
A Proof of Proposition 3.1

Proof. Let consider the subgraph G(i) containing all the nodes that have been assigned to V1 or V2 at
the end of iteration i of Algorithm 2. Let us denote m

(i) the number of edges in the graph G(i).

At the first iteration, the algorithm chooses the node 1, computes n1 = 0 and n2 = 0, and then
assigns node 1 to V1. With only one node in G(1), we have m(1) = 0. By denoting c

(i) the number of
additional cut edges induces by the assignment of node i at iteration i, we have

1X

i=1

c
(i) = c

(1) = 0 � m
(1)

2
(5)

Indeed, at the end of iteration 1, there is only one node assigned, hence the number of cut edges
induced by this assignment is c(1) = 0.

Suppose that
Pp

i=1 c
(i) � m(p)

2 for a certain p 2 {1, . . . , n � 1}, let us prove that
Pp+1

i=1 c
(i) �

m
(p+1)

/2.

Indeed, at the iteration p+ 1, the algorithm chooses the node (p+ 1) and computes n1 and n2. Since
n1 represents the number of neighbors of the node (p+ 1) in V1, if the node p+ 1 is added to V2,
then 2 ⇥ n1 edges would be cut (the factor 2 comes from the fact that between two nodes i and j,
there are the edges (i, j) and (j, i)). Similarly, since n2 represents the number of neighbors of the
node (p+ 1) in V2, if the node (p+ 1) is added to V1, then 2⇥ n2 edges would be cut. Notice also
that there is a total of 2⇥ n1 + 2⇥ n2 edges between the node (p+ 1) and the nodes in G(p). In the
algorithm, the node (p+ 1) is added to V1 or V2 such that we cut the most edges, indeed one has

c
(p+1) = max (2n1, 2n2) �

2n1 + 2n2

2
= n1 + n2 .

Hence,

p+1X

i=1

c
(i) =

pX

i=1

c
(i) + c

(p+1) � m
(p)

2
+ c

(p+1) � m
(p)

2
+ n1 + n2 (6)

The number of edges that is added to the subgraph G(p) when adding the node (p + 1) is equal to
2n1 + 2n2 = m

(p+1) �m
(p), hence,

m
(p)

2
+ n1 + n2 =

m
(p)

2
+

m
(p+1) �m

(p)

2
=

m
(p+1)

2
(7)

We have shown that
P1

i=1 c
(i) � m(1)

2 and that if
Pp

i=1 c
(i) � m(p)

2 for a certain p 2 {1, . . . , n� 1},
then

Pp+1
i=1 c

(i) � m(p+1)

2 . Thus,
Pp

i=1 c
(i) � m(p)

2 for any p 2 {1, . . . , n}, especially for p = n

where G(n) = G. By definition
Pn

i=1 c
(i) is the total number of edges that are cut which also means

that
nX

i=1

c
(i) = Card {(i, j) 2 E | (i 2 V1 ^ j 2 V2) _ (i 2 V2 ^ j 2 V1)}) .

B Proof of Theorem 3.2 and Theorem 4.1

To properly derive the regret bounds, we will have to make connections between our setting and a
standard linear bandit that chooses sequentially Tm arms. For that matter, let us consider an arbitrary

12



order on the set of edges E and denote E[i] the i-th edge according to this order with i 2 {1, . . . ,m}.
We define for all t 2 {1, . . . , T} and p 2 {1, . . . ,m} the OLS estimator

✓̂t,p = A�1
t,pbt,p ,

where

At,p = �Id2 +
t�1X

s=1

mX

b=1

z
E[b]
s z

E[b]>
s +

pX

k=1

z
E[k]
t z

E[k]>
t ,

with � a regularization parameter and

bt,p =
t�1X

s=1

mX

b=1

z
E[b]
s y

E[b]
s +

pX

k=1

z
E[k]
t y

E[k]
t . (8)

We define also the confidence set

Ct,p(�) =

(
✓ : k✓ � ✓̂t,pkA�1

t,p
 �

s

d2 log

✓
1 + tmL2/�

�

◆
+

p
�S

)
, (9)

where with probability 1� �, we have that ✓? 2 Ct,p(�) for all t 2 {1, . . . , T}, p 2 {1, . . . ,m} and
� 2 (0, 1].

