
A Lagrangian Dual-based approach

In both case studies presented below, a constrained deep learning approach is used which encourages
the satisfaction of constraints within predicted solutions by accounting for the violation of constraints
in a Lagrangian loss function

fλ(y) = f (y) +

m∑
i=1

λi max(0, gi(y)), (10)

where f is a standard loss function (i.e., mean squared error), λi are Lagrange multipliers and gi
represent the constraints of the optimization problem under the generic representation

P = argmin
y

h(y) subject to gi(y) ≤ 0 (∀i ∈ [m]). (11)

Training a neural network to minimize the Lagrangian loss for some value of λ is anologous to
computing a Lagrangian Relaxation:

LRλ = argmin
y

fλ(y), (12)

and the Lagrangian Dual problem maximizes the relaxation over all possible λ:

LD = argmax
λ≥0

f (LRλ). (13)

The Lagrangian deep learning model is trained by alternately carrying out gradient descent for
each value of λ, and updating the λi based on the resulting magnitudes of constraint violation in its
predicted solutions.

B Job Shop Scheduling

The Job Shop Scheduling (JSS) problem can be viewed as an integer optimization program with
linear objective function and linear, disjunctive constraints. For JSS problems with J jobs and T
machines, a particular instance is fully determined by the processing times d j

t , along with machine
assignments σ j

t , and its solution consists of the resulting optimal task start times st
j. The full problem

specification is shown below in the system (14). The constraints (14c) enforce precedence between
tasks that must be scheduled in the specified order within their respective job. Constraints (14d)
ensure that no two tasks overlap in time when assigned to the same machine.

B.1 Problem specification

P(d) = argmin
s

u (14a)

subject to: u ≥ s j
T ∀ j∈ [J] (14b)

s j
t+1 ≥ s j

t + d j
t ∀ j∈ [J − 1],∀t∈ [T] (14c)

s j
t ≥ s j′

t′ + d j′

t′ ∨ s j′

t′ ≥ s j
t + d j

t ∀ j, j′ ∈ [J], t, t′ ∈ [T] withσ j
t = σ

j′

t′ (14d)

s j
t ∈N ∀ j∈ [J], t∈ [T] (14e)

Given a predicted, possibly infeasible schedule ŝ, the degree of violation in each constraint must
be measured in order to update the multipliers of the Lagrangian loss function. The violation of
task-precedence constraints (14c) and no-overlap constraint (14d) are calculated as in (15a) and (15b),
respectively. Note that the violation of the disjunctive no-overlap condition between two tasks is
measured as the amount of time at which both tasks are scheduled simultaneously on some machine.

ν10b

(
ŝ j

t , d
j
t

)
= max

(
0, ŝ j

t + d j
t − ŝ j

t+1

)
(15a)

A–1

ν10c

(
ŝ j

t , d
j
t , ŝ

j′

t′ , d
j′

t′
)

= min
(
νL

10c

(
ŝ j

t , d
j
t , ŝ

j′

t′ , d
j′

t′
)
, νR

10c

(
ŝ j

t , d
j
t , ŝ

j′

t′ , d
j′

t′
))
, (15b)

where

νL
10c

(
ŝ j

t , d
j
t , ŝ

j′

t′ , d
j′

t′
)

= max
(
0, ŝ j

t + dt
j − ŝ j′

t′
)

νR
10c

(
ŝ j

t , d
j
t , ŝ

j′

t′ , d
j′

t′
)

= max
(
0, ŝ j′

t′ + dt′
j′ − ŝ j

t

)
.

The Lagrangian-based deep learning model does not necessarily produce feasible schedules directly.
An additional operation is required for the construction of feasible solutions, given the direct neural
network outputs representing schedules. The model presented below is used to construct solutions
that are integral, and feasible to the original problem constraints. Integrality follows from the total
unimodularity of constraints (16a, 16b), which converts the no-overlap condition of the problem (14)
into addition task-precedence constraints following the order of predicted start times ŝ, denoted �ŝ.
By minimizing the makespan as in (14), this procedure ensures optimality of the resulting schedules
subject to the imposed ordering.

Π(s) = argmins u
subject to: (14b), (14c)

s j
t ≥ s j′

t′ + d j′

t′ ∀ j, j′ ∈ [J], t, t′ ∈ [T] s.t. (j, t) �ŝ (j′, t′) (16a)

s j
t ≥ 0 ∀ j∈ [J], t∈ [T] (16b)

B.2 Dataset Details

The experimental setting, as defined by the training and test data, simulates a situation in which
some component of a manufacturing system ’slows down’, causing processing times to extend on
all tasks assigned to a particular machine. Each experimental dataset is generated beginning with a
root problem instance taken from the JSPLIB benchmark library for JSS instances. Further instances
are generated by increasing processing times on one machine, uniformly over 5000 new instances,
to a maximum of 50 percent increase over the initial values. To accommodate these incremental
perturbations in problem data while keeping all values integral, a large multiplicative scaling factor is
applied to all processing times of the root instance. Targets for the supervised learning are generated
by solving the individual instances according to the methodology proposed in Section 7. A baseline
set of solutions is generated for comparison, by solving individual instances in parallel with a time
limit per instance of 1800 seconds.

