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A APPENDIX

A.1 LIMITATIONS

As shown in Fig. 11, our method has several limitations that require further exploration. Currently,
it depends on external techniques such as Karaev et al. (2023); Yang et al. (2023) for trajectory
extraction. Investigating how to generate trajectories from more flexible inputs, such as text-based
conditions, is a promising direction for future research. Moreover, our method depends on the gen-
erative capabilities of the underlying foundation models. If these models face difficulties handling
rapid motions, the effectiveness of trajectory-based control diminishes. Additionally, our method
encounters challenges with 3D cycle consistency. For instance, performing 360-degree rotations
would require further design adaptations. Furthermore, the control precision diminishes when the
trajectories become too sparse since the auxiliary branch does not provide enough control informa-
tion.

A.2 DETAILS OF FULL-ATTENTION IMPLEMENTATION

We implement trajectory attention in Open-Sora-Plan Lab & etc. (2024), a DiT (Peebles & Xie,
2023) model with 3D attention. The trajectory attention is constructed and trained following the
same procedure outlined in the main paper, with the key difference being that it is appended to the
3D full attention block instead of the temporal attention block (Fig. 1). For other training details,
we follow the setting in Lab & etc. (2024).

Full

Attention

Trajectory

Attention

Attention Block

… …

Video Diffusion Model

Figure 1: Pipe for video diffusion models with 3D Attention. The key distinction with the pipeline
in the main paper lies in applying trajectory attention to the 3D attention module, rather than to the
temporal attention mechanism.

A.3 DETAILS OF TASK PROCESS

Camera Parameters. The intrinsic parameters describe the internal characteristics of the camera.
These parameters define how the camera transforms 3D points in its coordinate system to 2D points
on the image plane. The matrix K ∈ R3×3 typically has the following structure:

K =

[
fx 0 cx
0 fy cy
0 0 1

]
(1)

• fx and fy: Focal lengths in the x and y directions, often in pixel units.
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• cx and cy: Coordinates of the principal point (optical center) in the image plane.

The intrinsic matrix K encapsulates how pixel coordinates relate to normalized image coordinates.
The extrinsic parameters define the camera’s position and orientation in the world coordinate system.
This involves:

• Rotation matrix R ∈ R3×3: Represents the camera’s orientation by rotating the world
coordinate system to align with the camera coordinate system.

• Translation vector t ∈ R3×1: Represents the position of the camera in the world coordi-
nate system.

These two components are combined to form the extrinsic matrix, which can be represented as:
E = [R | t] Here, R defines how the 3D space is rotated relative to the camera, while t indicates
the displacement of the camera’s origin from the world coordinate origin. For a random input image,
we predefine the intrinsic parameters and use the given camera trajectory to generate the extrinsic
parameters.

Effects of intrinsic parameters. Since we cannot precisely estimate the intrinsic and extrinsic
parameters from a single image, we use predefined intrinsic parameters and some hyperparameters
for extrinsic parameters. From our observations, these predefined parameters with statistics can
effectively generate reasonable results. We can also adjust them accordingly. Specifically, we set cx
and cy in the center of the image plane, and fx and fy to 260 (relative). As shown in Fig. 12, we
illustrate cases with different focal lengths.

Depth estimation. We use DepthAnythingV2Yang et al. (2024) to estimate the depth maps from
frames. Examples of estimated results are shown in Fig. 2

Figure 2: Depth estimation results.

Translation computing. Based on the depth map, camera parameters of two views, we can get the
translation of pixels shown in Alg. 1.
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Algorithm 1: Compute Pixel Translation

Input: D ∈ RHp×Wp : Depth map of the first view
E1 ∈ R4×4: Extrinsic matrix of the first view
E2 ∈ R4×4: Extrinsic matrix of the second view
K ∈ R3×3: Intrinsic matrix for both views
Output: T12 ∈ RHp×Wp×2: Transformed pixel coordinates between views

1 T← E2 · E−1
1 ; // Compute relative transformation

2 y← [0, . . . ,Hp − 1], x← [0, . . . ,Wp − 1]
3 X,Y← meshgrid(x, y)
4 Phomo ← stack([X,Y,1Hp×Wp

]) ; // Homogeneous pixel positions

5 P̃← K−1 · Phomo ; // Normalized positions in camera space
6 Dreshaped ← D reshaped to (Hp,Wp, 1, 1)

7 Pworld ← Dreshaped · P̃
8 Pworld, homo ← concatenate([Pworld,1Hp×Wp ])

9 P′
world, homo ← T · Pworld, homo

10 P′
world ← P′

world, homo[:, :, : 3]

11 T12 ← K · P′
world

12 return T12

Point trajectory extraction from videos. We use CoTracker Karaev et al. (2023) to extract point
trajectories. An example is shown in Fig. 3.

Figure 3: Point trajectory estimation results.

A.4 INPUT PROCESS.

In Alg. 4 of the main paper, we present the process of combining the video point trajectories and
camera motion trajectories. In Sec 4.3, we present the input process of video editing. To clarify this
process, we further provide the visualization in Fig. 4

A.5 ABLATIONS ON TRAINING DATASETS.

We initially selected 10k short real-world videos from Miradata Ju et al. (2024). To evaluate the
impact of training domain diversity and dataset size, we conducted ablation experiments on various
training datasets. As shown in Table 1, we did not observe substantial improvements when varying
the training domains or increasing the dataset size. The evaluation setup matches the 25-frame
version described in Table 1.