Notice that the confidence set Ct(�) defined in Section 3 is exactly the confidence set Ct,m(�) defined
here. The definitions of the matrix At,m and the vector bt,m follow the same reasoning.

B.1 Proof of Theorem 3.2

Proof. Recall that (x(1)
? , . . . , x

(n)
? ) = argmax(x(1),...,x(n))

P
(i,j)2E x

(i)>M?x
(j) is the optimal

joint arm, and we define for each edge (i, j) 2 E the optimal edge arm z
(i,j)
? = vec (x(i)

? x
(j)>
? ).

We recall that the ↵-pseudo-regret is

R↵(T ) ,
TX

t=1

X

(i,j)2E

↵hz(i,j)? , ✓?i � hz(i,j)t , ✓?i (10)

= R(T )�
TX

t=1

X

(i,j)2E

(1� ↵)hz(i,j)? , ✓?i , (11)

where the pseudo-regret R(T ) is defined by

R(T ) =
TX

t=1

X

(i,j)2E

hz(i,j)? , ✓?i � hz(i,j)t , ✓?i .

Let us borrow the notion of Critical Covariance Inequality introduced in [Chan et al., 2021], that is
for a given round t 2 {1, . . . , T} and p 2 {1, . . . ,m}, the expected covariance matrix At,p satisfies
the critical covariance inequality if

At�1,m 4 At,p 4 2At�1,m . (12)

Let us now define the event Dt as the event where at a given round t, for all p 2 {1, . . . ,m}, At,p

satisfies the critical covariance inequality (CCI).

We can write the pseudo-regret as follows:

13



R(T ) =
TX

t=1

1[Dt]
X

(i,j)2E

hz(i,j)? , ✓?i �
D
z
(i,j)
t , ✓?

E
+ 1[Dc

t ]
X

(i,j)2E

hz(i,j)? , ✓?i �
D
z
(i,j)
t , ✓?

E


TX

t=1

1[Dt]
X

(i,j)2E

hz(i,j)? , ✓?i �
D
z
(i,j)
t , ✓?

E

| {z }
(a)

+LSm

TX

t=1

1[Dc
t ]

| {z }
(b)

.

We know that the approximation Max-CUT algorithm returns two subsets of nodes V1 and V2 such
that there are at least m/2 edges between V1 and V2, and to be more precise: at least m/4 edges from
V1 to V2 and at least m/4 edges from V2 to V1. Hence at each time t, if all the nodes of V1 pull the
node-arm xt and all the nodes of V2 pull the node-arm x

0
t, we can derive the term (a) as follows:

(a) =
TX

t=1

1[Dt]
X

(i,j)2E

hz(i,j)? , ✓?i � hz(i,j)t , ✓?i

=
TX

t=1

1[Dt]
X

(i,j)2E

hz(i,j)? , ✓?i � 1 [i 2 V1 ^ j 2 V2] hz(i,j)t , ✓?i

� 1 [i 2 V2 ^ j 2 V1] hz(i,j)t , ✓?i

� 1 [i 2 V1 ^ j 2 V1] hz(i,j)t , ✓?i

� 1 [i 2 V2 ^ j 2 V2] hz(i,j)t , ✓?i .

Notice that
P

(i,j)2E z
(i,j)
? =

P
(i,j)2E

1
m

P
(k,l)2E z

(k,l)
? , so one has

(a) =
TX

t=1

1[Dt]
X

(i,j)2E

1 [i 2 V1 ^ j 2 V2]

0

@
*

1

m

X

(k,l)2E

z
(k,l)
? , ✓?

+
� hz(i,j)t , ✓?i

1

A

| {z }
(a1)

+
TX

t=1

1[Dt]
X

(i,j)2E

1 [i 2 V2 ^ j 2 V1]

0

@
*

1

m

X

(k,l)2E

z
(k,l)
? , ✓?

+
� hz(i,j)t , ✓?i

1

A

| {z }
(a2)

+
TX

t=1

1[Dt]
X

(i,j)2E

1 [i 2 V1 ^ j 2 V1]

0

@
*

1

m

X

(k,l)2E

z
(k,l)
? , ✓?

