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ABSTRACT

Diffusion models have emerged as powerful generative models for image synthe-
sis, yet the intricate relationship between input noise and generated images re-
mains not fully understood. In this paper, we investigate the correlation between
noise and images generated through deterministic DDIM sampling, uncovering
fundamental elements that are present across different diffusion models. More
specifically, we demonstrate that a one-step approximation of the mapping learned
by these models closely relates to Zero-phase Component Analysis (ZCA) inverse
whitening transform, which maximizes the correlation between source and tar-
get distributions. We leverage this insight to develop a simple and yet effective
model-agnostic method for sampling correlated noises and showcase applications
for image variation generation and editing.

1 INTRODUCTION

The landscape of generative artificial intelligence has witnessed an unprecedented evolution, notably
marked by the stellar advance of diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020).
Diffusion models represent the state of the art in terms of their generative capabilities, being used
for a myriad of generative tasks, ranging from text-to-image (Rombach et al., 2022) and text-to-
video (Ho et al., 2022; Villegas et al., 2022) models to sound guided (Alexanderson et al., 2022)
and text-based (Tevet et al., 2022) motion synthesis. Diffusion models operate on a straightforward
but powerful principle: reversing a diffusion process that progressively corrupts images into noise.
Due to its maximum entropy characteristic, Gaussian noise is commonly employed to train diffusion
models, since it allows the network to approximate image distributions in an unbiased way.

In this paper, we investigate the relationship between noise samples and images produced by diffu-
sion models. We are motivated by the observation that diffusion models sampled by deterministic
DDIM (Song et al., 2020) inherently preserve and translate correlations present in noise samples
to images (Khrulkov et al., 2022). Figure 2 illustrates this observation: by progressively averaging
distinct noise samples and comparing with averages of their corresponding images, we demonstrate
that visual structures on these averages are spatially similar.

To further understand this relationship, we propose a fixed point diffusion strategy that approximates
the mapping between a noise sample and a generated image in a single-step. Surprisingly, this single-
step mapping is a remarkable approximation of a ”de-whitening” operation, which is computed by
the inverse of the ZCA whitening transform (Bell & Sejnowski, 1997). Furthermore, we show that a
ZCA whitening matrix that is independently computed for the ImageNet dataset (Deng et al., 2009)
is remarkably close to the least-squares fitting between noise-image pairs of our single-step diffusion
approximation.

With the understanding that de-whitening is a fundamental element of diffusion models, we are able
to create an efficient optimization algorithm that generates initial noise samples that produce similar
images across completely different diffusion models (Figures 1 and 9). To the best of our knowledge,
our work is the first one to solve this inverse problem, resulting in model-agnostic noise samples that
generate images with a specific content. Furthermore, this relationship can be explored to improve
results of popular image editing approaches such as SDEdit (Meng et al., 2022) (Figure 10). In
summary, our work makes the following key contributions:
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Figure 1: Model-agnostic image variation generation. We uncover the existence of high correla-
tion between image and noise in diffusion-based methods. Variations of an image that preserves the
global structure can be generated by simply searching for noises that are correlated with the target
image. The search for suitable noises does not involve any diffusion models and the same resulting
noise can be used across different models sharing the same input space.

• We uncover the existence of a strong correlation between noise samples and their corre-
sponding images in diffusion models.

• We demonstrate that this correlation can be efficiently analyzed through a single-step ap-
proximation of the noise-image mapping learned by diffusion models. This single-step
approximation results in a mapping that is close to the ZCA de-whitening transform on the
noise distribution (Section 3).

• Leveraging these insights, we propose a novel simulated annealing optimization for model-
agnostic noise inversion, creating a new avenue for image generation and manipulation
(Section 5).

2 PRELIMINARIES

2.1 DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) generate image samples through a
sequential process of denoising an initially Gaussian-sampled noise. Gaussian noise ϵt ∼ N (0, I)
is subsequently added to a clean image z0 ∼ pdata during the training of diffusion models:

zt =
√
ᾱt z0 +

√
1− ᾱt ϵt, (1)

where αt defines a fixed noise schedule and ᾱt =
∏t

s=0 αs at timestep t.

