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Supplementary Material: Hierarchical Debiasing and Noisy Correction for
Cross-domain Video Tube Retrieval
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In the supplementary material, we begin with a comprehensive description of our base video tube retrieval model in
Section 1. We then detail the loss functions in Section 2 and implementation specifics in Section 3. In Section 4, we
conduct granular ablation studies. Section 5 visualizes the processing of pseudo labels. Lastly, we analyze the limitations
of our approach in Section 6.

1 MORE MODEL DETAILS

Our base video tube retrieval model STCAT [3] is built upon four essential components: the cross-modal transformer
encoder (Section 1.1), the template generator (Section 1.2), the cross-modal transformer decoder (Section 1.3), and two
parallel prediction heads (Section 1.4).

1.1 Cross-modal Encoder

The encoder harnesses cross-modal interactions between video and text, intricately correlating their corresponding
semantics to achieve precise and consistent feature alignment across the two modalities. Given the visual features 𝐹𝑣
and textual features 𝐹𝑠 , both are first passed through a projection layer to embed them into a uniform channel dimension
𝐶 . The projected visual embeddings are denoted as 𝑝𝑣 = {𝑝𝑣𝑡 }𝑇𝑡=1, where each 𝑝𝑣𝑡 ∈ 𝑅𝑁𝑣×𝐶 , and the textual embeddings
as 𝑝𝑠 ∈ 𝑅𝑁𝑠×𝐶 . The encoder comprises𝑀 stacked blocks, each integrating a spatial interaction layer (Section 1.1.1) and
a temporal interaction layer (Section 1.1.2) that both utilize the transformer encoder structure [10].

1.1.1 Spatial Interaction Layer. To address local context within individual frames,𝑇 learnable tokens, 𝑝𝑙 = {𝑝𝑡
𝑙
∈ 𝑅𝐶 }𝑇

𝑡=1,
are introduced, where token 𝑝𝑡

𝑙
corresponds to frame 𝑡 . The joint input sequence 𝑥𝑡 for frame 𝑡 is processed by a spatial

interaction layer to generate contextualized visual-textual representations:

𝑥𝑡 = [𝑝𝑡
𝑙
, 𝑝1𝑣𝑡 , 𝑝

2
𝑣𝑡 , . . . , 𝑝

𝑁𝑣

𝑣𝑡 , 𝑝
1
𝑠 , 𝑝

2
𝑠 , . . . , 𝑝

𝑁𝑠
𝑠 ] . (1)

1.1.2 Temporal Interaction Layer. To integrate the global context of the video throughout the encoding process, we
employ another learnable token, 𝑝𝑔 ∈ 𝑅𝐶 . The temporal interaction Layer models interactions across the frames using
the input sequence 𝑥𝑔 , which includes:

𝑥𝑔 = [𝑝𝑔, 𝑝1𝑙 , 𝑝
2
𝑙
, . . . , 𝑝𝑇

𝑙
] . (2)

To ensure the sequence maintains its temporal relevance, positional encoding is added to 𝑥𝑔 .
The spatial interaction layer exclusively models the local context at the frame level, focusing on spatial intra- and

inter-modality relationships within each frame. In contrast, the temporal interaction layer allows the local frame tokens
to engage with the entire video content, supported by a global token that aggregates the overall video-text context.
After processing, the encoder outputs contextualized multi-modal features, 𝐹𝑣𝑙 ∈ 𝑅𝑇×(𝑁𝑣+𝑁𝑠 )×𝐶 , along with a global
embedding, 𝑝𝑔 , representing the entire video, and individual local embeddings, 𝑝𝑙 = {𝑝𝑡

𝑙
}𝑇
𝑡=1, for each video frame.

Author’s address: Anonymous Authors.
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1.2 Template Generation

The template is composed of a content term (Section 1.2.1) and a position term (Section 1.2.2), both generated by a
template generator that utilizes the encoded local and global tokens. The content term is shared by all frames, while the
position term is characterized by per frame.

1.2.1 Content Term. The content term 𝑞𝑐 ∈ 𝑅𝐶 is generated through the global visual-linguistic context:

𝑞𝑐 =𝑊𝑐𝑝𝑔 + 𝑏𝑐 , (3)

where𝑊𝑐 and 𝑏𝑐 are both learnable parameters, strategically designed to optimize semantic representation.

