
Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 RELATED WORKS

3D Molecule Generation. Generating 3D molecules to explore the local minima of the energy
function (Conformation Generation) Gebauer et al. (2019); Simm et al. (2020b;a); Shi et al. (2021);
Xu et al. (2021); Luo et al. (2021); Xu et al. (2020); Ganea et al. (2021); Xu et al. (2022); Hoogeboom
et al. (2022); Jing et al. (2022); Zhu et al. (2022) or discover potential drug molecules binding to
targeted proteins (3D Drug Design) Imrie et al. (2020); Nesterov et al. (2020); Luo et al. (2022);
Ragoza et al. (2022); Wu et al. (2022b); Huang et al. (2022a); Peng et al. (2022); Huang et al. (2022b);
Wang et al. (2022b); Liu et al. (2022b) have attracted extensive attention in recent years. Compared
to conformation generation that aims to predict the set of favourable conformers from the molecular
graph, 3D Drug Design is more challenging in two aspects: (1) both conformation and molecule
graph need to be generated, and (2) the generated molecules should satisfy multiple constraints, such
as physical prior and protein-ligand binding affinity. We summarized representive works of 3D drug
design in Table.5 in the appendix, where all the methods focus on small molecule design.

Table 5: 3D molecule generation models.
Method Input Github

Molecule Conformation Generation
G-SchNet Gebauer et al. (2019) – PyTorch
CVGAE Mansimov et al. (2019) 2D-graph TF
GraphDG Simm et al. (2020b) 2D-graph PyTorch
MolGym Simm et al. (2020a) – PyTorch

ConfGF Shi et al. (2021) 2D-graph PyTorch
ConfVAE Xu et al. (2021) 2D-graph PyTorch
DGSM Luo et al. (2021) 2D-graph –
CGCF Xu et al. (2020) 2D-graph PyTorch

GeoMol Ganea et al. (2021) 2D-graph PyTorch
G-SphereNet Luo & Ji (2021) – PyTorch

GeoDiff Xu et al. (2022) 2D-graph PyTorch
EDM Hoogeboom et al. (2022) 2D-graph PyTorch
TorsionDiff Jing et al. (2022) 2D-graph PyTorch

DMCG Zhu et al. (2022) 2D-graph PyTorch
De novo Molecule Design

DeLinker Imrie et al. (2020) Protein Pocket
3D-fragments TF

3DMolNet Nesterov et al. (2020) 3D-geometry –
cG-SchNet Gebauer et al. (2022) 3D-geometry PyTorch

Luo’s model Luo et al. (2022) Protein Pocket PyTorch
LiGAN Ragoza et al. (2022) Protein Pocket PyTorch

Bridge Wu et al. (2022b) Physical prior –

MDM Huang et al. (2022a) 2D-graph
Properties –

Pocket2Mol Peng et al. (2022) Protein Pocket PyTorch
3DLinkcer Huang et al. (2022b) 3D-fragments PyTorch

CGVAE Wang et al. (2022b) Coarse Topology PyTorch
GraphBP Liu et al. (2022b) Protein Pocket PyTorch

Protein Design. In addition to small molecules, biomolecules such as proteins have also attracted
considerable attention by researchers (Ding et al., 2022; Ovchinnikov & Huang, 2021; Gao et al.,
2020; Strokach & Kim, 2022). We divide the mainstream protein design methods into three categories:
protein sequence design (Li et al., 2014; Wu et al., 2021; Pearce & Zhang, 2021; Ingraham et al., 2019;
Jing et al., 2020; Tan et al., 2022; Gao et al., 2022a; Hsu et al., 2022; Dauparas et al., 2022; Gao et al.,
2022b; O’Connell et al., 2018; Wang et al., 2018; Qi & Zhang, 2020; Strokach et al., 2020; Chen
et al., 2019; Zhang et al., 2020; Anand & Achim, 2022), unconditional protein structure generation
(Anand & Huang, 2018; Sabban & Markovsky, 2020; Eguchi et al., 2022; Wu et al., 2022a), and
conditional protein design (Lee & Kim, 2022; Wang et al., 2022a; Trippe et al., 2022; Lai et al.,
2022; Fu & Sun, 2022; Tischer et al., 2020; Anand & Achim, 2022; Luo et al.). Protein sequence
design aims to discover protein sequences folding into the desired structure, and unconditional protein
structure generation focus on generating new protein structures from noisy inputs. We are interested
in conditional protein design and consider multiple constraints on the designed protein. For example,
Wang’s model (Wang et al., 2022a), SMCDiff (Trippe et al., 2022) and Tischer’s model (Tischer
et al., 2020) design the scaffold for the specified functional sites. ProteinSGM (Lee & Kim, 2022)
mask short spans (< 8 residues) of different secondary structures in different structures and treats the
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design task as a inpainting problem. CoordVAE (Lai et al., 2022) produces novel protein structures
conditioned on the backbone template. RefineGNN (Jin et al., 2021), CEM (Fu & Sun, 2022), and
DiffAb (Luo et al.) aim to generate the complementarity-determining regions of the antibody. We
summarized protein design model in Table.6.

