. For each algorithm and each pair of values of p
and N , we fix ε = 0.1 and repeatedly run the algorithm to
obtain a Monte Carlo estimation of the LTL-PAC probability
(left side of Equation (3)) for that setting of p, N and ε. We
repeat each setting until the estimated standard deviation of

2The notation Õ(.) is the same as O(.), but ignores any log-
terms.

3The bound given in Dann and Brunskill (2015) is
Õ

(
|S|2|A||H2

ε2
log 1

δ

)
, and it is a upper bound on the number of

episodes. To make it consistent with our lower bound, which is a
bound on the number of sampled transitions, we multiply it by an
additional H term.



Figure G.1: Left: LTL-PAC probabilities vs. number of
samples, varying parameters p. Right: number of samples
needed to reach 0.9 LTL-PAC probability vs. parameter p.

the estimated probability is within 0.01. In the end, for each
algorithm we obtain 5 × 21 = 105 LTL-PAC probabilities
and their estimated standard deviations.

Results Figure G.1 presents the results for the algorithm
in Bozkurt et al. (2020). Appendix H presents the results for
other algorithms. On the left, we plot the LTL-PAC proba-
bilities vs. the number of samples N , one curve for each p.
On the right, we plot the intersections of the curves in the
left plot with a horizontal cutoff of 0.9.

As we see from the left plot of Figure G.1, for each p,
the curve starts at 0 and grows to 1 in a sigmoidal shape as
the number of samples increases. However, as p decreases,
the MDP becomes harder: As shown on the right plot of Fig-
ure G.1, the number of samples required to reach a particular
LTL-PAC probability grows exponentially. Results for other
algorithms are similar and lead to the same conclusion.

Conclusion Since, in practice, the transition probabilities
(p in this case) are unknown, one can’t know which curve
in the left plot a given environment will follow. Therefore,
given any finite number of samples, these reinforcement-
algorithms cannot provide guarantees on the LTL-PAC prob-
ability of the learned policy. This result supports Theorem 1.

H Empirical Experiment Details
H.1 Details of Methodology
Chosen Algorithms We consider a set of state-of-the-art
reinforcement-learning algorithms for LTL objectives im-
plemented in the Mongujerrie toolbox (Hahn et al. 2021).

A common pattern in these previous works (Sadigh et al.
2014; Hahn et al. 2019; Bozkurt et al. 2020) is that each
work constructs a product MDP with rewards (i.e., an MDP
with a reward function on that MDP) from an LTL formula
and an environment MDP. Moreover, these works permit the
use of any standard reinforcement-learning algorithm, such
as Q-learning or SARSA(λ), to solve the constructed prod-
uct MDP with the specified reward function to obtain the
product MDP’s optimal policy. Finally, these works cast the
optimal policy back to a non-stationary policy of the envi-
ronment MDP, which becomes the algorithm’s output pol-
icy.

Following Hahn et al. (2021), we call each specific con-
struction of a product MDP with rewards as a reward-
scheme. We then characterize each reinforcement-learning
algorithm as a “reward-scheme” and “learning-algorithm”

𝑔
𝑕

𝑞

𝑎1, 𝑝

𝑎2, 𝑝

𝑎1, 1− 𝑝

𝑎2, 1− 𝑝

Figure H.1: Environment MDP used in the experiments.

Figure H.2: Gridworld environment MDP from Sadigh et al.
(2014) with a customized transition dynamics. The agent
starts from the lower left corner. At each time step, the agent
can choose to move up, down, left or right. The white cells
are sticky: the agent moves towards the intended direction
with probability 1 − p (or stays stationary if it will move
off the grid), and stays stationary with probability p. The red
cells are trapping: once the agent steps on a red cell, it stays
there forever.

pair. We consider a total of five reward-schemes 4: Reward-
on-acc (Sadigh et al. 2014), Multi-discount (Bozkurt et al.
2020), Zeta-reach (Hahn et al. 2019), Zeta-acc (Hahn
et al. 2020), and Zeta-discount (Hahn et al. 2020). We
consider a total of three learning-algorithms: Q-learning
(Watkins and Dayan 1992), Double Q-learning (Hasselt
2010), and SARSA(λ) (Sutton 1988). This yields a total of
15 reinforcement-learning algorithms for LTL objectives.