The results presented in Section 8 are taken from the best-performing models, with respect to
optimality of the predicted solutions following application of the model (16), among the results of a
hyperparameter search. The model training follows the selection of parameters presented in Table 3.

Parameter Value Parameter Value

Epochs 500 Batch Size 16
Learning rate [1.25e−4, 2e−3] Batch Normalization False
Dual learning rate [1e−3, 5e−2] Gradient Clipping False
Hidden layers 2 Activation Function ReLU

Table 3: JSS: Training Parameters

B.3 Network Architecture

The neural network architecture used to learn solutions to the JSS problem takes into account the
structure of its constraints, organizing input data by individual job, and machine of the associated
tasks. When I(j)

k and I(m)
k represent the input array indices corresponding to job k and machine k, the

associated subarrays d[I(j)
k] and d[I(m)

k] are each passed from the input array to a series of respective
Job and Machine layers. The resulting arrays, one for every job and machine, are concatenated to
form a single array and passed to further Shared Layers. Each shared layer has size 2JT in the case

A–2

Model 1 OOPF: AC Optimal Power Flow

variables: S g
i ,Vi ∀i ∈ N, S f

i j ∀(i, j) ∈ E ∪ ER

minimize: O(Sd) =
∑
i∈N

c2i(<(S g
i))2 + c1i<(S g

i) + c0i (17)

subject to: ∠Vi = 0, i ∈ N (18)

vl
i ≤ |Vi| ≤ vu

i ∀i ∈ N (19)

θl
i j ≤ ∠(ViV∗j) ≤ θ

u
i j ∀(i, j) ∈ E (20)

S gl
i ≤ S g

i ≤ S gu
i ∀i ∈ N (21)

|S f
i j| ≤ s f u

i j ∀(i, j) ∈ E ∪ ER (22)

S g
i − S d

i =
∑

(i, j)∈E∪ER S f
i j ∀i ∈ N (23)

S f
i j = Y∗i j|Vi|

2 − Y∗i jViV∗j ∀(i, j) ∈ E ∪ ER (24)

of J jobs and T machines, and a final layer maps the output to an array of size JM, equal to the total
number of tasks. This architecture improves accuracy significantly in practice, when compared with
fully connected networks of comparable size.

C AC Optimal Power Flow

C.1 Problem specification

Optimal Power Flow (OPF) is the problem of finding the best generator dispatch to meet the demands
in a power network, while satisfying challenging transmission constraints such as the nonlinear
nonconvex AC power flow equations and also operational limits such as voltage and generation
bounds. Finding good OPF predictions are important, as a 5% reduction in generation costs could
save billions of dollars (USD) per year [8]. In addition, the OPF problem is a fundamental building
bock of many applications, including security-constrained OPFs [21]), optimal transmission switching
[16], capacitor placement [4], and expansion planning [23].

Typically, generation schedules are updated in intervals of 5 minutes [29], possibly using a solution
to the OPF solved in the previous step as a starting point. In recent years, the integration of renewable
energy in sub-transmission and distribution systems has introduced significant stochasticity in front
and behind the meter, making load profiles much harder to predict and introducing significant
variations in load and generation. This uncertainty forces system operators to adjust the generators
setpoints with increasing frequency in order to serve the power demand while ensuring stable network
operations. However, the resolution frequency to solve OPFs is limited by their computational
complexity. To address this issue, system operators typically solve OPF approximations such as the
linear DC model (DC-OPF). While these approximations are more efficient computationally, their
solution may be sub-optimal and induce substantial economical losses, or they may fail to satisfy the
physical and engineering constraints.

Similar issues also arise in expansion planning and other configuration problems, where plans are
evaluated by solving a massive number of multi-year Monte-Carlo simulations at 15-minute intervals
[26, 13]. Additionally, the stochasticity introduced by renewable energy sources further increases
the number of scenarios to consider. Therefore, modern approaches recur to the linear DC-OPF
approximation and focus only on the scenarios considered most pertinent [26] at the expense of the
fidelity of the simulations.