Table 6: Protein Design Models.
Method Input Github

Unconditional protein structure generation
Anand’s model (Anand & Huang, 2018) Noise PyTorch
RamaNet (Sabban & Markovsky, 2020) Noise TF

Ig-VAE (Eguchi et al., 2022) Noise PyTorch
FoldingDiff (Wu et al., 2022a) Noise PyTorch

Protein seqeunce design
GraphTrans Ingraham et al. (2019) 3D Backbone PyTorch

GVP (Jing et al., 2020) 3D Backbone PyTorch
GCA (Tan et al., 2022) 3D Backbone PyTorch

AlphaDesign (Gao et al., 2022a) 3D Backbone PyTorch
ESM-IF (Hsu et al., 2022) 3D Backbone PyTorch

ProteinMPNN (Dauparas et al., 2022) 3D Backbone PyTorch
PiFold (Gao et al., 2022b) 3D Backbone PyTorch

Conditional protein design
ProteinSGM (Lee & Kim, 2022) Masked structures –

Wang’s model Wang et al. (2022a) Functional sites PyTorch
SMCDiff (Trippe et al., 2022) Functional motifs –
CoordVAE Lai et al. (2022) Backbone Template –

CEM Fu & Sun (2022) CDR geometry –
Tischer’s model (Tischer et al., 2020) Functional motifs TF

Anand’s model (Anand & Achim, 2022) Multiple conditions –
RefineGNN (Jin et al., 2021) Antigen structure PyTorch

DiffAb (Luo et al.) Antigen structure PyTorch
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A.2 ALGORITHMS

The direction representation could be equivalently transformed to the angle-based one:
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where dihedral(v1,v2,v3) is defined in Alg.2 (Appendix).

Algorithm 1 place(xi−1, αi, βi,di−1,di−2, r)

1: Input: xi−1, αi, βi,di−1,di−2

2: d̃i = [− cosαi, cosβi sinαi, sinβi sinαi]
T

3: Ri = [di−1, (di−2 × di−1)× di−1,di−2 × di−1]

4: di = Rid̃i

5: Return: xi−1 + ridi

Gradient Analysis The geometric constants in Eq.2 equires to reduce the loss function of L(||pA
i −

pA
1 ||). Lets rewrite {pA
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2 , · · · ,pN

i ,p
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i } as {x0,x1,x2,x3, · · · ,xn−1,xn} and

define di = (xi − xi−1)/||xi − xi−1||, ri = ||xi − xi−1||, e = (pA
i − pA

1 )/||(pA
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1 )||. The
original loss function could be reformulated as L(

∑n
i=1 rie

Tdi). When using Algorithm.1, the di is
a function of di−1 and di−2. Denote L =

∑n
i=1 rie

Tdi, the gradient of L w.r.t. di is:
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∂di

=
∂L
∂L

(

n∑
k=i

rke
T ∂dk

∂di
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(19)

We show the gradient computational graph in Fig.5.

...

...

Figure 5: The gradient computational graph.

Assumption A.1. During the initial stage of training, the folding angles αi and βi are iid random
values, whose distributios are αi ∼ N (µα, σ

2
α) and βi ∼ N (µβ , σ

2
β), respectively.

