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Abstract

Recently, Vision Transformers and its variants have shown promise on various vi-1

sion tasks. The ability to capture short- and long-range visual dependencies through2

self-attention is arguably the secret sauce for its success but by nature brings diffi-3

culty due to quadratic computational overhead, especially for the high-resolution4

tasks (e.g., object detection). A variety of works have attempted to address this5

by applying either coarse-grained global attention or fine-grained local attention.6

However, both paradigms discount the original power of transformer layers. In7

this paper, we present a focal self-attention mechanism, which simultaneously8

models the local and global interactions in a transformer layer and helps to capture9

both short and long-range visual dependencies efficiently and effectively. With10

focal self-attention, our built vision transformer models, called Focal Transformers11

achieve superior performance over the state-of-the-art methods in various standard12

benchmark settings on image classification and high-resolution object detection13

tasks. Specifically, a focal transformer model with a moderate size of 51.1M14

achieves 83.5 Top-1 accuracy on ImageNet classification at 224× 224 resolution.15

Using our Focal Transformers as the backbones, we demonstrate consistent and16

substantial improvements over the current state-of-the-art Swin Transformers [35]17

on 6 different detection methods trained at both 1x and 3x schedule.18

1 Introduction19

Nowadays, Transformer [52] has become a prevalent model architecture in natural language process-20

ing (NLP) [18, 6]. In the light of its success in NLP, there is an increasing effort on adapting it to com-21

puter vision [39, 42]. Since its promise was first demonstrated in Vision Transformer (ViT) [19], we22

have witnessed a flourish of full-Transformer models for image classification [49, 55, 58, 35, 68, 51],23

object detection [9, 76, 71, 16] and semantic segmentation [53, 56]. Beyond these static image tasks,24

it has also been applied on various temporal tasks, such as action recognition [32, 70, 10], object25

tracking [14, 54], scene flow estimation [31], etc.26

In Transformers, self-attention is the key component making it unique from the widely used convo-27

lutional neural networks (CNNs) [30]. It enables the global content-dependent interactions among28

different image regions for modeling both short- and long-range dependencies at each Transformer29

layer. Through the visualization of self-attention in DeiT-Tiny model1, we indeed observe on the30

left side of Fig. 1 that it learns to attend local surroundings (like CNN) and the global contexts at31

the same time. Nevertheless, when it comes to high-resolution images for dense predictions such as32

object detection or segmentation, a global and fine-grained self-attention becomes non-trivial due33

to the quadratic computational cost with respect to the dimension of feature map. Recent works34

alternatively exploited either a coarse-grained global self-attention [55, 58] or a fine-grained local35

1Pre-trained checkpoint downloaded from https://github.com/facebookresearch/deit.
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Figure 1: Left: Visualization of the attention maps of the three heads at the given query patch (blue)
in the first layer of the DeiT-Tiny model. Right: An illustrative depiction of focal self-attention
mechanism. Three granularity levels are used to compose the attention region for the blue query.

self-attention [35, 68, 51] to reduce the computational burden. However, both of them hurt the power36

of original self-attention after sacrificing one of its two merits, i.e., the ability to simultaneously37

model short- and long-range visual dependencies.38

In this paper, we present a new self-attention mechanism to capture both local and global interactions39

in Transformer layers. As discussed above, it is difficult to model the fine-grained global interactions40

for high-resolution inputs. We instead propose to perform self-attention at fine-grain locally whereas41

coarse-grain globally. As depicted in the right side of Fig. 1, for a query token in the feature map, it42

attends its closest surrounding at the finest grain as itself. When it goes to farther surroundings, we43

use summarized tokens to represent the coarser regions. Depending on how many levels we want to44

extend, we can further cover the whole feature map using more coarser grain at even farther distance.45

We call this mechanism focal self-attention considering each token attends other tokens in a focal46

manner. This focal self-attention has the ability to capture both short- and long-range dependencies47

that approximates the original self-attention while introducing much less computational overhead48

after coarsening the tokens in the feature map.49

Based on the proposed focal self-attention, we develop focal vision Transformers for image classifica-50

tion and object detection. It shares some common properties as previous works for dense prediction51

tasks: 1) We exploit a multi-stage architecture to maintain a reasonable computational cost for high-52

resolution images, following [55, 58, 35, 68]; 2) Instead of performing focal self-attention for each53

token, we split the feature map into multiple windows in which tokens share the same surroundings,54

similar to the strategies used in [51, 68, 35]. As a result, we focus our study on the effectiveness of our55

proposed focal self-attention. Extensive experiments show that our Focal Transformers with similar56

sizes and complexities outperform the current state-of-the-art Transformer models consistently across57

various settings, particularly on object detection. These results demonstrate the focal self-attention58

stand-alone is an effective strategy for modeling the local-global interactions in vision Transformers.59

2 Related work60

Vision Transformers. The Vision Transformer (ViT) [19] applies a standard Transformer, originally61

developed for natural language processing (NLP), for image encoding by treating an image as a62

word sequence, i.e., splitting an image into patches (words) and using the linear embeddings of these63

patches as an input sequence. ViT has shown to outperform convolution neural network (CNN) models64

such as the ResNet [27], achieving state-of-the-art performance on multiple image classification65

benchmarks, where training data is sufficient. ViT has been improved from different perspectives,66

such as data-efficient training [49], improved patch embedding/encoding [15, 64, 25], introducing67

convolutional projects into transformers [58, 63], multi-stage ViT architecture and efficient attention68

mechanisms for high-resolution vision tasks [55, 58, 35, 68]. Our Focal ViT follows the multi-stage69

ViT architecture and introduces a new efficient attention mechanism – focal self-attention.70

Local fine-grain and global coarse-grain attention. When there are large number of tokens in71

Transformer models, such as long document processing in NLP and high-resolution vision tasks72

in CV, efficient attention mechanisms are required to overcome the quadratic computational and73

memory increase in the vanilla self-attention mechanisms. Local fine-grain attention, i.e., attending74
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Figure 2: Model architecture for our focal vision Transformers. As highlighted by blue box, the main
innovation part is the proposed focal self-attention module in each Transformer layer.

to neighboring tokens within a constant window size, is the most popular efficient attention in both75

NLP (see, e.g., [3, 66, 1]) and CV (see, e.g., [58, 35, 68]) scenarios. Global coarse-grain attention,76

i.e., attending to a small number of downsampled/summarized tokens, is another effective efficient77

attention in preserving the global communication among tokens in the vanilla self-attention; see, e.g.,78

[41, 38] in NLP and [55, 58, 25] in CV. We argue that both types of attentions are important and79

the vanilla ViT model indeed had learned both of them, as shown in Fig. 1 left. Our proposed focal80

self-attention captures both types of attentions and approximates the vanilla full attention effectively.81

Finally, we refer to [48, 47, 68] for a comprehensive survey and benchmarks of various efficient82

attention mechanims in NLP and CV applications.83

3 Method84

3.1 Model Architecture85

To accommodate the high-resolution vision tasks, our model architecture takes similar multi-scale86

design used in [55, 68, 35] which allows us to obtain high-resolution feature maps at earlier stages.87