Once the diffusion model is trained, a sequence of denoising steps is used to sample images from
the model. The denoising step often relies on classifer-free guidance (CFG) (Ho et al., 2020) to
generate high-quality samples. CFG linearly interpolates a text-conditioned denoising step and an
unconditional one:

ϵ̂t = ϵθ(zt; t) + ω(ϵθ(zt; t, c)− ϵθ(zt; t)), (2)

where ϵθ is the trained diffusion model, and ω is the classifier-free guidance scale. The revised
denoising prediction ϵ̂t is then used to update the noisy image zt, and estimate the clean z0|t image
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Figure 2: Correlation between noise samples and generated images. (a) The left-most column
shows a comparison between the noise seed (top) and the result (bottom) of SDXL-Turbo evaluated
with DDIM sampling with the corresponding seed (64 × 64). This seed is downsampled (8 × 8)
to extract its low frequency component. We then sample 1000 different noise maps with this same
low frequency component, which are then combined with random prompts to generate 1000 images.
From left to right, we progressively average more images and noise seeds. Top row shows averaged
noises (and the shared low frequency component), while bottom row shows averaged images. (b)
Computing the average L2 distance and Pearson correlation between paired noises and images shows
a much stronger correlation then with randomly sampled noises. (c) The cross-correlation between
paired image and noise pixels shows strong response on the diagonal, suggesting a local, per-pixel
correlation.

for timestep t with the Tweedies formulation (Robbins, 1992) as

z0|t = (zt −
√
1− ᾱtϵ̂t)/

√
ᾱt. (3)

Various sampling schemes are designed for efficiency (Ho et al., 2020; Song et al., 2020; Salimans
& Ho, 2022). In this paper, we adopt deterministic DDIM (Song et al., 2020) defined by

zt−1 =
√
ᾱt−1 z0|t +

√
1− ᾱt−1 − σ2

t ϵ̂t + σtϵt, (4)

where σt controls the stochasticity of the sampling process and ϵt ∼ N (0, I).

2.2 IMAGE WHITENING

Image whitening or sphering (Bell & Sejnowski, 1997; Kessy et al., 2018) refers to the linear oper-
ation that transforms a random vector x ∈ RD of mean µ and covariance matrix E[xxT ] = Σ to a
new random vector

z = W(x− µ)

such that z has zero mean and unit diagonal covariance E[zzT ] = I. The D×D matrix W is called
the whitening matrix. The objective is to remove correlations between features and to normalize
variances. It is a common preprocessing technique particularly useful in computer vision tasks,
dimensionality reduction, and feature extraction. In the context of images, the dimension of the
vector is the number of pixels D = h × w × c. While it can be shown that the whitening matrix
should satisfy

W⊤W = Σ−1,

this does not determine the whitening matrix uniquely, but only up to a mulitplication by an orthog-
onal matrix. Different whitening matrices have different properties, we refer to Kessy et al. (2018)
for a detailed overview of the topic and review only the three most common ones:

WPCA = Λ−1/2UT , WZCA = UΛ−1/2UT , WCholesky = L⊤. (5)

where Σ = UΛU⊤ = LL⊤ are respectively the SVD and Cholesky decomposition of the data
covariance matrix.
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target t	=	980 t	=	800 t	=	600 t	=	400 t	=	200 t	=	10

Figure 3: Performing our fixed-point iteration to recover the perfect denoising noise for different
times of the denoising process reveals how the model removes the noise in a non-uniform manner.

PCA Whitening. PCA (Principal Component Analysis) whitening (Friedman, 1987) utilizes the
eigenvectors of the covariance matrix to decorrelate the data. PCA whitening effectively rotates the
data to align with the principal components.

ZCA Whitening. While conceptually similar to PCA whitening, Zero-phase Component Analysis
(ZCA) whitening includes an additional rotational step that ensures the whitened data remains as
close as possible to the original data in the input space, maximizing the cross-covariance between
both distributios. It preserves the geometric structure of the data, making it particularly advantageous
for tasks in image processing where retaining the original orientation of the data is important.

Cholesky Whitening. Another widely known method is Cholesky whitening, which employs the
Cholesky decomposition of the inverse covariance matrix.