Lemma A.2.

u× v = C(u)v =

[
0 −u3 u2
u3 0 −u1
−u2 u1 0

][
v1
v2
v3

]
(20)

C(u)v = −[vTC(u)]T (21)

Lemma A.3.

(a× b)× c = (c · a)b− (c · b)a
a× (b× c) = (a · c)b− (a · b)c

17



Under review as a conference paper at ICLR 2024

Compute ∂dk

∂di
. From Algorithm.1, we have:

di = Rid̃i

= − cosαidi−1 + cosβi sinαi(di−2 × di−1)× di−1 + sinβi sinαidi−2 × di−1

= − cosαidi−1 + cosβi sinαi(d
T
i−2di−1di−1 − dT

i−1di−1di−2) + sinβi sinαidi−2 × di−1

= − cosαidi−1 + cosβi sinαi(− cosαi−1di−1 − di−2) + sinβi sinαidi−2 × di−1

Considering dT
i−2di−1 = − cosαi−1 and ||di−1|| = 1, we have{
∂di

∂di−1
= (− cosαi − cosβi sinαi cosαi−1)I + sinβi sinαiC(di−2)

∂di

∂di−2
= − cosβi sinαiI − sinβi sinαiC(di−1)

(22)

The differential computation graph is shown in Fig.5, where we conclude that:
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Case study The Eq.23 is intractable. We consider the special case such as the beta-sheet, where
the di follows the same primary direction e. This allow us use e to approximate di and simplify the
Eq.23 as: 

∂dn
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≈ (− cosαn − cosβn sinαn cosαn−1)I + sinβn sinαnC(e)

∂dn
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· · ·
(24)

Denote a n
n−1

= (− cosαn − cosβn sinαn cosαn−1) and b n
n−2

= − cosβn sinαn, we have:
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Projected Gradient Lets compute the expected gradient value following the direction e:
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According to the assumption A.1, we know that E[an−(k−1)
n−k

] and E[bn−(k−2)
n−k

] are constants. Therefore,
we conclude

E[eT
∂dn

∂dn−k
e] = K1t

k
1 +K2t

k
2 (27)

where K1,K2, t1, t2 are constants. When the value of k becomes sufficiently large, the issue of
vanishing or exploding gradients would arise.

A.3 ADDITIONAL FIGURES
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Algorithm 2 dihedral(v1,v2,v3)

1: Input: v1,v2,v3

2: n1 = v1 × v2

3: n2 = v2 × v3

4: x = (n1)
Tn2

5: y = n1 × n2

6: Return: arctan y
x

Ramachandran plot of the test set

𝛽𝛽 sheet
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Ramachandran plot of DiffSDS
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Figure 6: Angle distributions of various methods vs the test set distribution. DiffSDS produces
the most similar angle distributions to those of the test set. The Ramachandran plots also show that
DiffSDS can produce realistic structural distributions
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Figure 7: The connectivity error trend of different methods. SMCDiff and RFDesign perform poorly
at all mask lengths, FoldingDiff’s connectivity error increases with mask length, while DiffSDS
performs steadily and consistently better than all baselines.
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A.4 DIFFUSION

Forward process. We start from the standard diffusion process x0 → x1 → · · · → xT , where
the forward translation kernel from timestamp s to t is defined as q(xt|xs) = N (xt;αt|sxs, σ

2
t|sI),

s ≤ t. Denote αt = αt|0, σt = σt|0, and q(x0|x0) = N (x0;α0x, σ
2
0I), α0 = 1, σ0 = 0. We will

show that αt|s = αt/αs, σ
2
t|s = σ2

t − α2
t|sσ

2
s .

Proof.

q(xt|xs) =N (xt;αt|sxs, σ
2
t|sI)

⇒ xt =αt|t−1xt−1 + σt|t−1ϵt−1 xt ∼ q(xt|xt−1)

=αt|t−1(αt−1|sxs + σt−1|sϵs) + σt|t−1ϵt−1 xt−1 ∼ q(xt−1|xs)
=αt|t−1αt−1|sxs + αt|t−1σt−1|sϵs + σt|t−1ϵt−1
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√
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Reverse process. As to the backward process xT → xT−1 → · · · → x0, the neural network aims
to maximize q(xs|xt, x0) = N (zs; µ̂s, σ̂