A power networkN can be represented as a graph (N, E), where the nodes in N represent buses and
the edges in E represent lines. The edges in E are directed and ER is used to denote those arcs in E
but in reverse direction. The AC power flow equations are based on complex quantities for current I,
voltage V , admittance Y , and power S , and these equations are a core building block in many power
system applications. Model 1 shows the AC OPF formulation, with variables/quantities shown in the
complex domain. Superscripts u and l are used to indicate upper and lower bounds for variables. The
objective function O(Sg) captures the cost of the generator dispatch, with Sg denoting the vector of
generator dispatch values (S g

i | i ∈ N). Constraint (18) sets the reference angle to zero for the slack

A–3

Instance Size Total Variation
|N | |E| Standard Data OD Data

30_ieee 30 82 2.56570 0.00118
57_ieee 57 160 11.5160 0.00509
89_pegase 89 420 20.9309 0.02538
118_ieee 118 372 40.2253 0.01102
300_ieee 300 822 213.075 0.13527

Table 4: Standard vs OD training data: Total Variation.

bus i ∈ N to eliminate numerical symmetries. Constraints (19) and (20) capture the voltage and phase
angle difference bounds. Constraints (21) and (22) enforce the generator output and line flow limits.
Finally, Constraints (23) capture Kirchhoff’s Current Law and Constraints (24) capture Ohm’s Law.

The Lagrangian-based deep learning model is based on the model reported in [15].

C.2 Dataset Details

Table 4 describes the power network benchmarks used, including the number of buses |N|, and
transmission lines/transformers |E|. Additionally it presents a comparison of the total variation
resulting from the two datasets. Note that the OD datasets have total variation which is orders of
magnitude lower than their Standard counterparts.

C.3 Network Architecture

The neural network architecture used to learn solutions to the OPF problem is a fully connected
ReLU network composed of an input layer of size proportional to the number of loads in the power
network. The architecture has 5 hidden layers, each of size double the number of loads in the power
network, and a final layer of size proportional to the number of generators in the network. The details
of the learning models are reported in Table 5.

Parameter Value Parameter Value

Epochs 20000 Batch Size 16
Learning rate [1e−5, 1e−4] Batch Normalization True
Dual learning rate 1e−4 Gradient Clipping True
Hidden layers 5 Activation Function LeakyReLU

Table 5: OPF: Training Parameters

D Additional Results

Table 6 compares prediction errors and constraint violations for the OD and Standard approach to
data generation for the Optimal Power Flow problems. As expressed in the main paper, the results
show that the models trained on the OD datset present predictions that are closer to their optimal
target solutions (error expressed in MegaWatt (MW)), reduce the constraint violations (expressed as
L1-distance between the predictions and their projections), and improve the optimality gap, which is
the relative difference in objectives between the predicted (feasible) solutions and the target ones.
Note that the results are improved from what reported in the main paper as a result of a larger
hyper-parameter search with smaller learning rates and longer training times. The trends remain
analogous to what is observed in the paper: The OD dataset induces dramatic improvements in both
accuracy and constraint violation metrics.

A–4

Instance Size Prediction Error Constraint Violation Optimality Gap (%)

No. buses Standard OD Standard OD Standard OD

IEEE-30 30 22.31 0.11 0.063 0.00004 6.28 0.76
IEEE-57 57 83.61 0.58 0.139 0.0002 1.04 0.66

Pegase-89 89 89.17 2.78 1.353 0.003 20.1 0.83
IEEE-118 118 36.55 0.54 1.330 0.002 3.80 0.36
IEEE-300 300 157.3 2.27 1.891 0.009 22.9 0.12

Table 6: OPF – Standard vs OD training data: prediction errors, constraint violations, and optimality
gap.

A–5

NeurIPS 2021 Paper Checklist

1. For all authors
a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope?
Yes. Paper contributions are stated in the abstract and listed in the Introduction.

b) (b) Have you read the ethics review guidelines and ensured that your paper conforms
to them?
Yes.

c) Did you discuss any potential negative societal impacts of your work?
No. Thus, the whole paper will have (we hope) a positive societal impact, including on
resilience of supply chains and power systems.

d) Did you describe the limitations of your work?
Yes. Please, see section 9.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results?

Yes.
(b) Did you include complete proofs of all theoretical results?

Yes.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)?
Yes.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)?
Yes. All details are provided in Appendix B and C.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)?
Yes, for a representative experiment (see Appendix). The robustness of the proposed
approach is evaluated over extensive and diverse hyper-parameter values.

(d) Did you include the amount of compute and the type of resources used (e.g., type of
GPUs, internal cluster, or cloud provider)?
Yes, see Appendix B and C.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators?

Yes.
(b) Did you mention the license of the assets?

Yes, when available.
(c) Did you include any new assets either in the supplemental material or as a URL?

No new asset was required to perform this research.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating?
The paper uses standard benchmark instances for both the Job Shop Scheduling (JSS)
and the Optimal Power Flow (OPF) problems. JSS instances are from Storer, Wu,
and Vaccari (swv), Taillard (ta), and Yamada and Nakano (yn), and all available on
JSPLIB https://github.com/tamy0612/JSPLIB/ . The OPF instances are from
the NESTA library [10]. Synthetic datasets are generated based on these instances.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content?
No. Our data is composed of standard benchmarks that have been used extensively in
the Optimization literature and we believe the above does not apply.

5. If you used crowdsourcing or conducted research with human subjects...
This research did not use crowdsourcing.

A–6

https://github.com/tamy0612/JSPLIB/