As shown in Fig. 2, an image I ∈ RH×W×3 is first partitioned into patches of size 4× 4, resulting88

in H
4 ×

W
4 visual tokens with dimension 4× 4× 3. Then, we use a patch embedding layer which89

consists of a convolutional layer with filter size and stride both equal to 4, to project these patches90

into hidden features with dimension d. Given this spatial feature map, we then pass it to four stages91

of focal Transformer blocks. At each stage i ∈ {1, 2, 3, 4}, the focal Transformer block consists of92

Ni focal Transformer layers. After each stage, we use another patch embedding layer to reduce the93

spatial size of feature map by factor 2, while the feature dimension is increased by 2. For image94

classification task, we take the average of the output from last stage and send it to a classification95

layer. For object detection, the feature maps from last 3 or all 4 stages are fed to the detector head96

depending on the particular detection method we use. The model capacity can be customized by97

varying the input feature dimension d and the number of focal Transformer layers at each stage98

{N1, N2, N3, N4}.99

Standard self-attention can model both short- and long-range interactions at fine-grain, but it suffers100

from high computational cost when it performs the attention on high-resolution feature maps. Take101

stage 1 in Fig. 2 as the example. For the feature map of size H
4 ×

W
4 × d, the complexity of102

self-attention is O((H4 ×
W
4 )2d), resulting in an explosion of time and memory cost considering103

min(H,W ) = 800 typically for object detection. In the next, we will explain how we address this by104

using focal self-attention.105

3.2 Focal Self-Attention106

In this paper, we propose focal self-attention to make Transformer layers scalable to high-resolution107

inputs. Instead of attending all tokens at fine-grain, we propose to attend the fine-grain tokens108

only locally but the summarized ones globally. As such, it can cover as much region as standard109

3



self-attention but with much less cost. In Fig. 3, we show the area of receptive field for standard110

self-attention and our focal self-attention. As we can see, for a query position, when we use gradually111

coarser-grain for its far surroundings, it can have significantly larger receptive field at the cost of112

attending the same number of visual tokens.113
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Figure 3: The receptive field size with the increase
of tokens for standard self-attention and our focal
self-attention. For focal self-attention, we increase
the window granularity by factor 2 gradually but
no more than 8. Note that the y-axis is logarithmic.

Theoretically, our focal mechanism enables114

global self-attention with much less time and115

memory cost because it attends much less num-116

ber of surrounding (summarized) tokens. In117

practice, however, extracting the surrounding118

tokens for each query position suffers from119

high time and memory cost since we need to120

duplicate each token for all queries that can121

get access to it. This practical issue has been122

exhaustively noted by a number of previous123

works [51, 68, 35] and the common solution124

is to partition the input feature map into win-125

dows. Inspired by them, we resort to perform126

focal attention at the window level. Given a fea-127

ture map of x ∈ RM×N×d with spatial size M ×N , we first partition it into a grid of windows with128

size sp × sp. Then, we find the surroundings for each window rather than individual tokens. In the129

following, we elaborate the window-wise focal self-attention.130

3.2.1 Window-wise Attention131

An illustration of the proposed window-wise focal self-attention is shown in Fig. 4. Before we explain132

the details, we first define three terms for clarity:133

• Focal levels L – the number of granularity levels we extract the tokens for our focal attention. In,134

Fig. 1, we show 3 focal levels in total for example.135

• Focal window size slw – the size of sub-window on which we get the summarized tokens at level136

l ∈ {1, ..., L}, which are 1, 2 and 4 for the three levels in Fig. 1.137

• Focal region size slr – the number of sub-windows horizontally and vertically in attended region at138

level l, and they are 3, 4 and 4 from level 1 to 3 in Fig. 1.139

With the above three terms {L, sw, sr}, we can specify our focal self-attention module. Below we140

explain its two main steps:141

Sub-window pooling. Given the input feature map x ∈ RM×N×d, we perform sub-window pooling142

for all L levels. For the focal level l, we first split the input feature map x into a grid of sub-windows143

with size slw × slw. Then we use a simple linear layer f l
p to pool the sub-windows spatially by:144

xl = f l
p(x̂) ∈ R

M
slw
× N

slw
×d

, x̂ = Reshape(x) ∈ R
( M
slw
× N

slw
×d)×(slw×slw)

, (1)

The pooled feature maps {xl}L1 at different levels l provide rich information at both fine-grain and145

coarse-grain. Since we set slw = 1 for the first focal level which has the same granularity as the input146

feature map, there is no need to perform any sub-window pooling. Considering the focal window size147

is usually very small (7 maximally in our settings), the number of extra parameters introduced by148

these sub-window pooling are fairly neglectable.149

Attention computation. Once we obtain the pooled feature maps {xl}L1 at all L levels, we compute150

the query at the first level and key and value for all levels using three linear projection layers fq, fk151

and fv:152

Q = fq(x
1), K = {Kl}L1 = fk({x1, ..., xL}), V = {V l}L1 = fv({x1, ..., xL}) (2)

To perform focal self-attention, we need to first extract the surrounding tokens for each query token153

in the feature map. As we mentioned earlier, tokens inside a window partition sp × sp share the same154

set of surroundings. For the queries inside the i-th window Qi ∈ Rsp×sp×d, we extract the slr × slr155

keys and values from Kl and V l around the window where the query lies in, and then gather the156

keys and values from all L to obtain Ki = {K1
i , ...,K

L
i } ∈ Rs×d and Vi = {V 1

i , ..., V
L
i } ∈ Rs×d,157

where s is the sum of focal region from all levels, i.e.,, s =
∑L

l=1(s
l
r)

2. Note that a strict version158

4
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Figure 4: An illustration of our focal self-attention at window level. We suppose an input feature
map of 20× 20 and 4× 4 window size. Each of the finest square cell represents a visual token either
from the original feature map or the squeezed ones. Suppose we have an input feature map of size
20× 20. We first partition it into 5× 5 windows of size 4× 4. Take the 4× 4 blue window in the
middle as the query, we extract its surroundings tokens at multiple granularity levels as its keys and
values. For the first level, we extract the 8× 8 tokens which are closest to the blue window at the
finest grain. Then at the second level, we expand the attention region and pool the surrounding 2× 2
sub-windows, which results in 6× 6 pooled tokens. At the final level, we attend even larger region
covering the whole feature map and pool 4× 4 sub-windows. Finally, these three levels of tokens are
concatenated to compute the keys and values for the 4× 4 = 16 tokens (queries) in the blue window.

of focal self-attention following Fig. 1 requires to exclude the overlapped regions across different159

levels. In our model, we intentionally keep them in order to capture the pyramid information for the160

overlapped regions. Finally, we follow [35] to include a relative position bias and compute the focal161

self-attention for Qi by:162

Attention(Qi,Ki, Vi) = Softmax(
QiK

T
i√
d

+B)Vi, (3)

where B = {Bl}L1 is the learnable relative position bias. It consists of L subsets for L focal levels.163