1.2.2 Position Term. The position term 𝑞𝑝 = {𝑞𝑡𝑝 }𝑇𝑡=1 is defined for each frame 𝑣𝑡 where each 𝑞𝑡𝑝 is a 4-dimensional
vector (𝑥𝑡 , 𝑦𝑡 ,𝑤𝑡 , ℎ𝑡 ), serving as a reference anchor to the grounding region in that frame. Drawing from [13], we first
modulate the local embeddings 𝑝𝑙 = {𝑝𝑡

𝑙
}𝑇
𝑡=1 using the token 𝑝𝑔 :

𝛾𝑐 = tanh(𝑊𝛾𝑝𝑔 + 𝑏𝛾 ), 𝛽𝑐 = tanh(𝑊𝛽𝑝𝑔 + 𝑏𝛽 ), (4)

where𝑊𝛾 , 𝑏𝛾 ,𝑊𝛽 , and 𝑏𝛽 are learnable parameters. Then the position term 𝑞𝑡𝑝 is computed by modulating 𝑝𝑡
𝑙
:

𝑞𝑡𝑝 = Sigmoid(𝑓𝑝 (𝛾𝑐 ◦ 𝑝𝑡𝑙 + 𝛽𝑐 )), (5)

where 𝑓𝑝 is a learnable mapping function from 𝑅𝐶 to 𝑅4.

1.3 Cross-modal Decoder

Given the templates {𝑞𝑡𝑐 , 𝑞𝑡𝑝 }𝑇𝑡=1 from the template generator, the object query for each frame 𝑣𝑡 is structured as
𝑄𝑡 = [𝐶𝑡 ; 𝑃𝑡 ], incorporating both a content query 𝐶𝑡 and a position query 𝑃𝑡 . At each decoder block, 𝐶𝑡 and 𝑃𝑡 are
initially generated from 𝑞𝑡𝑐 and 𝑞𝑡𝑝 based on:

𝐶𝑡 = 𝑞𝑡𝑐 , 𝑃𝑡 = Linear(PE(𝑞𝑡𝑝 )), (6)

where 𝑃𝐸 denotes the sinusoidal position encoding applied to the position template 𝑞𝑡𝑝 = (𝑥𝑡 , 𝑦𝑡 ,𝑤𝑡 , ℎ𝑡 ). The content
query 𝐶𝑡 is then processed through both self-attention and cross-attention layers, while the position query 𝑃𝑡 acts as
the position encoding. As per recent advancements in decoder design [5, 11, 15], the position term 𝑞𝑝 and subsequently
𝑃𝑡 are updated layer by layer through a shared prediction head. The refined𝐶𝑡 and 𝑃𝑡 are finally input into a prediction
head to compute the final object tube.

To separate spatial and temporal feature aggregation, we employ a dual-decoder architecture, each focusing on
bounding-box prediction and temporal boundary estimation, respectively. Adhering to the DETR [1], each decoder
comprises𝑀 stacked blocks. Each block has a self-attention layer (Section 1.3.1) for modeling the temporal interactions
across the entire video and a cross-attention layer (Section 1.3.2) for probing the encoded multi-modal feature within
the corresponding frame.

1.3.1 Self-Attention Layer. In the self-attention layer, each content query𝐶𝑡 for frame 𝑣𝑡 aggregates the global temporal
context by attending to all other frames. We also add a sinusoidal time encoding to each content query 𝐶𝑡 to reflect the
original temporal positions of different 𝐶𝑡 .

1.3.2 Cross-Attention Layer. The cross-attention layer aggregates the encoded cross-modal representation 𝐹 𝑡
𝑣𝑙

∈
𝑅 (𝑁𝑣+𝑁𝑠 )×𝐶 for each frame 𝑣𝑡 to enrich the content query 𝐶𝑡 . 𝐶𝑡 cross-attends to 𝐹 𝑡𝑣𝑙 using 𝑃𝑡 as a positional anchor to
Manuscript submitted to ACM
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guide the decoder focus on the regionmost likely containing the target object. The output from the cross-attention layer is
then processed through a shared prediction head, which generates the relative position adjustments (Δ𝑥𝑡 ,Δ𝑦𝑡 ,Δ𝑤𝑡 ,Δℎ𝑡 )
to update 𝑞𝑡𝑝 .

1.4 Prediction Head

After the decoding process, the refined content query 𝐶𝑡 is used to predict both spatial and temporal localizations. The
prediction head is divided into two branches: the bounding box branch, which predicts a 4-dimensional coordinate
offset (Δ𝑥𝑡 ,Δ𝑦𝑡 ,Δ𝑤𝑡 ,Δℎ𝑡 ), and the temporal branch, which estimates the start 𝑝𝑠𝑡 and end 𝑝𝑒𝑡 probabilities for each
frame. The final bounding box for frame 𝑣𝑡 is computed as:

𝑏𝑡 = (𝑥𝑡 + Δ𝑥𝑡 , 𝑦𝑡 + Δ𝑦𝑡 ,𝑤𝑡 + Δ𝑤𝑡 , ℎ𝑡 + Δℎ𝑡 ). (7)

2 MORE LOSS DETAILS

2.1 Supervised Loss

Each video-query pair has a ground-truth bounding box sequence 𝐵 = {𝑏𝑡 }𝑡𝑒𝑡𝑠 , and the corresponding start and end
timestamps {𝑡𝑠 , 𝑡𝑒 }. For spatial localization, we employ the smooth L1 loss, denoted as 𝐿1, along with the generalized
IoU loss [7], represented by 𝐿IoU, with both being exclusively applied to the bounding boxes within {𝑡𝑠 , 𝑡𝑒 }.