Algorithm Parameters Each reinforcement-learning al-
gorithm in Mungojerrie accepts a set of hyper-parameters.
For the majority of the hyper-parameters, we use their de-
fault values as in Mungojerrie Version 1.0 (Hahn et al.
2021). We present the hyper-parameters that differ from the
default values in Table H.1. For each of the hyper-parameters
in Table H.1, we use a different value from the default value
because it allow all the algorithms that we consider to con-
verge within 105 steps (i.e., the maximum learning steps that
we allow). For SARSA(λ), we use λ = 0.

Objectives and Environment MDPs We consider two
pairs of LTL formulas and environment MDPs. The first pair
is the formula Fh and the counterexample MDP constructed
according to Appendix B.1, shown in Figure H.1. The sec-
ond pair is the formula F goal and a gridworld environment
MDP from from Sadigh et al. (2014) with a customized tran-
sition dynamics, shown in Figure H.2.

4We use the same naming of each reward-scheme as in the
Mungojerrie toolbox (Hahn et al. 2021)



Reinforcement-learning-algorithm Learning Rate Exploration Reset Episode Every Steps

Q-learning 10
10+t Linear decay from 1.0 to 10−1 10

Double Q-learning 30
30+t Linear decay from 1.0 to 10−1 10

SARSA(λ) 10
10+t Linear decay from 1.0 to 10−3 10

Table H.1: Non-default hyper-parameters used for each learning-algorithm

Software and Platform We use a custom version of
Mungojerrie. Our modifications are:
• Modification to allow parallel Monte Carlo estimation of

the LTL-PAC probability.
• Modification to allow the reinforcement-learning algo-

rithms to have a non-linear learning rate decay. In partic-
ular, we use a learning rate of k

k+t at every learning step
t, where k is a hyper-parameter (see Table H.1 for the
value of k for each algorithm). This modification is nec-
essary for ensuring Q-learning’s convergence (Watkins
and Dayan 1992).

We run all experiments on a machine with 2.9 GHz 6-Core
CPU and 32 GB of RAM.

H.2 Complete Results
The plot we presented in the body of the paper (Fig-
ure G.1) corresponds to the setting of Multi-discount with Q-
learning, under the environment MDP shown in Figure H.1.
We present the complete results for the two pairs of LTL
formulas and environment MDPs in Figures H.3 and H.4.

I Classification of Prior Works
In Section 5, we discussed several categories of approaches
to work around the hardness of reinforcement learning with
LTL objectives and classified approaches in prior works be-
longing to each category. In this section, we explain the ra-
tionale for each classification.

Use a Finitary Objective Henriques et al. (2012) in-
troduced a variant of LTL called Bounded LTL and used
Bounded LTL objective for reinforcement learning. Every
Bounded LTL formula is decidable by a bounded length pre-
fix of the input word. Therefore, each Bounded LTL formula
is equivalent to an finitary LTL formula. Therefore, we clas-
sified this approach as using a Finitary objective.

Jothimurugan, Alur, and Bastani (2019) introduced a task
specification language over finite length words. Further,
their definition of an MDP contains an additional finite time
horizonH . Each sample path of the MDP is then a length-H
finite length word and is evaluated by a formula of the task
specification language. 5 Each formula of the task specifica-
tion language with a fixed finite horizon H is equivalent to

5There are two possible interpretations of the finite horizon in
Jothimurugan, Alur, and Bastani (2019). The first interpretation
is that the environment MDP inherently terminates and produces
length-H sample paths. The second interpretation is that the fi-
nite horizon H is part of the specification given by a user of their
approach. Thus, we use the second interpretation to classify their

an LTL formula in the Finitary class. Therefore, we classi-
fied this approach as using a Finitary objective.

Best-Effort Guarantee We classified Ashok, Křetı́nský,
and Weininger (2019) to this category and explained our ra-
tionale of this classification in Section 5.

Know More About the Environment We classified Fu
and Topcu (2014); Brázdil et al. (2014) to this category and
explained our rationale of this classification in Section 5.