A.6 USING SYNTHETIC OPTICAL FLOW AS GUIDANCE

Our method directly leverages optical flow to guide the generation process. Unlike previous ap-
proaches Geng & Owens (2024) requiring inference-time optimization, our method seamlessly inte-
grates this guidance into the attention mechanism. In addition to generating intermediate frames by
interpolating the optical flow, our approach achieves improved consistency, as demonstrated in Fig.
5.
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Table 1: Ablations on training datasets.
Dataset Setting Training steps ATE (m, ↓) RPE trans (m, ↓) RPE Rot (deg, ↓) FID (↓)

10k real-world 40k 0.0396 0.0232 0.1939 103.5

10k games 40k 0.0421 0.0211 0.2139 105.3

10k real-world
+10k games 40k 0.0372 0.0233 0.1899 102.2

First frame Trajectories

Warp trajectories by camera view

Edited first frame Trajectories

(a) Input process visualization of camera motion control on videos (b) Input process visualization of video editing

Figure 4: Input process visualization. For all tasks, the inputs to the network are the first frame
and the extracted trajectories. The usage of the first frame and the trajectories are identical to Fig.
3 in the main paper. The wrapped frames and the reference frames will not be used as inputs to the
generation network.

A.7 MORE CHALLENGING CASES.

As shown in Fig. 6, our method can also cover many challenging situations, like (a) video editing
with multiple objects, (b) video editing with occlusions, and (c) diverse and rapid camera motions
(i.e. zoom-in, zoom-out, and clockwise rotation.).

A.8 EXPERIMENTS ON THE SPARSITY OF TRAJECTORY ATTENTION

To assess the generalization capability of trajectory attention under varying levels of sparsity, we
conduct experiments in two scenarios: using trajectories with reduced density and applying a small
region mask to the trajectories. As shown in Fig. 8, our method performs effectively in both settings.
However, when the trajectory density is extremely sparse (below 1/32 resolution), the results become
unstable.

Moreover, we also find trajectory attention can be generalized to sparse hand-crafter trajectories, as
shown in Fig. 9.

A.9 COMPARISON ON CAMERA TRAJECTORIES

For clearer understanding, we visualize the predicted trajectories in Fig. 7, illustrating results from
five scenes with a single camera trajectory. The figure shows that, thanks to the explicit modeling of
camera motion, our method’s estimated trajectories closely align with the ground truth. In contrast,
methods like He et al. (2024) exhibit inconsistencies in some cases.
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(a) Results from motion guidance

(b) Results from ours

Figure 5: Using synthetic optical flow as guidance. Our method supports directly using optical
flow to guide generation. Blue boxes indicate the optical flow. Yellow boxes indicate the reference
image.

A.10 TRAINING DATA CONSTRUCTION

The training data consists of natural scenes with inherent camera and object movements. We es-
timate the optical flow and occlusion masks using the method proposed by (Yang et al., 2023).
Examples are shown in Fig. 10.

A.11 MORE QUALITATIVE RESULT

We strongly recommend viewing the attached webpage for a more intuitive visualization.
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(c) Diverse and rapid camera motions

(a) Video editing with multiple objects

(b) Video editing with occlusions

(d) Video editing with distinct object categories

Figure 6: Examples of challenging situations. Our method effectively addresses complex sce-
narios, including (a) video editing involving multiple objects, (b) video editing in the presence of
occlusions, (c) diverse and rapid camera movements, such as zooming in and out, as well as clock-
wise rotations, and (d) video editing with distinct object categories. Please note that yellow boxes
indicate reference videos, green boxes indicate input frames and blue boxes indicate output results.
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Scene 1 Scene 2 Scene 3 Scene 4 Scene 5

Ours

GT

CC

GT

Figure 7: Visualization of Camera Trajectories. The first row displays the estimated trajectories
from our generation alongside the ground truth trajectories. The second row presents the estimated
trajectories from CameraCtrl (denoted as “CC”) compared to the ground truth. The results indicate
that our method aligns significantly better with the ground truth camera motion trajectories.
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Source Video

4x Sparse Trajectory

16x Sparse Trajectory

(a) Trajectory attention is robust to relatively sparse trajectory

Trajectory Mask for the First Frame

(b) Trajectory attention can be applied to small region

32x Sparse Trajectory

(c) Sparse trajectories generate dynamic results

Figure 8: Results on Sparse Trajectories. In (a), we show that trajectory attention remains robust
even with relatively sparse trajectories. Even when the trajectory density is reduced to 1/16 of the
original video resolution, it still performs well in motion control. In (b), we apply the trajectory
mask to selectively use only a portion of the trajectories, keeping the regions outside the mask static.
The model accurately follows the motion within the small masked area. (c) If we apply sparse
trajectories control to a specific region (i.e., the dog region), the output results are more dynamic.
Best viewed on the attached HTML file.

Figure 9: Applications on drag signals. Trajectory attention supports hand-crafted dragging trajec-
tory. Row 1: origin videos. Row 2: dragged results.
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Figure 10: Visualization on the training data. The training data includes origin frames, predicted
optical flow, and occlusion masks.

(a) Failure case due to high speed camera motion

(b) Failure case due to complex motion and poor trajectory estimation

Reconstructed results

Origin videos

Figure 11: Visualization on failure cases. Our method encounters challenges when dealing with
extremely fast motions as well as complex and difficult-to-estimate motion patterns.

Focal length=260 

Focal length=50 

Figure 12: Visualization on different intrinsic parameters.
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