+
� hz(i,j)t , ✓?i

1

A

| {z }
(a3)

+
TX

t=1

1[Dt]
X

(i,j)2E

1 [i 2 V2 ^ j 2 V2]

0

@
*

1

m

X

(k,l)2E

z
(k,l)
? , ✓?

+
� hz(i,j)t , ✓?i

1

A

| {z }
(a4)

.

Let us analyse the first term:

(a1) =
TX

t=1

1[Dt]
nX

i=1

X

j2Ni
j>i

1 [i 2 V1 ^ j 2 V2]

*
2

m

X

(k,l)2E

z
(k,l)
? �

⇣
z
(i,j)
t + z

(j,i)
t

⌘
, ✓?

+
. (13)

14



By defining (x?, x
0
?) = argmax(x,x0)2X 2hzxx0 + zx0x, ✓?i, and noticing that in the case where a

node i is in V1 and a neighbouring node j in is V2, then z
(i,j)
t = zxtx0

t
, we have,

2

m

X

(k,l)2E

D
z
(k,l)
? , ✓?

E
=

2

m

nX

k=1

X

j2Nk
j>k

D
z
(k,l)
? + z

(l,k)
? , ✓?

E

 2

m

nX

k=1

X

j2Nk
j>k

⌦
zx?x0

?
+ zx0

?x? , ✓?

↵

= hzx?x0
?
+ zx0

?x? , ✓?i
 hzxtx0

t
+ zx0

txt
, ✓̃t�1,mi w.p 1� �

= hz(i,j)t + z
(j,i)
t , ✓̃t�1,mi .

Plugging this last inequality in (13) yields, with probability 1� �,

(a1) 
TX

t=1

1[Dt]
nX

i=1

X

j2Ni
j>i

1 [i 2 V1 ^ j 2 V2]
D
z
(i,j)
t + z

(j,i)
t , ✓̃t�1,m � ✓?

E

=
TX

t=1

1[Dt]
X

(i,j)2E

1 [i 2 V1 ^ j 2 V2]
D
z
(i,j)
t , ✓̃t�1,m � ✓?

E
.

We define, as in Algorithm 1, 1
h
z
(i,j)
t = zxtx0

t

i
, 1 [i 2 V1 ^ j 2 V2]. Then, one has, with proba-

bility 1� �,

(a1) 
TX

t=1

1[Dt]
X

(i,j)2E

1
h
z
(i,j)
t = zxtx0

t

i D
z
(i,j)
t , ✓̃t�1,m � ✓?

E

=
TX

t=1

1[Dt]
mX

k=1

1
h
z
E[k]
t = zxtx0

t

i D
z
E[k]
t , ✓̃t�1,m � ✓?

E

=
TX

t=1

1[Dt]
mX

k=1

1
h
z
E[k]
t = zxtx0

t

i D
z
E[k]
t , ✓̃t�1,m � ✓̂t�1,m

E
+
D
z
E[k]
t , ✓̂t�1,m � ✓?

E


TX

t=1

1[Dt]
mX

k=1

1
h
z
E[k]
t = zxtx0

t

i
kzE[k]

t kA�1
t,k�1

k✓̃t�1,m � ✓̂t�1,mkAt,k�1

+ 1
h
z
E[k]
t = zxtx0

t

i
kzE[k]

t kA�1
t,k�1

k✓̂t�1,m � ✓?kAt,k�1


TX

t=1

1[Dt]
mX

k=1

1
h
z
E[k]
t = zxtx0

t

i
kzE[k]

t kA�1
t,k�1

p
2k✓̃t�1,m � ✓̂t�1,mkAt�1,m (14)

+ 1
h
z
E[k]
t = zxtx0

t

i
kzE[k]

t kA�1
t,k�1

p
2k✓̂t�1,m � ✓?kAt�1,m


TX

t=1

mX

k=1

1
h
z
E[k]
t = zxtx0

t

i
2
p
2�t(�)kzE[k]

t kA�1
t,k�1

(15)


TX

t=1

mX

k=1

2
p
2�t(�)kzE[k]

t kA�1
t,k�1

, (16)

15



with
p
�t(�)  �

r
d2 log

⇣
1+tmL2/�

�

⌘
+
p
�S and where (14) uses the critical covariance inequality

(12), (15) comes from the definition of the confidence set Ct�1,m(�) (9) and (16) upper bounds the
indicator functions by 1.