As for temporal localization, following [8], we take 𝑡𝑠 and 𝑡𝑒 to formulate two target categorical distribution vectors:
𝜏𝑠 ∼ 𝑁 (𝑡𝑠 , 1) ∈ 𝑅𝑛 and 𝜏𝑒 ∼ 𝑁 (𝑡𝑒 , 1) ∈ 𝑅𝑛 , where 𝑁 (𝜇, 𝜎) represents a quantized Gaussian distribution centered at 𝜇
with standard deviation 𝜎 , discretizing the Gaussian distribution across the range [1, 𝑛]. We use the Kullback-Leibler
divergence loss 𝐿KL to measure the distance between our predictions {𝜏𝑠 , 𝜏𝑒 } and true probability distributions {𝜏𝑠 , 𝜏𝑒 }.

𝐿KL = 𝐷KL (𝜏𝑠 | |𝜏𝑠 ) + 𝐷KL (𝜏𝑒 | |𝜏𝑒 ). (8)

𝐷KL symbolizes the Kullback-Leibler divergence. Moreover, we apply the guided attention loss 𝐿att (𝐴) to encourage
weights for time queries outside the temporal boundaries to be lower than those inside the boundaries [8]:

𝐿att = −
𝑛∑︁
𝑖=1

(1 − 𝛿𝑡𝑠≤𝑖<𝑡𝑒 ) log(1 − 𝑎𝑖 ) (9)

where 𝛿 is the Kronecker delta and 𝑎𝑖 is the 𝑖th column of the attention matrix 𝐴. We also predict whether a frame falls
within the ground-truth temporal interval, supervised by a binary cross-entropy loss 𝐿act.

The supervised loss 𝐿𝑠𝑢𝑝 is a linear combination of previously introduced five losses:

𝐿sup = 𝜆1𝐿1 + 𝜆IoU𝐿IoU + 𝜆KL𝐿KL + 𝜆att𝐿att + 𝜆act𝐿act . (10)

2.2 Unsupervised Loss

The unsupervised loss function 𝐿unsup replaces the ground truth in Equation (10) with pseudo labels, which can be
either hard or soft. Specifically, for temporally extended bounding boxes, hard pseudo labels (definitive single-value
predictions) are used to calculate the 𝐿1 and 𝐿IoU losses. In contrast, for the temporal start and end points, soft pseudo
labels are employed. These labels, which represent continuous distributions, are derived from the predictions of the
teacher model and are utilized to compute the 𝐿KL loss in conjunction with corresponding predictions from the student
model. Meanwhile, the 𝐿att loss computation remains unchanged. For the 𝐿act loss, soft pseudo labels are similarly used,
leveraging the probabilistic distributions.
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Table 1. Ablation studies on the I2O-VTR dataset.

GBA TEX Declarative Sentences Interrogative Sentences

m_tIoU m_vIoU vIoU@0.3 vIoU@0.5 m_tIoU m_vIoU vIoU@0.3 vIoU@0.5

39.23 18.01 26.91 13.95 39.32 14.83 21.25 9.34
✓ 40.15 20.26 31.33 16.97 40.30 16.57 24.70 11.36

✓ 40.34 20.68 32.23 17.59 40.52 16.93 25.37 11.71
✓ ✓ 41.33 23.22 36.80 20.81 41.63 18.91 28.85 13.83

3 MORE IMPLEMENTATION DETAILS

Consistent with prior methods [3, 12], we use ResNet-101 [2] as the visual encoder and RoBERTa [6] as the textual
encoder. Specifically, we extract visual features from the output of the fourth residual block of ResNet-101. In both
the cross-modal encoder and decoder, the number of attention heads is set to 8, and the hidden dimension of the
feed-forward networks in the attention layers is 2,048. The prediction heads, including the bounding box head, temporal
boundary head, and actionness score head, all employ the MLP architecture. The visual discriminator utilizes a CNN
architecture, while the textual, frame-level, and video-level discriminators employ the MLP architecture. We initialize
part of the model parameters with pre-trained weights from [4], and the entire framework is optimized end-to-end
during the training process.