Similar to [35], for the first level, we parameterize it to B1 ∈ R(2sp−1)×(2sp−1), considering the164

horizontal and vertical position range are both in [−sp + 1, sp − 1]. For the other focal levels,165

considering they have different granularity to the queries, we treat all the queries inside a window166

equally and use Bl ∈ Rslr×s
l
r to represent the relative position bias between the query window and167

each of slr × slr pooled tokens. Since the focal self-attention for each window is independent of168

others, we can compute Eq. (3) in parallel. Once we complete it for the whole input feature map, we169

send it to the MLP block for proceeding computation as usual.170

3.2.2 Complexity Analysis171

We analyze the computational complexity for the two main steps discussed above. For the input172

feature map x ∈ RM×N×d, we have M
slw
× N

slw
sub-windows at focal level l. For each sub-window,173

the pooling operation in Eq.1 has the complexity of O((slw)2d). Aggregating all sub-windows brings174

us O((MN)d). Then for all focal levels, we have the complexity of O(L(MN)d) in total, which is175

independent of the sub-window size at each focal level. Regarding the attention computation in Eq. 3,176

the computational cost for a query window sp × sp is O((sp)2
∑

l(s
l
r)

2d), and O(
∑

l(s
l
r)

2(MN)d)177

for the whole input feature map. To sum up, the overall computational cost for our focal self-attention178

becomes O((L +
∑

l(s
l
r)

2)(MN)d). In an extreme case, one can set sLr = 2max(M,N)/sLw to179

ensure global receptive field for all queries (including both corner and middle queries) in this layer.180

3.3 Model Configuration181

We customize three different model capacities for our focal Transformers. Here, we simply follow the182

design strategy suggested by previous works [55, 58, 35], though we believe there should be a better183

5



Output Size Layer Name Focal-Tiny Focal-Small Focal-Base

stage 1

56× 56 Patch Embedding p1 = 4; c1 = 96 p1 = 4; c1 = 96 p1 = 4; c1 = 128

56× 56
Transformer

Block

[
s0w,r = {1, 13}
s1w,r = {7, 7}

]
× 2

[
s0w,r = {1, 13}
s1w,r = {7, 7}

]
× 2

[
s0w,r = {1, 13}
s1w,r = {7, 7}

]
× 2

stage 2

28× 28 Patch Embedding p2 = 2; c2 = 192 p2 = 2; c2 = 192 p2 = 2; c2 = 256

28× 28
Transformer

Block

[
s0w,r = {1, 13}
s1w,r = {7, 5}

]
× 2

[
s0w,r = {1, 13}
s1w,r = {7, 5}

]
× 2

[
s0w,r = {1, 13}
s1w,r = {7, 5}

]
× 2

stage 3

14× 14 Patch Embedding p3 = 2; c3 = 384 p3 = 2; c3 = 384 p3 = 2; c3 = 512

14× 14
Transformer

Block

[
s0w,r = {1, 13}
s1w,r = {7, 3}

]
× 6

[
s0w,r = {1, 13}
s1w,r = {7, 3}

]
× 18

[
s0w,r = {1, 13}
s1w,r = {7, 3}

]
× 18

stage 4

7× 7 Patch Embedding p4 = 2; c4 = 768 p4 = 2; c4 = 768 p4 = 2; c4 = 1024

7× 7
Transformer

Block

[
s0w,r = {1, 7}
s1w,r = {7, 1}

]
× 2

[
s0w,r = {1, 7}
s1w,r = {7, 1}

]
× 2

[
s0w,r = {1, 7}
s1w,r = {7, 1}

]
× 2

Table 1: Model configurations for our focal Transformers. We introduce three configurations Focal-
Tiny, Focal-Small and Focal-Base with different model capacities.

configuration specifically for our focal Transformers. Specifically, we use similar design to the tiny,184

small and base models in Swin Transformer [35], as shown in Table 1. Our models take 224× 224185

images as inputs and the window partition size is also set to 7 to make our models comparable to the186

Swin Transformers. For the focal self-attention layer, we introduce two levels, one for fine-grain local187

attention and one for coarse-grain global attention. Expect for the last stage, the focal region size is188

consistently set to 13 for the window partition size of 7, which means that we expand 3 tokens for189

each window partition. For the last stage, since the whole feature map is 7× 7, the focal region size190

at level 0 is set to 7, which is sufficient to cover the entire feature map. For the coarse-grain global191

attention, we set its focal window size same to the window partition size 7, but gradually decrease192

the focal region size to get {7, 5, 3, 1} for the four stages. For the patch embedding layer, the spatial193

reduction ratio pi for four stages are all {4, 2, 2, 2}, while Focal-Base has a higher hidden dimension194

compared with Focal-Tiny and Focal-Small.195

4 Experiments196

4.1 Image Classification197

We compare different methods on ImageNet-1K [17]. For fair comparison, we follow the training198

recipes in [49, 55]. All models are trained for 300 epochs with a batch size 1024. The initial199

learning rate is set to 10−3 with 20 epochs of linear warm-up starting from 10−5. For optimization,200

we use AdamW [36] as the optimizer with a cosine learning rate scheduler. The weight decay201

is set to 0.05 and the maximal gradient norm is clipped to 5.0. We use the same set of data202

augmentation and regularization strategies used in [49] after excluding random erasing [73], repeated203

augmentation [4, 28] and exponential moving average (EMA) [40]. The stochastic depth drop rates204

are set to 0.2, 0.2 and 0.3 for our tiny, small and base models, respectively. During training, we crop205

images randomly to 224× 224, while a center crop is used during evaluation on the validation set.206

In Table 2, we summarize the results for baseline models and the current state-of-the-art models207

on image classification task. We can find our Focal Transformers consistently outperforms other208

methods with similar model size (#Params.) and computational complexity (GFLOPs). Specifically,209

Focal-Tiny improves over the Transformer baseline DeiT-Small/16 by 2.0%. Meanwhile, using210

the same model configure (2-2-6-2) and a few extra parameters and computations, our Focal-Tiny211

improves over Swin-Tiny by 1.0 points (81.2→ 82.2). When we increase the window size from 7 to212

14 to match the settings in ViL-Small [68], the performance can be further improved to 82.5. For213

small and base models, our Focal Transformers still achieves slightly better performance than the214

others. Notably, our Focal-Small can even reach 83.5 which is better than all counterpart small and215

base models using much less parameters (51.1M). We refer the readers to our appendix for more216

detailed comparisons.217
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Model #Params. FLOPs Top-1 (%)

ResNet-50 [27] 25.0 4.1 76.2
DeiT-Small/16 [49] 22.1 4.6 79.9
PVT-Small [55] 24.5 3.8 79.8
ViL-Small [68] 24.6 5.1 82.0
CvT-13 [58] 20.0 4.5 81.6
Swin-Tiny [35] 28.3 4.5 81.2
Focal-Tiny (Ours) 29.1 4.9 82.2
ResNet-101 [27] 45.0 7.9 77.4
PVT-Medium [55] 44.2 6.7 81.2
CvT-21 [58] 32.0 7.1 82.5
ViL-Medium [68] 39.7 9.1 83.3
Swin-Small [35] 49.6 8.7 83.1
Focal-Small (Ours) 51.1 9.1 83.5
ResNet-152 [27] 60.0 11.0 78.3
ViT-Base/16 [19] 86.6 17.6 77.9
DeiT-Base/16 [49] 86.6 17.5 81.8
PVT-Large [55] 61.4 9.8 81.7
ViL-Base [68] 55.7 13.4 83.2
Swin-Base [35] 87.8 15.4 83.4
Focal-Base (Ours) 89.8 16.0 83.5

Table 2: Comparison of image classification
on ImageNet-1K for different models. Except
for ViT-Base/16, all other models are trained
and evaluated on 224× 224 resolution.