Using a similar reasoning, we obtain the same bound for (a2):

(a2) 
TX

t=1

mX

k=1

2
p

2�t(�)kzE[k]
t kA�1

t,k�1
. (17)

Let us bound the terms (a3) and (a4).

(a3) =
TX

t=1

1[Dt]
X

(i,j)2E

1
h
z
(i,j)
t = zxtxt

i
0

@
*

1

m

X

(k,l)2E

z
(k,l)
? , ✓?

+
� hz(i,j)t , ✓?i

1

A (18)

For all x 2 X , let �x be the following ratio

�x =
hzxx, ✓?iD

1
m

P
(k,l)2E z

(k,l)
? , ✓?

E , (19)

and let � be the worst ratio

� = min
x2X

hzxx, ✓?iD
1
m

P
(k,l)2E z

(k,l)
? , ✓?

E . (20)

We have

(a3) =
TX

t=1

1[Dt]
X

(i,j)2E

1
h
z
(i,j)
t = zxtxt

i
0

@
*

1

m

X

(k,l)2E

z
(k,l)
? , ✓?

+
� �xt

*
1

m

X

(k,l)2E

z
(k,l)
? , ✓?

+1

A


TX

t=1

1[Dt]
X

(i,j)2E

1
h
z
(i,j)
t = zxtxt

i
0

@
*

1

m

X

(k,l)2E

z
(k,l)
? , ✓?

+
� �

*
1

m

X

(k,l)2E

z
(k,l)
? , ✓?

+1

A

=
TX

t=1

1[Dt]
X

(i,j)2E

1
h
z
(i,j)
t = zxtxt

i
(1� �)

*
1

m

X

(k,l)2E

z
(k,l)
? , ✓?

+

 T
m

4
(1� �)

*
1

m

X

(k,l)2E

z
(k,l)
? , ✓?

+
(21)

=
TX

t=1

X

(i,j)2E

1

4
(1� �)

D
z
(i,j)
? , ✓?

E
,

where (21) comes from the fact that there is at most m/4 edges that goes from node in V1 to other
nodes in V1 and that 1[Dt]  1 for all t.

The derivation of this bound for (a3) gives the same one for (a4)

(a4) 
TX

t=1

X

(i,j)2E

1

4
(1� �)

D
z
(i,j)
? , ✓?

E
. (22)

16



By rewriting (a), we have :

(a) 
TX

t=1

mX

k=1

4
p

2�t(�)kzE[k]
t kA�1

t,k�1
+
1

2
(1� �)hz(i,j)? , ✓?i .

In [Chan et al., 2021], they bounded the term (b) as follows

LSm

TX

t=1

1[Dc
t ]  LSm

⇠
d
2 log2

✓
TmL

2
/�

�

◆⇡
. (23)

We thus have the regret bounded by

R(T ) 
TX

t=1

mX

k=1

4
p

2�t(�)kzE[k]
t kA�1

t,k�1
+
1

2
(1� �)hz(i,j)? , ✓?i+ LSm

⇠
d
2 log2

✓
TmL

2
/�

�

◆⇡
,

which gives us

R 1+�
2
(T ) 

TX

t=1

mX

k=1

4
p

2�t(�)kzE[k]
t kA�1

t,k�1
+LSm

⇠
d
2 log2

✓
TmL

2
/�

�

◆⇡
.