3 SINGLE-STEP MAPPING VIA FIXED POINT ITERATION

We are interested in understanding the behavior of diffusion
models when the mapping between a noise sample ϵ and a
given image z0 is defined through a linear operation z0 = Aϵ.
For given state zt (inset image) and its corresponding model
denoising prediction ϵθ(zt, t), a mapping that connects this
state to a sample closer to the image distribution z0|t, can be
computed through Equation (3). When t is large, the predic-
tions z0|t will usually produce images that are blurry and are
far way from the manifold of the data distribution. Instead of
fixing zt, we seek a noise sample ϵ that directly connects the given image z0 to a new state ẑt (on
the same manifold as zt) through a spherical interpolation (red dashed line). This can be achieved
by a minimization problem:

min
ϵ
∥ϵθ(
√
ᾱt z0 +

√
1− ᾱt ϵ; t)− ϵ∥22. (6)

The minimized energy in Equation (6) can be seen as the standard denoising score matching objec-
tive (Ho et al. (2020); Poole et al. (2022); Kim et al. (2024)) with two modifications: the timestep t
is fixed, and the typical Gaussian noise added to the clean image z0 is replaced by an optimizable
variable ϵ. This tight connection with the diffusion training loss suggests that the solution to our
minimization problem is close to a random Gaussian noise sample. However, we note that whether
it is close to Gaussian noise sample is dependent on the timestep; this is visualized by obtaining
noise maps for varying timestep values (Figure 3). Even more surprisingly, we found that solutions
to the optimization problem when t is large share striking similarities with the result of applying
a ZCA whitening operation to the input images (Figure 4). We investigate this finding further in
Section 4. .

Equation (6) is solved when the noise predicted by the network at t is equal to the noise added
to z0, thus effectively denoising into the target image in a single step starting from t. One can
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(a)

(b)

(c)

Figure 4: Solutions to the minimization problem in Equation (6) share striking resemblance
to applying ZCA whitening to the original images when t ≃ T . By solving for a noise map (b)
that would generate an image (a) in a single inference step, we obtain images that look similar to a
ZCA-whitened version of the original image (c).

efficiently solve it through a fixed-point iteration (Pan et al., 2023; Samuel et al., 2024), where the
noise candidate at iteration n+ 1 is computed as

ϵn+1 = ϵθ(
√
ᾱt z0 +

√
1− ᾱt ϵ

n; t). (7)
Equation (7) works by recursively evaluating the network prediction at a fixed time t, which yields
the solution ϵ∗(z0, t). Since denoising networks in diffusion models are trained to predict the amount
of noise at a certain level, continuously updating ϵn+1 until convergence effectively solves Equa-
tion (6).

4 FIRST-STEP INFERENCE & ZCA WHITENING

Figure 4 shows the comparison between the optimized images from Equation (6) and images ob-
tained through ZCA whitening. The notable resemblance can be surprising for several reasons.
Firstly, it suggests that the single-step mapping between noise and image using a diffusion model is
actually a linear transformation. While this does not mean the actual full mapping is linear, it still
provides valuable insight on the global structure of the learned mapping between the two distribu-
tions. Secondly, ZCA whitening is only dependent on the data distribution. Thus, the connection
with ZCA would imply that the first step of the diffusion model does not depend on the model, but
only on the training distribution. To go beyond simple visual assessment, we propose to experimen-
tally validate the following hypothesis.

Hypothesis 1 At high noise levels, the solution to Equation (6) can be linearly approximated by a
ZCA whitening operation, i.e.,

ϵ∗(z0, t) ≃WZCAz0, for t ≃ T, z0 ∼ pdata. (8)

4.1 EXPERIMENTAL SETUP

We consider N = 50000 images from the validation set of ImageNet (Deng et al., 2009), and
generate paired noise and image data by optimizing Equation (7) for each sample using t = 0.98T ,
similar to Figure 4 (a) and (b). We reshape the dataset into two matrices X (images) and Z (noise)
of dimensions N ×D, where D denotes the number of pixels and channels, and subsequently center
them. We assume these pairs relate linearly through an unknown matrix WDiff of size D × D.
Therefore, we can estimate it using a least squares formulation, which minimizes the energy

WDiff = argmin
W

||XW⊤ − Z||22.

We solve this using the normal equations as:

W⊤
Diff = (X⊤X)−1X⊤Z ⇐⇒ WDiff = Z⊤X(X⊤X)−⊤ (9)

Concurrently, we also use the images X to compute several standard whitening matrices including
ZCA, ZCA-cor, PCA, PCA-cor, and Cholesky (Kessy et al., 2018) for comparison. The validation
of the hypothesis relies on proving three points:
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Figure 5: Experimental analysis of the mapping between images and corresponding solutions
of Equation (6). The MSE (a) and R2 scores (b) show that the ZCA whitening matrix is the second
best fit to our noise/image pairs, after the solution of least squares fitting.