Backbone RetinaNet Mask R-CNN
AP b AP b APm

ResNet-50 [27] 36.3 38.0 34.4
PVT-Small 40.4 40.4 37.8
ViL-Small [68] 41.6 41.8 38.5
Swin-Tiny [35] 42.0 43.7 39.8
Focal-Tiny (Ours) 43.7 (+1.7) 44.8 (+1.1) 41.0 (+1.3)
ResNet-101 [27] 38.5 40.4 36.4
ResNeXt101-32x4d [60] 39.9 41.9 37.5
PVT-Medium [55] 41.9 42.0 39.0
ViL-Medium [68] 42.9 43.4 39.7
Swin-Small [35] 45.0 46.5 42.1
Focal-Small (Ours) 45.6 (+0.6) 47.4 (+0.9) 42.8 (+0.7)
ResNeXt101-64x4d [60] 41.0 42.8 38.4
PVT-Large [55] 42.6 42.9 39.5
ViL-Base [68] 44.3 45.1 41.0
Swin-Base [35] 45.0 46.9 42.3
Focal-Base (Ours) 46.3 (+1.3) 47.8 (+0.9) 43.2 (+0.9)

Table 3: Comparisons with CNN and Transformer
baselines and state-of-the-art methods on COCO ob-
ject detection. The box mAP (AP b) and mask mAP
(APm) are reported for RetinaNet and Mask R-CNN
trained with 1x schedule. More detailed comparisons
with 3x schedule are in Table 4.

4.2 Object Detection and Segmentation218

We benchmark our models on object detection with COCO 2017 [34]. The pretrained models are219

used as visual backbones and then plug into two representative pipelines, RetinaNet [33] and Mask220

R-CNN [26]. All models are trained on the 118k training images and results reported on 5K validation221

set. We follow the standard to use two training schedules, 1x schedule with 12 epochs and 3x schedule222

with 36 epochs. For 1x schedule, we resize image’s shorter side to 800 while keeping its longer223

side no more than 1333. For 3x schedule, we use multi-scale training strategy by randomly resizing224

its shorter side to the range of [480, 800]. Considering this higher input resolution, we adaptively225

increase the focal sizes at four stages to (15, 13, 9, 7), to ensures the focal attention covers more226

than half of the image region (first two stages) to the whole image ( last two stages). With the focal227

size increased, the relative position biases are accordingly up-sampled to corresponding sizes using228

bilinear interpolation. During training, we use AdamW [36] for optimization with initial learning229

rate 10−4 and weight decay 0.05. Similarly, we use 0.2,0.2 and 0.3 stochastic depth drop rates230

to regularize the training for our tiny, small and base models. Since Swin Transformer does not231

report the numbers on RetinaNet, we train it by ourselves using their official code with the same232

hyperparameters to our Focal Transformers.233

In Table 3, we show the performance for both CNN-based models and the current Transformer-based234

state-of-the-arts methods. The bbox mAP (AP b) and mask mAP (APm) are reported. As we can see,235

our Focal Transformers outperform the CNN-based models consistently with the gap of 4.8-7.1 points.236

Compared with the other methods which also use multi-scale Transformer architectures, we still237

observe substantial gain across all settings and metrics. Particularly, our Focal Transformers brings238

0.7-1.7 points of mAP against the current best approach Swin Transformer [35] at comparable settings.239

Different from the other multi-scale Transformer models, our method can simultaneously enable240

both short-range fine-grain and long-range coarse-grain interactions for each visual token, and thus241

capture richer visual contexts at each layer for better dense predictions. To get better understanding242

on the models, we further train them with 3x schedule and show the detailed numbers for RetinaNet243

and Mask R-CNN in Table 4. For comprehension, we also list the number of parameters and the244

associated computational cost for each model. As we can see, even for 3x schedule, our models can245

still achieve 0.3-1.1 gain over the best Swin Transformer models at comparable settings.246

To further verify the effectiveness of our proposed Focal Transformers, we follow [35] to train four247

different object detectors including Cascade R-CNN [7], ATSS [69], RepPoints [61] and Sparse248

R-CNN [45]. We use Focal-Tiny as the backbone and training all four models using 3x schedule.249

The box mAPs on COCO validation set are reported in Table 5. As we can see, our Focal-Tiny250
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Backbone #Params FLOPs RetinaNet 3x schedule + MS Mask R-CNN 3x schedule + MS
(M) (G) AP b AP b

50 AP b
75 APS APM APL AP b AP b

50 AP b
75 APm APm

50 APm
75

ResNet50 [27] 37.7/44.2 239/260 39.0 58.4 41.8 22.4 42.8 51.6 41.0 61.7 44.9 37.1 58.4 40.1
PVT-Small[55] 34.2/44.1 226/245 42.2 62.7 45.0 26.2 45.2 57.2 43.0 65.3 46.9 39.9 62.5 42.8
ViL-Small [68] 35.7/45.0 252/174 42.9 63.8 45.6 27.8 46.4 56.3 43.4 64.9 47.0 39.6 62.1 42.4
Swin-Tiny [35] 38.5/47.8 245/264 45.0 65.9 48.4 29.7 48.9 58.1 46.0 68.1 50.3 41.6 65.1 44.9
Focal-Tiny (Ours) 39.4/48.8 265/291 45.5 66.3 48.8 31.2 49.2 58.7 47.2 69.4 51.9 42.7 66.5 45.9

ResNet101 [27] 56.7/63.2 315/336 40.9 60.1 44.0 23.7 45.0 53.8 42.8 63.2 47.1 38.5 60.1 41.3
ResNeXt101-32x4d [60] 56.4/62.8 319/340 41.4 61.0 44.3 23.9 45.5 53.7 44.0 64.4 48.0 39.2 61.4 41.9
PVT-Medium [55] 53.9/63.9 283/302 43.2 63.8 46.1 27.3 46.3 58.9 44.2 66.0 48.2 40.5 63.1 43.5
ViL-Medium [68] 50.8/60.1 339/261 43.7 64.6 46.4 27.9 47.1 56.9 44.6 66.3 48.5 40.7 63.8 43.7
Swin-Small [35] 59.8/69.1 335/354 46.4 67.0 50.1 31.0 50.1 60.3 48.5 70.2 53.5 43.3 67.3 46.6
Focal-Small (Ours) 61.7/71.2 367/401 47.3 67.8 51.0 31.6 50.9 61.1 48.8 70.5 53.6 43.8 67.7 47.2