Let us bound the first term with the double sum as it is done in [Abbasi-Yadkori et al., 2011, Chan
et al., 2021]:

TX

t=1

mX

k=1

4
p
2�t(�)kzE[k]

t kA�1
t,k�1


TX

t=1

mX

k=1

min
⇣
2LS, 4

p
2�t(�)kzE[k]

t kA�1
t,k�1

⌘


TX

t=1

mX

k=1

4
p
2�t(�)min

⇣
LS, kzE[k]

t kA�1
t,k�1

⌘



vuut
Tm⇥ 32�T (�)

TX

t=1

mX

k=1

min

✓
(LS)2, kzE[k]

t k2
A�1

t,k�1

◆



vuut32Tm�T (�)
TX

t=1

mX

k=1

max (2, (LS)2) log

✓
1 + kzE[k]

t k2
A�1

t,k�1

◆
(24)

=

vuut32Tm�T (�)max (2, (LS)2)
TX

t=1

mX

k=1

log

✓
1 + kzE[k]

t k2
A�1

t,k�1

◆



s

32Tm�T (�)max (2, (LS)2) d2 log

✓
1 +

TmL2/�

d2

◆
(25)



s

32Tmd2 max (2, (LS)2) log

✓
1 +

TmL2/�

d2

◆ 
�

s

d2 log

✓
1 + TmL2/�

�

◆
+

p
�S

!

17



where (24) uses the fact that for all a, x � 0, min(a, x)  max(2, a) log(1 + x), (25) uses the fact

that
PT

t=1

Pm
k=1 log

✓
1 + kzE[k]

t k2
A�1

t,k�1

◆
 d

2 log
⇣
1 + TmL2/�

d2

⌘
from Lemma 19.4 in Lattimore

and Szepesvári [2018].

The final bound for the 1+�
2 -regret is

R 1+�
2
(T ) 

s

32Tmd2 max (2, (LS)2) log

✓
1 +

TmL2/�

d2

◆ 
�

s

d2 log

✓
1 + TmL2/�

�

◆
+
p
�S

!

+ LSm

⇠
d
2 log2

✓
TmL

2
/�

�

◆⇡

B.2 Proof of Theorem 4.1

Proof. For the sake of completeness in the proof we recall that we defined the couples (x?, x
0
?) and

(x̃?, x̃
0
?) and the quantity � as follows:

(x?, x
0
?) = argmax

(x,x0)2X 2

hzxx0 + zx0x, ✓?i

(x̃?, x̃
0
?) = argmax

(x,x0)2X
hm1!2 · zxx0 +m2!1 · zx0x +m1 · zxx +m2 · zx0x0 , ✓?i .

and
� = hm1!2

�
zx̃?x̃0

?
� zx?x0

?

�
+m2!1

�
zx̃0

?x̃? � zx0
?x?

�

+m1 (zx̃?x̃? � zx?x?) +m2

�
zx̃0

?x̃
0
?
� zx0

?x
0
?

�
, ✓?i .

And we recall that in Algorithm 3, the tuple (xt, x
0
t, ✓̃t�1,m) is obtained as follows:

⇣
xt, x

0
t, ✓̃t�1,m

⌘
= argmax

(x,x0,✓)2X 2⇥Ct�1

hm1!2 · zxx0 +m2!1 · zx0x +m1 · zxx +m2 · zx0x0 , ✓i

We can write the regret R(T ) as in the proof of Theorem 3.2:

R(T ) =
TX

t=1

1[Dt]
X

(i,j)2E

hz(i,j)? , ✓?i �
D
z
(i,j)
t , ✓?

E
+ 1[Dc

t ]
X

(i,j)2E

hz(i,j)? , ✓?i �
D
z
(i,j)
t , ✓?

E


TX

t=1

1[Dt]
X

(i,j)2E

hz(i,j)? , ✓?i �
D
z
(i,j)
t , ✓?

E

| {z }
(a)

+LSm

TX

t=1

1[Dc
t ]

| {z }
(b)

Here, (b) doesn’t change, we thus only focus on deriving (a).