4 MORE ABLATION STUDIES

Our model consists of two modules: Layered Feature Debiasing (LFD) and Pseudo Label Refinement (PLR). Among
these, the Adversarial Feature Alignment (AFA) in LFD and the Threshold Filtering (TFT) in PLR have been validated
by a substantial body of work related to domain adaptation. We have specifically adapted these two sub-modules
as our foundational components, thus eliminating the need for their ablation. In subsequent ablation experiments,
these two sub-modules will be retained. It is noteworthy that through our strategic modifications, these modules
alone have achieved significant performance improvements. The remaining sub-modules, Graph Based Alignment
(GBA) and Temporal Expansion (TEX), are ingeniously designed to cater to the unique characteristics of the UDA-VTR
scenario. However, their effectiveness in domain adaptation has not yet gained recognition. We undertake a series of
experiments to test various combinations of these modules. Through extensive experimentation, we have confirmed
the effectiveness of each module, both individually and in conjunction, thereby solidifying their utility in enhancing the
domain adaptation capabilities of our approach.

The experimental results for the I2O-VTR and R2M-VTR datasets are detailed in Table 1 and Table 2, respectively.
Integration of either of our two key sub-modules, Graph Based Alignment (GBA) and Temporal Extension (TEX),
consistently enhances the model performance, affirming their critical role and operational efficacy. Furthermore, when
these modules are employed together, they exhibit a synergistic effect that surpasses the performance achieved when
either is used in isolation, suggesting the modules interact in a way that addresses different facets of the domain shift
challenge. Additionally, the substantial performance improvements observed across diverse domain pairings, such as
indoor-to-outdoor and real-to-movie, not only underline the versatility of each module but also underscore their robust
generalization capabilities.
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Table 2. Ablation studies on the R2M-VTR dataset.

GBA TEX m_tIoU m_vIoU vIoU@0.3 vIoU@0.5

33.94 18.05 25.56 11.24
✓ 34.78 21.37 33.09 15.94

✓ 34.96 21.97 34.64 16.90
✓ ✓ 35.91 25.72 42.45 21.78

Query: The man behind pushes the board away and climbs out.

Ground Truth

Ground Truth

Pseudo Label that will be filter out

Pseudo Label w/ Temporal Extension

Query: The woman in the green skirt stops next to the woman in the pink dress.

Ground Truth

Query: The man in the white jacket walks to the pool and reaches out and knocks.

Pseudo Label w/o Temporal Extension

(a)

(b)

(c)

Pseudo Label w/o Temporal Extension

Pseudo Label w/ Temporal Extension

Fig. 1. Examples of pseudo label visualizations from the R2M-VTR dataset, illustrating both the pseudo labels that are discarded (a)
and those that are temporally extended post-filtering (b)(c).

5 MORE CASE STUDIES

We conducted case studies on randomly selected samples from the target domain dataset, visualizing pseudo label
manipulations in the R2M-VTR dataset [9, 14] as depicted in Figure 1. Through these studies, notable observations were
made: In Figure 1(a), the model struggles to discern the core semantic content of the video that corresponds to the text
query, resulting in bounding boxes that erratically alternate among several individuals and display a diminished average
confidence level across the designated time span. Such erroneous predictions are eliminated by our filtering mechanism
and are not included in the unsupervised loss computation for that iteration. Conversely, while the model aptly identifies
spatial elements in other cases, its comprehension of temporal dynamics remains subpar. This misalignment results in
bounding boxes with higher confidence levels but inaccurate temporal intervals, either too brief or markedly offset, as
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seen in Figure 1(b), Figure 1(c). In these cases, our method extends the duration of the pseudo labels, enabling a greater
number of bounding boxes to engage in the unsupervised loss computation. Such temporal extension typically aligns
more closely with the query, facilitating more accurate tube retrieval by the model.

6 LIMITATIONS

We aim to elucidate the limitations of our proposed methodology. The incorporation of a teacher-student framework
leads to an increase in computational demand, which in turn necessitates a larger allocation of GPU memory. This
requirement restricts the attainable spatial and temporal resolution, further limited by the constraints on computational
resources. As a result, our experiments were conducted under settings significantly inferior than those specified in the
original STCAT paper. Such limitations invariably lead to a decrease in the quality of pseudo labels, thereby increasing
the difficulty of our domain adaptation process. Although these constraints do not undermine the validity of the
experiments supporting our method’s efficacy, they undeniably prevent us from achieving superior results. On a more
positive note, during inference, both the student branch and domain discriminators are no longer required, which
ensures that the costs associated with inference time and storage remain unaffected by the aforementioned limitations.
Looking forward, we intend to explore strategies to reduce the usage of computational resources and speed up the
convergence rate.
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