• Linearity: the linear assumption fits the observed data well
• Whitening: the found transformation actually whitens the input images
• Relationship with ZCA: the transformation is close to the ZCA whitening matrix

4.2 RESULT & ANALYSIS

Linearity. We measure the goodness of fit of our linear model using the Mean Squared Error (MSE)
and the R2-score:

MSE(X,Z) =
1

ND
||XW⊤ − Z||22 R2(X,Z) = 1− MSE(X,Z)

Var(Z)

While small values of MSE indicates a better fit on the data, the scale of the value is hard to as-
sess. The R2-score measures the error of the fit relative to the variance of the data, giving a more
interpretable measure. We plot these metrics for the different whitening matrices in Figure 5(a) and
5(b). Unsurprisingly, the one fitted on the data (Diff) achieves the lowest MSE and highest R2 score.
Additionally, the distribution of the residual is centered and relatively close to 0, as shown in Figure
5(d). This indicates that the linear assumption is valid, i.e. the first-step inference mapping is close
to a linear transformation.

Whitening. We verify that the fitted model indeed whitens the images by looking at the covariance
matrix of the transformed data ZDiff = XW⊤

Diff. For whitened data, the covariance matrix is close
to the identity matrix I. In Figure 5(c), we plot a subset of the covariance matrix for visualization
and show the difference with the identity. The low error values confirms that the resulting matrix is
close to a whitening matrix.

Method 2-norm Frob.
PCA 7.8795 434.2
ZCA 3.8305 136.6
Cholesky 4.8027 204.6

Table 1: Comparison of methods using
2-norm and Frobenius norms.

Relationship with ZCA. Lastly, we confirm that the clos-
est whitening transform that explains our paired data is
the ZCA whitening. Figure 5(b) shows that the ZCA
whitening also has a high R2 score on the dataset, while
achieving the lowest norms among known whitening
methods (see inset).

We hypothetize that the gap between the fitted one (Diff)
and (ZCA) might be partly due to the fact that the ZCA
whitening matrix was only estimated on a subset of ImageNet, while the fitted one would reflect the
entire training distribution of the diffusion model.

Analysis. We have proved experimentally that the first-step inference of diffusion models approxi-
mates a ZCA de-whitening transform (as the mapping from image to noise is a whitening operation).
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Figure 7: Comparison of different simulated annealing variations. The baseline finds noises that
follow the pose but suffer from blurriness, while the backward fails to capture the content of the
image well. We found that the forward loss works better across various examples.

Since ZCA whitening is the whitening operator that maximizes the cross-covariance between the in-
put image and the target noise distribution, this observation empirically supports the observation that
diffusion models learn to map noise to images while preserving as much as possible the correlation
between them (see Figure 2).

5 NOISE OPTIMIZATION THROUGH SIMULATED ANNEALING

We uncovered the existence of a strong correlation between noise samples and the images they
generate in diffusion models. Moreover, previous experiments demonstrated that an image z0 is
related to the corresponding solution of Equation (6) through a linear transform that is close to ZCA
whitening when t ≃ T . Properly blending the “noise” ϵ∗(z0, t) and the z0 image and passing it
through the diffusion model recovers the solution of Equation (6). This implies that the estimated
final image from step t matches exactly the input image in one step starting at t, i.e. z0|t = z0, and
a single diffusion step is enough to generate the final image.

Because whitening is invertible, the reverse mapping is also well-defined: a one-step inference
starting from a random Gaussian noise sample effectively maps to the final estimated image, which
is a de-whitened version of the noise itself. This is an insightful trait, as it means we can obtain
an approximate estimated final image z0|T by simply de-whitening the input noise with a matrix
multiplication, without using any diffusion model.

We leverage this discovery to create model-agnostic correlated noises. Given an input image x,
we propose to find a noise z that correlates with it by minimizing a loss subject to the noise being
in-distribution, i.e.

z = argmin
z
L(z,x) s.t. z ∼ N (0, I) (10)

Equation (10) can be solved by simply searching for a noise that is correlated with an image. In this
way, we can compute noises that generate very similar images to the target image across various
models.