ResNeXt101-64x4d [60] 95.5/102 473/493 41.8 61.5 44.4 25.2 45.4 54.6 44.4 64.9 48.8 39.7 61.9 42.6
PVT-Large[55] 71.1/81.0 345/364 43.4 63.6 46.1 26.1 46.0 59.5 44.5 66.0 48.3 40.7 63.4 43.7
ViL-Base [68] 66.7/76.1 443/365 44.7 65.5 47.6 29.9 48.0 58.1 45.7 67.2 49.9 41.3 64.4 44.5
Swin-Base [35] 98.4/107 477/496 45.8 66.4 49.1 29.9 49.4 60.3 48.5 69.8 53.2 43.4 66.8 46.9
Focal-Base (Ours) 100.8/110.0 514/533 46.9 67.8 50.3 31.9 50.3 61.5 49.0 70.1 53.6 43.7 67.6 47.0

Table 4: COCO object detection and segmentation results with RetinaNet [33] and Mask R-CNN [27].
All models are trained with 3x schedule and multi-scale inputs (MS). The numbers before and after “/”
at column 2 and 3 are the model size and complexity for RetinaNet and Mask R-CNN, respectively.

Method Backbone #Param FLOPs AP b AP b
50 AP b

75

Cascade
Mask R-CNN [7]

R-50 82.0 739 46.3 64.3 50.5
Swin-T 85.6 742 50.5 69.3 54.9
Focal-T 86.7 770 51.5 (+1.0) 70.6 55.9

ATSS [69]
R-50 32.1 205 43.5 61.9 47.0
Swin-T 35.7 212 47.2 66.5 51.3
Focal-T 36.8 239 49.5 (+2.3) 68.8 53.9

RepPointsV2 [61]
R-50 43.4 431 46.5 64.6 50.3
Swin-T 44.1 437 50.0 68.5 54.2
Focal-T 45.4 491 51.2 (+1.2) 70.4 54.9

Sparse R-CNN [45]
R-50 106.1 166 44.5 63.4 48.2
Swin-T 109.7 172 47.9 67.3 52.3
Focal-T 110.8 196 49.0 (+1.1) 69.1 53.2

Table 5: Comparison with ResNet-50 and Swin-Tiny across
different object detection methods. We use Focal-Tiny as the
backbone and train all models using 3x schedule.

Model W-Size FLOPs Top-1 (%) AP b APm

Swin-Tiny 7 4.5 81.2 43.7 39.8
14 4.9 82.1 44.0 40.5

Focal-Tiny 7 4.9 82.2 44.9 41.1
14 5.2 82.3 45.5 41.5

Table 6: Model performance with dif-
ferent window sizes.

Model W-Shift Top-1 (%) AP b APm

Swin-Tiny - 80.2 38.8 36.4
X 81.2 43.7 39.8

Focal-Tiny - 82.2 44.8 41.0
X 81.9 44.9 41.1

Table 7: Model performance without
and with window shift.

exceeds Swin-Tiny by 1.0-2.3 points on all methods. These significant and consistent improvements251

over different detection methods in addition to RetinaNet and Mask R-CNN suggest that our Focal252

Transformer can be used as a generic backbone for a variety of object detection methods.253

4.3 Ablation Studies254

Above we have shown the superior performance of our Focal Transformer. Here we conduct ablation255

studies to inspect the model’s capacity from different aspects. We use Focal-Tiny as the target and256

experiment it on both image classification and object detection.257

Contributions of short- and long-range interaction. We attempt to factorize the effect of short-258

range fine-grain and long-range coarse-grain interactions in our Focal Transformers. We ablate259

the original Focal-Tiny model to: a) Focal-Tiny-Window merely performing attention inside each260

window; b) Focal-Tiny-Local attending the additional fine-grain surrounding tokens and c) Focal-261

Tiny-Global attending the extra coarse-grain squeezed tokens. We train them using the same setting262

as Focal-Tiny and report their performance on image classification and object detection using Mask263

R-CNN 1x schedule. As we can see from Fig. 5, Focal-Tiny-Window suffers from significant drop on264

both image classification (82.2→80.1) and object detection (44.8→38.3). This is expected since the265

communication across windows are totally cut off at each Transformer layer. After we enable either266

the local fine-grain or global coarse-grain interactions (middle two columns), we observe significant267

jumps. Though they prompt richer interactions from different paths, finally both of them enable the268
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Figure 5: Ablating Focal-Tiny model by remov-
ing local, global and both interactions.

Depths Model #Params. FLOPs Top-1 (%) AP b APm

2-2-2-2 Swin 21.2 3.1 78.7 38.2 35.7
Focal 21.7 3.4 79.9 40.5 37.6

2-2-4-2 Swin 24.7 3.8 80.2 41.2 38.1
Focal 25.4 4.1 81.4 43.3 39.8

2-2-6-2 Swin 28.3 4.5 81.2 43.7 39.8
Focal 29.1 4.9 82.2 44.8 41.0

Table 8: Model performance with the change of
model depth.

model to capture more contextual information. When we combine them together, we observe further269

improvements on both tasks. This implies that these two type of interactions are complementary to270

each other and both of them should be enabled in our model. Another observation is that adding271

long-range tokens can bring more relative improvement for image classification than object detection272

and vice versa for local tokens. We suspect that dense predictions like object detection more rely on273

fine-grained local context while image classification favors more the global information.274

Effect of varying window size. Above we have demonstrated that both short- and long-range275

interactions are necessary. Based on this, a natural question is that whether increasing the window276

size can further help the model learning giving an enlarged receptive field. In Table 6, we show the277

performance of Swin-Tiny and Focal-Tiny with window size 7 and 14. Clearly, a larger window size278

brings gain for both methods on all three metrics and our Focal-Tiny model consistently outperforms279

Swin-Tiny using both window sizes. Comparing the second and third row, we find our model beats280

Swin even using much smaller window size (7 v.s. 14). We suspect the long-range interactions in our281

model is the source of this gain.282

Model capacity against model depth. Considering our focal attention prompts local and global283

interactions at each Transformer layer, one question is that whether it needs less number of layers to284

obtain similar modeling capacity as those without global interactions. To answer this, we conduct the285

experiments by reducing the number of Transformer layers at stage 3 in Swin-Tiny and Focal-Tiny286

from the original 6 to 4 and 2. In Table 8, we show the performance and model complexity for each287

variant. First, we can find our model outperforms Swin model consistently with the same depth. More288

importantly, using two less layers, our model achieves comparable performance to Swin Transformer.289