Use an LTL-like Objective Littman et al. (2017) intro-
duced a discounted variant of LTL called Geometric LTL
(GLTL). A temporal operator in a GLTL formula expires
within a time window whose length follows a geometric dis-
tribution. For example, a GLTL formula F 0.1goal is satisfied
if the sample path reaches the goal within a time horizon H ,
whereH follows Geometric(0.1), the geometric distribution
with the success parameter 0.1. Since GLTL’s semantics is
different from LTL’s semantics, we classified this approach
as using an LTL-like objective.

Li, Vasile, and Belta (2017) introduced a variant of LTL
called Truncated-LTL (TLTL). A formula in TLTL, similar
to a formula in Bounded LTL (Henriques et al. 2012), is de-
cidable by a bounded length prefix of the input word. More-
over, TLTL has a qualitative semantics, in addition to the
standard Boolean semantics of LTL. In particular, the qual-
itative semantics of a TLTL formula maps a sample path of
the environment MDP to a real number that indicates the
degree of satisfaction for the TLTL formula. Therefore, we
classified this approach as using an LTL-like objective.

Giacomo et al. (2019) introduced Restraining Bolts. A
Restraining Bolts specification is a set of pairs (φi, ri),
where each φi is an LTLf/LDLf formula, and ri is a scalar
reward. An LTLf formula is similar to an LTL formula but
interpreted over finite length words instead of infinite length
words. LDLf is an extension of LTLf and is also interpreted
over finite length words. 6 Given an environment MDP,
the approach checks each finite length prefix of a sample
path of the MDP against each φi, and if a prefix satisfies
φi, the approach gives the corresponding reward ri to the
agent. The objective in Giacomo et al. (2019) is to maxi-

approach. The difference between the two interpretations is only
conceptual — if the environment inherently terminates with a fixed
finite horizonH , it would be equivalent to imposing a finite horizon
H in the task specification.

6LDLf is more expressive than LTLf (De Giacomo and Vardi
2013). In particular, LTLf is equivalent to the star-free subset of
regular languages while LDLf is equivalent to the full set of regular
languages.



mize the discounted cumulative sum of rewards produced
by the Restraining Bolts specification. To the best of our
knowledge, this objective is not equivalent to maximizing
the satisfaction of an LTL formula. Nonetheless, a Restrain-
ing Bolts specification can be seen as an LTL-like specifi-
cation. Therefore, we classified this approach as using an
LTL-like objective.

Camacho et al. (2019) introduced reward machine. A re-
ward machine specification is a deterministic finite automa-
ton equipped with a reward for each transition. The objec-
tive in Camacho et al. (2019) is to maximize the discounted
cumulative rewards produced by the reward machine speci-
fication. Camacho et al. (2019) showed that LTL objectives
formulas in the Guarantee or Safety class are reducible to
reward machine objectives without discount factors. How-
ever, since the approach maximizes discounted cumulative
rewards in practice, it does not directly optimize for the LTL
objectives in the Guarantee or Safety classes. Therefore, we
classified this approach as using an LTL-like objective.

We also classified Sadigh et al. (2014); Hahn et al. (2019);
Hasanbeig et al. (2019); Bozkurt et al. (2020) as using LTL-
like objectives, and explained our rationale of these classifi-
cations in Section 5.

J Concurrent Work
Concurrent to this work, Alur et al. (2021) developed
a framework to study reductions between reinforcement-
learning task specifications. They looked at various task
specifications, including cumulative discounted rewards,
infinite-horizon average-rewards, reachability, safety, and
LTL. They thoroughly review previous work concerning re-
inforcement learning for LTL objectives, which we also cite.
Moreover, Alur et al. (2021, Theorem 8) states a seemingly
similar result as the forward direction of our Theorem 1:

There does not exist a PAC-MDP algorithm for the
class of safety specifications.

Despite the parallels, we clarify one crucial difference and
two nuances between our work and theirs.

Firstly and most importantly, their theorem is equiva-
lent to “there exists a safety specification that is not PAC-
learnable.”, whereas our Theorem 1 works pointwise for
each LTL formula, asserting “all non-finitary specifications
are not PAC-learnable.” The proof of their theorem gives one
safety specification and shows that it is not PAC-learnable.7
On the other hand, the proof of the forward direction of
our Theorem 1 constructs a counterexample for each non-
finitary formula. This point is crucial since it allows us to
precisely carve out the PAC-learnable subset, namely the
finitary formulas, from the LTL hierarchy.