Figure 8: Noise search with Simulated Annealing. We consider three implementations of simu-
lated annealing: baseline (a), forward (b), and backward (c).
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Algorithm 1: Simulated Annealing for Correlated Noise Search
Input: Target image x, Number of iterations N , Initial temperature Tinit, Final temperature

Tfinal, Step size parameter α
Output: Best noise zbest
Initialize zcur ← zinit, Lcur ← Lfwd(zcur,x)
zbest ← zcur, Lbest ← Lcur
for k ← 1 to N do

Tk ← Tinit + (Tfinal − Tinit)× k
N

Sample random noise ϵ ∼ N (0, 1);
znew ← sin

(
π
2α

)
zcur + cos

(
π
2α

)
ϵ;

Lnew ← Lfwd(znew,x)
if Lnew < Lcur then

zcur ← znew, Lcur ← Lnew;
else

if rnd() < exp
(
−Lnew−Lcur

Tk

)
then

zcur ← znew, Lcur ← Lnew;
end

end
if Lnew < Lbest then

zbest ← znew, Lbest ← Lnew;
end

end
Return zbest

Simulated Annealing is a gradient-free optimization method (Kirkpatrick et al., 1983) that samples
a new candidate solution at each iteration, ensuring that the optimized variable stays in distribution
while simultaneously matching a given energy target. New candidates for next iterations are gener-
ally computed within a certain range of the current iteration. In our application, we propose using
spherical interpolation to sample a neighboring noise as

zk+1 = sin
(π
2
α
)
zk + cos

(π
2
α
)
ϵ (11)

where ϵ ∼ N (0, I) is a randomly sampled Gaussian white noise image, and α ∈ [0, 1]. Spherical
interpolation ensures the resulting noise remains Gaussian of variance 1. Different variations of the
L2 loss are considered in Equation (10) and demonstrated visually in Figure 8. These are:

• Baseline: we compare directly the noise with the target image: Lbase(z,x) = ∥z− x∥2

• Forward: we approximate the first step of a diffusion model with a ZCA de-whitening
operation and compare with the image: Lfwd(z,x) = ∥W−1

ZCAz − x∥2. This requires per-
forming a matrix multiplication at every step.

• Backward: we reproject the target image with the whitening matrix and compare to the
noise: Lbwd(z,x) = ∥z−WZCAx∥2. In this case a single multiplication is required at the
start with the target image.

Figure 7 shows images generated by different instances of the L2 loss. The baseline loss Lbase is
able to follow the content of the original image but produces blurry results, while the backward Lbwd
loss fails to faithfully reproduce an image with similar content as the original. The forward loss Lfwd
is the one that produces best results, and its the one that we employed to generate other examples in
this paper. The algorithm is described in Algorithm 1.

6 RESULTS AND APPLICATIONS

Image variation generation. Given an input image and a prompt that roughly describes it, our goal
is to find initial Gaussian noises that could generate variations of the image when denoised by a
diffusion model through DDIM sampling. Figure 1 (top left) defines the initial image to be matched.

8
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Figure 9: Model-free image variation generation. Starting from random noises that generate
diverse outputs, our noise sampling based on simulated annealing converges to a set of noises which
generate variations of the target image.

We employ simulated annealing to optimize Equation (10), generating a batch of noises without any
diffusion model involved (top row). We then show that the same noise is able to generate similar
content even when employing different models such as Stable Diffusion 2.1, Stable Diffusion 1.5 and
SD-Turbo. Figure 9 and different results included in the Appendix demonstrate the generalization
capacity of our approach.

Prompt-based image editing. We consider the task of editing an image by partially reverting it
to noise and denoising it with a different prompt. SDEdit (Meng et al., 2022) adds random noise
to the original image before denoising it. As more noise is added, less structures from the original
image are preserved during editing. On the other hand, DDIM inversion can be efficiently used for
editing. Similarly, one can partially invert the DDIM sampling process up to an intermediate step,
and denoise with a new prompt. In this case, the result is deterministic. By employing our noise
sampler to obtain noise that is correlated with our image, we can improve the structure preservation
in SDEdit, allowing us to go to higher noise levels while simultaneously better preserving the content
of the image. In Figure 10, we compare SDEdit and DDIM inversion on an example task that
replaces a cat with a rabbit.

7 RELATED WORK

Whitening transforms in machine learning. Whitening transforms can be employed to normal-
ize and decorrelate input data, and served as inspiration for batch normalization (Ioffe & Szegedy,
2015). ZCA whitening can be particularly interesting when applied to activation functions, which
can improve generalization, speed-up training and approximate better features Luo (2017); Huang
et al. (2018). However, when indiscriminately applied to data without normalized gradient descent
methods (Grosse & Martens, 2016), data whitening can hinder generalization (Wadia et al.; Ah-
mad, 2024). These works demonstrate that whitening can provide effective insights into learning
dynamics, though its application in diffusion models remains underexplored.