Particularly, Focal-Tiny with 4 layers achieves 81.4 on image classification which is even better290

than original Swin-Tiny model with 6 layers (highlighted by blue color). Though we do not explore291

different architectures for our Focal Transformer, these results suggest that we can potential find even292

more efficient and effective architectures.293

The necessary of window shift. In [35], the authors proposed window shift operation to enable the294

cross-window interactions using two successive layers. In contrast, the visual tokens in our Focal295

Transformer can always communicate with those in other windows at both fine- and coarse-grain.296

Then a natural question is whether adding the window shift to our Focal Transformers can further297

bring us improvements. To investigate, we remove the window shift from Swin Transformer while298

adding it to our Focal Transformer. As shown in Table 7, Swin Transformer has a severe degradation299

after removing the window shift. However, our Focal Transformer is even hurt on classification task.300

These results indicate that the window shift is not a necessary ingredient in our model. As such, our301

model can get rid of the constraint in Swin Transformer that there should be even number of layers at302

each stage for the alternative window shift operation.303

5 Conclusion304

In this paper, we presented a new attention mechanism called focal attention to enable efficient305

long-range interactions in vision transformers. Our design performs the local attention at fine-grain306

but global attention at coarse-grain which results in an effective way to capture richer context307

at a reasonable cost. By plugging this to a multi-scale vision transformer, we designed a new308

focal transformer and demonstrated its superiority over the state-of-the-art methods on both image309

classification and object detection.310
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A Appendix534

A.1 Image Classification535

We present the exhaustive comparison with previous works in Table 9. We compare our method with536

both CNN-based and Transformer-based methods. We categorize different methods into groups based537

on two properties:538

• Scale – the scale of feature maps in a model. It can be either a single-scale or multi-scale. In539

single-scale models, all feature maps have the same size across different stages. For multi-scale540

models, there are usually feature maps with different resolutions with the proceeding stages.541

• Locality – the locality of operations in a model. It can be either global or local. Local operations542

can be a convoluional layer in CNN models or a transformer layer which conducts local self-543

attention. However, global operations such as the standard self-attention, produce the output feature544

map by gather information from all inputs.545

Based on this criterion, all CNN models are natural multi-scale because their feature map sizes546

gradually decrease at different stages. Recently, a number of works attempt to integrate the global547

operations into CNNs by introducing squeeze-and-excitation (SE) layer [29], channel-wise attention548

layer [57] and even self-attention layer [2, 43]. As we can see, the combination of local and global549

operations significantly improve the performance for image classification. Particularly, BotNet-S1-550

110 achieves 82.8 top-1 accuracy with moderate number of parameters (61.6M).551

On the contrary, Transformers [52] by nature performs global self-attention by which each visual token552

can interact with all others. Even without multi-scale design as in CNNs, a number of Transformer-553

based works such as TNT [25], DeepViT [75] and CaiT [50] achieve superior performance to CNN554

models with comparable model size and computational cost. To accommodate the high resolution555

feature maps, some recent works replace global self-attention with more efficient local self-attention556

and demonstrate comparable performance on image classification while much promising results on557

dense prediction tasks such as object detection and semantic segmentation [35].558

In this paper, we present focal attention which is the first to combine global self-attention and local559

self-attention in an efficient way. Replacing either the global self-attention or the local self-attention560

with our focal self-attention, we achieve better performance than both. These results along with the561

CNN models augmented by local and global computations demonstrate that combining local and562

global interactions are more effective than either of them.563

A.2 Object Detection and Segmentation564

For completeness, we report the full metrics for RetinaNet and Mask R-CNN trained with 1x schedule565

in Table 10. As we can see, our Focal Transformers consistently outperform previous works including566

the state-of-the-art Swin Transformers on all metrics. We observe that our models trained with 1x567

schedule generally have more gain against the previous best models than 3x schedule (+1.2 v.s. +0.8568

and +1.0 v.s. +0.7 box mAP for RetinaNet and Mask R-CNN, respectively). This indicates that569

our models have faster learning convergences compared with previous works. Compared with the570

local-attention based methods, e.g., Swin Transformer, integrating the long-range interactions can571

help capture more visual dependencies and thus help the model to learn faster.572

Comparing with system-level state-of-the-art methods. Giving the superior performance of our573

Focal Transformers on various standard benchmarks, we further increase the model capacity and574

compare it with previous state-of-the-art at system-level. Similar to Swin Transformers, we increase575

the hidden dimension in our Focal-Base from 128 to 196 while keep all the others the same.576

Currently, the large models are usually pretrained on ImageNet-22K and then transferred to down577

stream tasks [58, 35]. However, due to the limited computational resources, we base our model578

on the pretrained Swin Transformer models2, considering our model has similar architecture to579

Swin Transformers except for the window shift and global self-attention. Based on this, we reuse580

the parameters in Swin-Large model but remove the window shift operation and initialize our own581

window pooling layer and local-to-global relative position bias. This model is then used as the initial582

model for us to finetune on object detection and semantic segmentation tasks.583

2Pretrained models are available at https://github.com/microsoft/Swin-Transformer
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Architecture Scale Locality Model #Params. (M) FLOPs (G) Top-1 (%)

Convolutional
Neural Network Multiple

Local
ResNet-50 [27] 25.0 4.1 76.2
ResNet-101 [27] 45.0 7.9 77.4
ResNet-152 [27] 60.0 11.0 78.3

Local
+Global

SE-ResNet-50 [29] 28.1 8.2 77.5
SE-ResNet-101 [29] 49.3 15.6 78.4
SE-ResNet-152 [29] 66.8 23.1 78.9

CBAM-ResNet-50 [57] 28.1 3.9 77.3
CBAM-ResNet-101 [57] 49.3 7.6 78.5

AttAug-ResNet-50 [2] 25.8 8.3 77.7
AttAug-ResNet-101 [2] 45.4 16.1 78.1
AttAug-ResNet-152 [2] 61.6 23.8 79.1

BotNet-S1-59 [43] 33.5 7.3 81.7
BotNet-S1-110 [43] 54.7 10.9 82.8

Transformer

Single Global

ViT-B/16 [19] 86.6 17.6 77.9
ViT-L/16 [19] 307.0 190.7 76.5

DeiT-S/16 [49] 22.0 4.6 79.9
DeiT-B/16 [49] 86.6 17.5 81.8

TNT-S [25] 23.8 5.2 81.3
TNT-B [25] 65.6 14.1 82.8

CPVT-S [15] 23.0 4.6 81.5
CPVT-B [15] 88.0 17.6 82.3

DeepViT-S [75] 27.0 6.2 82.3
DeepViT-L [75] 55.0 12.5 83.1

CaiT-S36 [50] 68.0 13.9 83.3

LeViT-256 [24] 18.9 1.1 81.6
LeViT-384 [24] 39.1 2.3 82.6

Multiple

Global

T2T-ViT-19 [64] 39.2 8.9 81.9
T2T-ViT-24 [64] 64.1 14.1 82.3

CrossViT-S [11] 26.7 5.6 81.0
CrossViT-B [11] 104.7 21.2 82.2

PVT-S [55] 24.5 3.8 79.8
PVT-M [55] 44.2 6.7 81.2
PVT-L [55] 61.4 9.8 81.7

CvT-13 [58] 20.0 4.5 81.6
CvT-21 [58] 32.0 7.1 82.5

ViL-S [68] 24.6 5.1 82.0

Local

ViL-M [68] 39.7 9.1 83.3
ViL-B [68] 55.7 13.4 83.2

Swin-T [35] 28.3 4.5 81.2
Swin-S [35] 49.6 8.7 83.1
Swin-B [35] 87.8 15.4 83.4

Local
+Global

Focal-T (Ours) 29.1 4.9 82.2
Focal-S (Ours) 51.1 9.1 83.5
Focal-B (Ours) 89.8 16.0 83.5

Table 9: Full comparison of image classification on ImageNet-1k for different model architectures.