(a) =
TX

t=1

1[Dt]
X

(i,j)2E

hz(i,j)? , ✓?i � hz(i,j)t , ✓?i


TX

t=1

X

(i,j)2E

hz(i,j)? , ✓?i � hz(i,j)t , ✓?i (where 1[Dt]  1)

=
TX

t=1

X

(i,j)2E

m1!2 +m2!1

m
hz(i,j)? , ✓?i

| {z }
(a1)

+
TX

t=1

X

(i,j)2E

m1 +m2

m
hz(i,j)? , ✓?i �

TX

t=1

X

(i,j)2E

hz(i,j)t , ✓?i

18



We have

(a1) =
TX

t=1

X

(i,j)2E

2m1!2

m
hz(i,j)? , ✓?i

=
TX

t=1

nX

i=1

X

j2Ni
j>i

2m1!2

m
hz(i,j)? + z

(j,i)
? , ✓?i


TX

t=1

nX

i=1

X

j2Ni
j>i

2m1!2

m
hzx?x0

?
+ zx0

?x? , ✓?i

=
TX

t=1

nX

i=1

X

j2Ni
j>i

2

m
hm1!2 · zx?x0

?
+m2!1 · zx0

?x? , ✓?i

=
TX

t=1

nX

i=1

X

j2Ni
j>i

2

m
hm1!2 · zx?x0

?
+m2!1 · zx0

?x? +m1 · zx?x? +m2 · zx0
?x

0
?
, ✓?i

�
TX

t=1

nX

i=1

X

j2Ni
j>i

2

m
hm1 · zx?x? +m2 · zx0

?x
0
?
, ✓?i

=
TX

t=1

nX

i=1

X

j2Ni
j>i

2

m
hm1!2 · zx̃?x̃0

?
+m2!1 · zx̃0

?x̃? +m1 · zx̃?x̃? +m2 · zx̃0
?x̃

0
?
, ✓?i �

2

m
�

�
TX

t=1

nX

i=1

X

j2Ni
j>i

2

m
hm1 · zx?x? +m2 · zx0

?x
0
?
, ✓?i

=
TX

t=1

hm1!2 · zx̃?x̃0
?
+m2!1 · zx̃0

?x̃? +m1 · zx̃?x̃? +m2 · zx̃0
?x̃

0
?
, ✓?i ��

�
TX

t=1

hm1 · zx?x? +m2 · zx0
?x

0
?
, ✓?i


TX

t=1

D
m1!2 · zxtx0

t
+m2!1 · zx0

txt
+m1 · zxtxt +m2 · zx0

tx
0
t
, ✓̃t�1,m

E
�� w.p 1� �

�
TX

t=1

hm1 · zx?x? +m2 · zx0
?x

0
?
, ✓?i

=
TX

t=1

X

(i,j)2E

hz(i,j)t , ✓̃t�1,mi �
TX

t=1

��
TX

t=1

hm1 · zx?x? +m2 · zx0
?x

0
?
, ✓?i

By plugging the last upper bound in (a) and with probability 1� �, we have,

19



(a) 
TX

t=1

X

(i,j)2E

hz(i,j)t , ✓̃t�1,mi �
TX

t=1

��
TX

t=1

hm1 · zx?x? +m2 · zx0
?x

0
?
, ✓?i

+
TX

t=1

X

(i,j)2E

m1 +m2

m
hz(i,j)? , ✓?i �

TX

t=1

X

(i,j)2E

hz(i,j)t , ✓?i

=
TX

t=1

X

(i,j)2E

hz(i,j)t , ✓̃t�1,m � ✓?i �
TX

t=1

��
TX

t=1

hm1 · zx?x? +m2 · zx0
?x

0
?
, ✓?i

+
TX

t=1

X

(i,j)2E

m1 +m2

m
hz(i,j)? , ✓?i

=
TX

t=1

X

(i,j)2E

hz(i,j)t , ✓̃t�1,m � ✓?i �
TX

t=1

��
TX

t=1

X

(i,j)2E

m1

m
�x?hz

(i,j)
? , ✓?i+

m2

m
�x0

?
hz(i,j)? , ✓?i

+
TX

t=1

X

(i,j)2E

m1 +m2

m
hz(i,j)? , ✓?i


TX

t=1

X

(i,j)2E

hz(i,j)t , ✓̃t�1,m � ✓?i �
TX

t=1

��
TX

t=1

X

(i,j)2E

m1 +m2

m
�hz(i,j)? , ✓?i+

TX

t=1

X

(i,j)2E

m1 +m2

m
hz(i,j)? , ✓?i

=
TX

t=1

X

(i,j)2E

hz(i,j)t , ✓̃t�1,m � ✓?i �
TX

t=1

�+
TX

t=1

X

(i,j)2E

m1 +m2

m
(1� �)hz(i,j)? , ✓?i

=
TX

t=1

X

(i,j)2E

hz(i,j)t , ✓̃t�1,m � ✓?i �
TX

t=1

X

(i,j)2E

✏hz(i,j)? , ✓?i+
TX

t=1

X

(i,j)2E

m1 +m2

m
(1� �)hz(i,j)? , ✓?i

=
TX

t=1

X

(i,j)2E

hz(i,j)t , ✓̃t�1,m � ✓?i+
TX

t=1

X

(i,j)2E


m1 +m2

m
(1� �)� ✏

�
hz(i,j)? , ✓?i

By plugging (a) in the regret and with probability 1� �, we have,

R(T ) 
TX

t=1

X

(i,j)2E

hz(i,j)t , ✓̃t�1,m � ✓?i+
TX

t=1

X

(i,j)2E


m1 +m2

m
(1� �)� ✏

�
hz(i,j)? , ✓?i+ LSm

TX