Secondly, their definition of safety specification is equiva-
lent to a strict subset of the safety class in the LTL hierarchy
that we consider. In particular, their safety specification is
equivalent to LTL formulas of the form G (a1∨a2∨· · ·∨an),
where each ai ∈ Π is an atomic proposition, with n = 0 de-
generating the specification to T (the constant true).

7Their result is similar to what we showed in our Appendix B.2,
where we consider the particular guarantee formula Fh0 and show
that it is not PAC-learnable.

Lastly, they consider reinforcement-learning algorithms,8
whereas we consider the slightly more general planning-
with-generative-model algorithms. We believe their theorem
and proof can be modified to accommodate our more general
algorithm definition.

References
Alur, R.; Bansal, S.; Bastani, O.; and Jothimurugan, K. 2021.
A Framework for Transforming Specifications in Reinforce-
ment Learning. arXiv preprint arXiv:2111.00272.
Ashok, P.; Křetı́nský, J.; and Weininger, M. 2019. PAC Sta-
tistical Model Checking for Markov Decision Processes and
Stochastic Games. In Computer Aided Verification.
Bozkurt, A.; Wang, Y.; Zavlanos, M.; and Pajic, M. 2020.
Control Synthesis from Linear Temporal Logic Specifica-
tions using Model-Free Reinforcement Learning. In Inter-
national Conference on Robotics and Automation.
Brázdil, T.; Chatterjee, K.; Chmelı́k, M.; Forejt, V.;
Křetı́nský, J.; Kwiatkowska, M.; Parker, D.; and Ujma, M.
2014. Verification of Markov Decision Processes Using
Learning Algorithms. In Automated Technology for Veri-
fication and Analysis.
Camacho, A.; Toro Icarte, R.; Klassen, T. Q.; Valenzano, R.;
and McIlraith, S. A. 2019. LTL and Beyond: Formal Lan-
guages for Reward Function Specification in Reinforcement
Learning. In International Joint Conference on Artificial In-
telligence.
Dann, C.; and Brunskill, E. 2015. Sample Complexity of
Episodic Fixed-Horizon Reinforcement Learning. In Neural
Information Processing Systems.
De Giacomo, G.; and Vardi, M. Y. 2013. Linear Temporal
Logic and Linear Dynamic Logic on Finite Traces. In Inter-
national Joint Conference on Artificial Intelligence.
Duret-Lutz, A.; Lewkowicz, A.; Fauchille, A.; Michaud, T.;
Renault, E.; and Xu, L. 2016. Spot 2.0 - A Framework for
LTL and ω -Automata Manipulation. In ATVA.
Fu, J.; and Topcu, U. 2014. Probably Approximately Cor-
rect MDP Learning and Control With Temporal Logic Con-
straints. In Robotics: Science and Systems X.
Giacomo, G. D.; Iocchi, L.; Favorito, M.; and Patrizi,
F. 2019. Foundations for Restraining Bolts: Reinforce-
ment Learning with LTLf/LDLf Restraining Specifications.
In International Conference on Automated Planning and
Scheduling.
Hahn, E.; Perez, M.; Schewe, S.; Somenzi, F.; Trivedi,
A.; and Wojtczak, D. 2020. Faithful and Effective Re-
ward Schemes for Model-Free Reinforcement Learning of
Omega-Regular Objectives. In Automated Technology for
Verification and Analysis.
Hahn, E. M.; Perez, M.; Schewe, S.; Somenzi, F.; Trivedi,
A.; and Wojtczak, D. 2019. Omega-Regular Objectives in
Model-Free Reinforcement Learning. In Tools and Algo-
rithms for the Construction and Analysis of Systems.