2
sI), where{

σ̂s =
σt|sσs

σt

µ̂s =
1

αt|s
xt −

αt|s
σt
ϵt

(31)

Proof. Recall that N (z;µ, σI) ∝ exp
(
− ||z−µ||2

2σ2

)
, the backward translation could be derived by

Bayes’ Theorem:
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q(xt|xs)q(xs|x0)

q(xt|x0)

∝ exp

[
−1

2

(
||xt − αt|sxs||2

σ2
t|s

+
||xs − αsx0||2

σ2
s

− ||xt − αtx0||2

σ2
t

)] (32)

from which we can derive q(zs|zt, x0) = N (zs; µ̂s, σ̂
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sI), and
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A.5 ABLATION

Objective&Setting. We conduct ablation experiments to investigate the impact of conditions and
constraints on protein backbone inpainting. Specifically, we show how these factors affect the
validation losses, including angle loss, length loss, and overlapping loss.

Results & Analysis. As shown in Fig.8, Fig.9 and Tab.7, we find that: (1) the length condition and
the sequence condition contribute to the reduction of Llen and Lsim, respectively. This phenomenon
suggests that the model can learn to generate structures with a predetermined length and that residue
types can facilitate learning backbone angles. (2) Explicitly imposing geometric constraints on
the model is necessary. If the constraints are removed, the Llen loss is difficult to reduce, and the
Loverlap even increases, indicating the model could not generate geometrically reasonable structures.
Fortunately, all these drawbacks could be eliminated by imposing geometric loss on the introduced
direction space.

stepstep

Loss of angle (𝜙𝜙) Loss of length

Figure 8: Ablation of conditions. We remove length condition or residue type embedding from the
baseline (full feat) model, resulting in rm length and rm seq, respectively. We show the loss curves
for angle (ϕ) and length on the validation set, revealing the effect of the conditions.

Loss of angle (𝜙𝜙)Loss of overlapLoss of length

Step Step Step

Figure 9: Ablation of constraints. We show the validation loss curves in the constrained and
unconstrained cases. The unconstrained case means that Llen and Loverlap are not imposed on the
model during training.

Name scTM
DiffSDS 0.55

w/o constraints 0.53
w/o sequence 0.47

Table 7: Ablations of adding constraints and sequence features.
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A.6 MORE DISCUSSIONS

Why does CFoldingDiff works poorly? We analyzed the training and validation curves of CFold-
ingDiff and DiffSDS for the angles ϕ and ψ. Our results show that CFoldingDiff is prone to overfitting
without applying geometric constraints. Although the training loss of CFoldingDiff decreased better
than that of DiffSDS, the validation loss remained high. We hypothesize that the geometric constraint
loss may act as an auxiliary regularizer, facilitating the model’s convergence towards a good global
minimum.

Training loss of 𝜙𝜙 Training loss of 𝜓𝜓

Validation loss of 𝜙𝜙 Validation loss of 𝜓𝜓

Figure 10: Training and validation curves of CFoldingDiff and DiffSDS.

Why do RFDesign and SMCDiff work poorly? As shown in the following tables, we argue that
structural breaks due to the lack of structural constraints would corrupt the input features of ESM-IF
for SMCDiff and RFDesign, producing poor sequence design and ultimately poor scTM scores.

Connectivity error (↓)
mask length <10 10-15 >15

SMCDiff 113.62 107.32 154.52
RFDesign 218.36 146.24 159.17

CFoldingDiff 14.77 42.65 59.08
DiffSDS 6.93 9.93 10.61

Table 8: connectivity error of different methods.

scTM>0.5 (↑) scTM (↑)
All len≤70 len>70 Mean Median

SMCDiff 30/378 12/148 18/230 0.36 0.34
RFDesign 178/378 65/148 113/230 0.51 0.48

CFoldingDiff 217/378 81/148 130/230 0.54 0.53
DiffSDS 231/378 88/148 143/230 0.56 0.55

Relative Gain 6.5% 8.6% 10% 3.7% 3.8%

Table 9: Designability of different methods.
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Other Comments Since SMCDiff only generates Cα, we are unable to calculate the folding angles
and pairwise residue distances considering C, Cα, and O, and thus cannot provide Rosetta energy
and spatial interaction metrics.
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