Noise analysis in diffusion models. Understanding how images progressively deteriorate with noise
and how that affects diffusion models is paramount to improve accuracy and speed-up training (Lee
et al., 2022; Chen et al., 2024; Huang et al., 2024), facilitate temporal coherency (Ge et al., 2023;
Chang et al., 2023), and elucidate the analysis of noise parameters (Deasy et al., 2022; Jolicoeur-
Martineau et al., 2023). Different works (Xu et al., 2024; Mao et al., 2024) have studied the effect
of random seeds in generative models, underscoring the sensitivity of generative processes to noise
configurations. Moreover, taking into consideration noise correlations with itself (Ge et al., 2023;
Chang et al., 2023) and with samples on the data distribution (Mao et al., 2024; Xu et al., 2024) can
be useful to improve the training and evaluation of diffusion models. Lastly, alternative corruption
schemes (Bansal et al.; Daras et al., 2022; Bansal et al., 2023; Rissanen et al., 2023; Hoogeboom &

9
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Figure 10: Improving SDEdit with our noise. By adding a correlated noise found with our algo-
rithm when doing SDEdit, we are able to preserve the overall structure of the image better while
allowing realistic changes (a), while traditional SDEdit loses many of the original structure at high
noise level (b). At low noise level, the content is too strong and forces the rabbit to fit the shape of
the cat (d). A similar observation can be made for DDIM inversion (c).

Salimans, 2024) demonstrate that besides noise, other operations that can progressively deteriorate
images can be also used in diffusion training.

Inverse problems and noise optimization. Optimizing the generation process for image-space
objectives is a recent trend in diffusion literature. Inverse problems can be solved by guiding the
diffusion process through a function that compares the image-space objective with the predicted
Tweedie for a given timestep (Kadkhodaie & Simoncelli, 2021; Lugmayr et al., 2022; Yu et al., 2023;
He et al., 2023; Song et al., 2023; Chung et al., 2024a;b). A more accurate approach compares the
result of the diffusion model through a fixed computational graph that is fully differentiated through
noise optimization (Samuel et al., 2023; Wallace et al., 2023; Pan et al., 2023; Hong et al., 2023;
Ben-Hamu et al., 2024; Eyring et al., 2024; Samuel et al., 2024). While this approach can produce
more accurate results, its also computationally more expensive, since it requires the computation of
the gradients of the objective function relative to the noise. For a survey on inverse problems with
diffusion models, please refer to Daras et al. (2024).

8 CONCLUSIONS

In this work, we focused on the correlation between noise and corresponding images in diffusion
models. To this extend, we proposed to study the optimization problem of finding a “noise” that
would minimize the fixed-time score matching objective for a given target image. This gave us new
insights on the distribution mapping learned by the diffusion model. Importantly, we empirically
demonstrated that diffusion models learn to perform ZCA de-whitening in the setting of single-step
inference from noise. Leveraging this interesting discovery, we proposed to replace a diffusion
evaluation by a simple matrix multiplication and use this to find model-agnostic noises, which can
generate image variations and help image editing across diverse models.
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A APPENDIX

A.1 ADDITIONAL RESULTS

We provide additional examples showing the effect of using the sampled noise from our method.
In Figure 11 we recover different sampled noises using our approach based on the input image and
generate images for different prompts, showcasing its potential use for editing. In Figures 12 and 13
we combine our method with SDEdit. All the results are generated using Stable Diffusion 2.1.

input	image

random
noise

optimized
noise

varying	seeds

“a	cat”

“a	white	cat”

“an	art	deco	cat”

“a	blue	cat”

“a	dog”

input	image

random
noise

optimized
noise

varying	seeds

“a	ship”

“a	ship”

“an	aircraft	carrier”

“a	boat”

Figure 11: Model-free image variation generation. Our method searches for noises that are cor-
related with the target image without using any diffusion models. This allows us to generate image
variations that preserve the original structure by using different prompts.
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Figure 12: Improving SDEdit with our noise. Our sampled noise can help to preserve the structure
of the original image, even in situations where DDIM inversion can fail.
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Figure 13: Improving SDEdit with our noise. Our sampled noise can help to preserve the structure
of the original image, even in situations where DDIM inversion can fail.

17


	Introduction
	Preliminaries
	Diffusion models
	Image whitening

	Single-step mapping via fixed point iteration
	First-step inference & ZCA whitening
	Experimental Setup
	Result & Analysis

	Noise Optimization through Simulated annealing
	Results and Applications
	Related Work
	Conclusions
	Appendix
	Additional results