For object detection on COCO, we follow Swin Transformer to also use HTC [12] as the de-584

tection method in that it has achieved state-of-the-art performance on COCO detection when585

using Swin Transformer as the backbone. For fair comparison, we also use soft-NMS [5], in-586

staboost [21] and a multi-scale training strategy with shorter side in range [400, 1400] while the587

longer side no more than 1600. We train the model using AdamW [36] with base learning rate588

1e-4 and weight decay 0.1. The model is trained using standard 3x schedule. The box and mask589

mAPs on COCO validation set are reported in Table 11. We report both single-scale evaluation590

and multi-scale evaluation results. For single-scale, we resize the input images to (1400, 2100),591

and use (1200, 1800), (1300, 1950), (1400, 2100), (1450, 2200), (1500, 2250), (1600, 2400) for our592

multi-scale evaluation. As a reference, we also train HTC object detector with Swin-Large using593

the same regime as our Focal-Large model. As we can see, our Focal-Large model with multi-scale594

test achieve 57.9 box mAP and 50.8 mask mAP, which are on par and even better than the claimed595

numbers for Swin-Large in [35]. Note that because our model does not include global self-attention596

layer at the last stage, it has smaller model size and fewer FLOPs. Since the training script for597
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Backbone #Params FLOPs RetinaNet 1x schedule Mask R-CNN 1x schedule
(M) (G) AP b AP b

50 AP b
75 APS APM APL AP b AP b

50 AP b
75 APm APm

50 APm
75

ResNet50 [27] 37.7/44.2 239/260 36.3 55.3 38.6 19.3 40.0 48.8 38.0 58.6 41.4 34.4 55.1 36.7
PVT-Small[55] 34.2/44.1 226/245 40.4 61.3 43.0 25.0 42.9 55.7 40.4 62.9 43.8 37.8 60.1 40.3
ViL-Small [68] 35.7/45.0 252/174 41.6 62.5 44.1 24.9 44.6 56.2 41.8 64.1 45.1 38.5 61.1 41.4
Swin-Tiny [35] 38.5/47.8 245/264 42.0 63.0 44.7 26.6 45.8 55.7 43.7 66.6 47.7 39.8 63.3 42.7
Focal-Tiny (Ours) 39.4/48.8 265/291 43.7 65.2 46.7 28.6 47.4 56.9 44.8 67.7 49.2 41.0 64.7 44.2

ResNet101 [27] 56.7/63.2 315/336 38.5 57.8 41.2 21.4 42.6 51.1 40.4 61.1 44.2 36.4 57.7 38.8
ResNeXt101-32x4d [60] 56.4/62.8 319/340 39.9 59.6 42.7 22.3 44.2 52.5 41.9 62.5 45.9 37.5 59.4 40.2
PVT-Medium [55] 53.9/63.9 283/302 41.9 63.1 44.3 25.0 44.9 57.6 42.0 64.4 45.6 39.0 61.6 42.1
ViL-Medium [68] 50.8/60.1 339/261 42.9 64.0 45.4 27.0 46.1 57.2 43.4 65.9 47.0 39.7 62.8 42.1
Swin-Small [35] 59.8/69.1 335/354 45.0 66.2 48.3 27.9 48.8 59.5 46.5 68.7 51.3 42.1 65.8 45.2
Focal-Small (Ours) 61.7/71.2 367/401 45.6 67.0 48.7 29.5 49.5 60.3 47.4 69.8 51.9 42.8 66.6 46.1

ResNeXt101-64x4d [60] 95.5/102 473/493 41.0 60.9 44.0 23.9 45.2 54.0 42.8 63.8 47.3 38.4 60.6 41.3
PVT-Large[55] 71.1/81.0 345/364 42.6 63.7 45.4 25.8 46.0 58.4 42.9 65.0 46.6 39.5 61.9 42.5
ViL-Base [68] 66.7/76.1 443/365 44.3 65.5 47.1 28.9 47.9 58.3 45.1 67.2 49.3 41.0 64.3 44.2
Swin-Base [35] 98.4/107 477/496 45.0 66.4 48.3 28.4 49.1 60.6 46.9 69.2 51.6 42.3 66.0 45.5
Focal-Base (Ours) 100.8/110.0 514/533 46.3 68.0 49.8 31.7 50.4 60.8 47.8 70.2 52.5 43.2 67.3 46.5

Table 10: COCO object detection and segmentation results with RetinaNet [33] and Mask R-CNN [27]
trained with 1x schedule. This is a full version of Table 3. The numbers before and after “/” at column
2 and 3 are the model size and complexity for RetinaNet and Mask R-CNN, respectively.

Method #Param FLOPs AP b APm

X101-64x4d [60] 155M 1033G 52.3 46.0
EfficientNet-D7 [46] 77M 410G 54.4 -
GCNet∗ [8] - 1041G 51.8 44.7
ResNeSt-200 [67] - - 52.5 -
Copy-paste [23] 185M 1440G 55.9 47.2
BoTNet-200 [43] - - 49.7 -
SpineNet-190 [20] 164M 1885G 52.6 52.8

Swin-L [35] 284M 1470G 57.1 49.5
Swin-L† [35] 284M - 58.0 50.4

Swin-L (Our run) 284M 1470G 55.9 48.9
Swin-L† (Our run) 284M - 57.1 50.0

Focal-L (Ours) 265M 1165G 56.9 49.8
Focal-L† (Ours) 265M - 57.9 50.8

Table 11: Comparison with state-of-the-art meth-
ods on COCO object detection and instance seg-
mentation. The numbers are reported on 5K val
set. HTC [12] is used as the detection method. †
means multi-scale evaluation with flip.