8with an additional operation that resets to the initial state



Hahn, E. M.; Perez, M.; Schewe, S.; Somenzi, F.; Trivedi,
A.; and Wojtczak, D. 2021. Mungojerrie: Reinforce-
ment Learning of Linear-Time Objectives. arXiv preprint
arXiv:2106.09161.
Hasanbeig, M.; Kantaros, Y.; Abate, A.; Kroening, D.; Pap-
pas, G.; and Lee, I. 2019. Reinforcement Learning for Tem-
poral Logic Control Synthesis with Probabilistic Satisfac-
tion Guarantees. In Conference on Decision and Control.
Hasselt, H. V. 2010. Double Q-learning. In Neural Informa-
tion Processing Systems.
Henriques, D.; Martins, J. G.; Zuliani, P.; Platzer, A.; and
Clarke, E. M. 2012. Statistical Model Checking for Markov
Decision Processes. In International Conference on Quan-
titative Evaluation of Systems.
Jothimurugan, K.; Alur, R.; and Bastani, O. 2019. A Com-
posable Specification Language for Reinforcement Learning
Tasks. In Neural Information Processing Systems.
Kupferman, O.; and Vardi, M. 1999. Model Checking of
Safety Properties. Formal Methods in System Design, 19.
Latvala, T. 2003. Efficient Model Checking of Safety Prop-
erties. In Model Checking Software.
Li, X.; Vasile, C.; and Belta, C. 2017. Reinforcement learn-
ing with temporal logic rewards. International Conference
on Intelligent Robots and Systems.
Littman, M. L.; Topcu, U.; Fu, J.; Isbell, C.; Wen, M.; and
MacGlashan, J. 2017. Environment-Independent Task Spec-
ifications via GLTL. arXiv preprint arXiv:1704.04341.
Manna, Z.; and Pnueli, A. 1987. A Hierarchy of Tempo-
ral Properties. In Symposium on Principles of Distributed
Computing.
Sadigh, D.; Kim, E. S.; Coogan, S.; Sastry, S. S.; and Seshia,
S. A. 2014. A Learning Based Approach to Control Synthe-
sis of Markov Decision Processes for Linear Temporal Logic
Specifications. In Conference on Decision and Control.
Safra, S. 1988. On the Complexity of ω-Automata. In Sym-
posium on Foundations of Computer Science.
Sutton, R. S. 1988. Learning to predict by the methods of
temporal differences. Machine Learning, 3(1).
Watkins, C. J. C. H.; and Dayan, P. 1992. Q-learning. Ma-
chine Learning, 8(3).



(a) Reward-on-acc with Q-learning (b) Reward-on-acc with Double Q-learning

(c) Reward-on-acc with SARSA(λ)

(d) Multi-discount with Q-learning (e) Multi-discount with Double Q-learning

(f) Multi-discount with SARSA(λ)

(g) Zeta-reach with Q-learning (h) Zeta-reach with Double Q-learning

(i) Zeta-reach with SARSA(λ)

Figure H.3: Empirical Results (continued on next page)



(j) Zeta-acc with Q-learning (k) Zeta-acc with Double Q-learning

(l) Zeta-acc with SARSA(λ)

(m) Zeta-discount with Q-learning (n) Zeta-discount with Double Q-learning

(o) Zeta-discount with SARSA(λ)

Figure H.3: Empirical Results (continued). Each sub-figure corresponds to a specific reward-scheme and learning-algorithm
pair. For each sub-figure, on the left: LTL-PAC probabilities vs. number of samples, for varying parameters p; on the right:
number of samples needed to reach 0.9 LTL-PAC probability vs. parameters p.



(a) Reward-on-acc with Q-learning (b) Reward-on-acc with Double Q-learning

(c) Reward-on-acc with SARSA(λ)

(d) Multi-discount with Q-learning (e) Multi-discount with Double Q-learning

(f) Multi-discount with SARSA(λ)

(g) Zeta-reach with Q-learning (h) Zeta-reach with Double Q-learning

(i) Zeta-reach with SARSA(λ)

Figure H.4: Empirical Results (continued on next page)



(j) Zeta-acc with Q-learning (k) Zeta-acc with Double Q-learning

(l) Zeta-acc with SARSA(λ)

(m) Zeta-discount with Q-learning (n) Zeta-discount with Double Q-learning

(o) Zeta-discount with SARSA(λ)

Figure H.4: Empirical Results (continued). Each sub-figure corresponds to a specific reward-scheme and learning-algorithm
pair. For each sub-figure, on the left: LTL-PAC probabilities vs. number of samples, for varying parameters p; on the right:
number of samples needed to reach 0.9 LTL-PAC probability vs. parameters p.