Backbone Method #Param FLOPs mIoU +MS

ResNet-101 DANet [37] 69M 1119G 45.3 -
ResNet-101 ACNet [22] - - 45.9 -
ResNet-101 DNL [62] 69M 1249G 46.0 -
ResNet-101 UperNet [59] 86M 1029G 44.9 -

HRNet-w48 [44] OCRNet [65] 71M 664G 45.7 -
ResNeSt-200 [67] DLab.v3+ [13] 88M 1381G 48.4 -
T-Large† SETR [72] 308M - 50.3 -

Swin-T [35] UperNet [59] 60M 945G 44.5 45.8
Swin-S [35] UperNet [59] 81M 1038G 47.6 49.5
Swin-B [35] UperNet [59] 121M 1188G 48.1 49.7
Swin-L† [35] UperNet [59] 234M 3230G 52.1 53.5

Focal-T (Ours) UperNet [59] 62M 998G 45.8 47.0
Focal-S (Ours) UperNet [59] 85M 1130G 48.0 50.0
Focal-B (Ours) UperNet [59] 126M 1354G 49.0 50.5
Focal-L† (Ours) UperNet [59] 240M 3376G 52.3 53.8

Table 12: Comparison with state-of-the-art meth-
ods for semantic segmentation on ADE20K [74] val
set. Both single- and multi-scale evaluations are re-
ported at the last two columns. † means pretrained
on ImageNet-22K.

Swin-Large with HTC is not available, there is a small gap between our reproduced numbers and598

those reported in [35]. Comparing with the numbers from our reproduced Swin-Large model, our599

Focal-Large model clearly achieved better performance on both box and mask mAP.600

Besides the comparison on object detection, we further compare our method with previous state-of-601

the-art methods on semantic segmentation. We benchmark our method on ADE20K [74] so that we602

can compare with the current SoTA method. Specifically, we use UperNet [59] as the segmentation603

method and our Focal Transformers as the backbone. We train four models with Focal-Tiny, Focal-604

Small, Focal-Base and Focal-Large, respectively. For all models except for Focal-Large, we use a605

standard setting by setting the input size to 512× 512 and train the model for 160k iterations with606

batch size 16. For Focal-Large, we change the input size to 640× 640 as in [35], and keep the other607

settings the same. In Table 12, we show the comparisons to previous works. As we can see, our608

tiny, small and base models consistently outperforms Swin Transformers with similar size. More609

importantly, our Focal-Large model initialized from Swin-Large achieves better performance than610

Swin-Large, which presents a new SoTA for semantic segmentation on ADE20K.611
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Figure 6: Training curves (Top-1 validation Acc.)
for image classification with Swin Transformers
and our Focal Transformers.

0 1 2 3 4 5 6 7 8 9 10 11
Layer Id

0.1

0.2

0.3

0.4

0.5

0.6

0.7

At
te

nt
io

n 
Sc

or
e

Local-InWindow
Local-OutWindow
Global-OutWindow
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tokens surrounding window and c) global tokens.

A.3 Model Inspections612

Learning speed comparison. As we briefly discussed earlier, our model shows faster learning speed613

on object detection task. In Fig. 6, we show the top-1 validation accuracy of our models and Swin614

Transformers for image classification task. Accordingly, our Focal Transformers have much faster615

learning speed as well. For example, Focal-Tiny has 75.7% top-1 accuracy at 100-th epoch while616

Swin-Tiny has 73.9% top-1 accuracy. Similarly, Focal-Small achieves 78.3% at 100-th epoch, which617

is 2.0 point higher than Swin-Small. Even for the base models, this gap is still maintained for a618

long duration until the end of the training. We attribute this faster learning speed to the long-range619

interactions introduce by our focal attention mechanism in that it can help to capture the global620

information at very beginning.621

Attention scores for different token types. In our main submission, we have shown both local and622

global attentions are important. Here, we study how much local and global interactions occur at623

each layer. Using Focal-Tiny trained on ImageNet-1K as the target, we show in Fig. 7 the summed624

up attention scores for three type of tokens: 1) local tokens inside the window; 2) local tokens625

surrounding the window and 3) global tokens after the window pooling. To compute these scores, we626

average over the all local windows and then also take the average over all heads. Finally, we sum up627

the attention scores that belongs to the aforementioned three type of tokens. These attention scores628

are further averaged over the whole ImageNet-1K validation set. In Fig. 7, we can see a clear trend629

that the global attention becomes stronger when it goes to upper layers, while the local attention630

inside a window is weakened gradually. This indicates that: 1) our model heavily relies on both short-631

and long-range interactions. Neither of them are neglected in the model at all layers and stages; 2)632

the gradually strengthened global and weakened local attentions indicate that model tends to focus on633

more local details at earlier stages while on more global context at the later stages.634

Local-to-global relative position bias. We further inspect what our model learns for the local to635

global relative position bias introduced in Eq. (3). This relative position bias is a good indicator636

on how the model put its attention weight on local and global regions. In our Focal Transformers,637

the focal region sizes at four stages are (7, 5, 3, 1) and (15, 13, 9, 7) for image classification and638

object detection, respectively. In Fig. 8 and Fig. 9, we visualize the learned relative position bias639

matrices for all heads and all layers in our Focal-Tiny model trained on ImageNet-1K and COCO,640

respectively. Surprisingly, though all are randomly initialized, these relative position biases exhibit641

some interesting patterns. At the first stage of image classification model, all three heads learn to put642

much less attention on the center window at first layer while focus more on the center at the second643

layer. For object detection model, however, they are swapped so that the first layer focus more on the644

center part while the second layer learns to extract the global context from surrounding. As a result,645

these the two layers cooperate with each other to extract both local and global information. At the646

second stage of both models, we observe similar property that the two consecutive layers have both647

local and global interactions. Compared with image classification model, the object detection model648

has more focus on the center regions. We suspect this is because object detection needs to extract649

more fine-grained information at local regions to predict the object category and location. At the third650

stage, we can see there is a fully mixture of local and global attentions in both models. Surprisingly,651

though randomly initialized, some of the heads automatically learn to disregard the center window652

pooled token which has much redundancy with the fine-grained tokens inside the center window.653
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(a) Stage 1, left 3 for first layer, right 3 for second layer, size=7× 7

(b) Stage 2, top row for first layer and bottom row for second layer, 6 heads, size=5× 5

(c) Stage 3, 6 layers from top to bottom row, 12 heads, size=3× 3

Figure 8: Learned relative position bias between local window and the global tokens in Focal-Tiny
trained on ImageNet-1K. From top to bottom, we show the learned relative position bias for all heads
at (a) stage 1, (b) stage 2 and (c) stage 3. Since the focal region size is 1 for stage 4 in classification
models, we only show the first three stages.
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(a) Stage 1, left 3 for first layer and right 3 for second layer, 3 heads, size=15× 15

(b) Stage 2, top row for first layer and bottom row for second layer, 6 heads, size=13× 13

(c) Stage 3, 6 layers from top to bottom row, 12 heads, size=9× 9

(d) Stage 4, top row for first layer and bottom row for second layer, 24 heads, size=7× 7

Figure 9: Learned relative position bias between local window and the global tokens in Focal-Tiny
for object detection trained on COCO. From top to bottom, we show the relative position bias for
different heads at (a) stage 1, (b) stage 2, (c) stage 3 and (d) stage 4.
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