t=1

1[Dc
t ]

which gives,

R(T )�
TX

t=1

X

(i,j)2E


m1 +m2

m
(1� �)� ✏

�
hz(i,j)? , ✓?i 

TX

t=1

X

(i,j)2E

hz(i,j)t , ✓̃t�1,m � ✓?i+ LSm

TX

t=1

1[Dc
t ]

R1�[m1+m2
m (1��)�✏](T ) 

TX

t=1

X

(i,j)2E

hz(i,j)t , ✓̃t�1,m � ✓?i+ LSm

TX

t=1

1[Dc
t ]

The upper bound of the right hand term follows exactly what we have already done for Theorem 3.2
by applying the upper bounds (16) and (23)

20



C Additional information on the experiments

C.1 Table 1

The number of nodes in each graph is equal to 100. The random graph corresponds to a graph where
for two nodes i and j in V , the probability that (i, j) and (j, i) is in E is equal to 0.6. The results for
the random graph are averaged over 100 draws. The matching graph represents the graph where each
node i 2 V has only one neighbour: Card(Ni) = 1.

C.2 Figure 1

The graph used in this experiment is a complete graph of 10 nodes. The arm set X = {e1, . . . , ed}
which gives Z = {e1, . . . , ed2}. The matrix M? is randomly initialized such that all elements of
the matrix are drawn i.i.d. from a standard normal distribution, and then we take the absolute value
of each of these elements to ensure that the matrix only contains positive numbers. We plotted the
results by varying ⇣ from 0 to 1 with a step of 0.01. We conducted the experiment on 100 different
matrices M? randomly initialized as explained above and plotted the average value of the obtained �,
✏, ↵1 and ↵2.

C.3 Figure 2

For the last experiment, we used a complete graph of 5 nodes. The arm set X = {e1, . . . , ed}
which gives Z = {e1, . . . , ed2}. The matrix M? is randomly initialized as explained in the previous
experiment. We fixed ⇣ = 0 and the horizon T = 20000. We ran the experiment 10 times and plotted
the average values (shaded curve) and the moving average curve with a window of 100 steps for more
clarity.

The Explore-Then-Commit algorithm has an exploration phase of T/3 rounds and then exploits by
pulling the couple (xt, x

0
t) = argmax(x,x0)hzxx0 + zx0x, ✓̂ti. Note that we set the exploration phase

to T/3 because most of the time, it was sufficient for the learner to have the estimated optimal pair
(xt, x

0
t) equal to the real optimal pair (x?, x

0
?).

Machine used for all the experiments : Macbook Pro, Apple M1 chip, 8-core CPU

The code is available here.

21

https://github.com/MILES-PSL/An-Alpha-No-Regret-Algorithm-for-Graphical-Bilinear-Bandits

	Introduction
	Problem setting
	Optimism in the face of uncertainty for Graphical Bilinear Bandit
	Improved Algorithm for Graphical Bilinear Bandits
	Experiments - Influence of the problem parameters on the regret
	Conclusion & discussions
	Proof of Proposition 3.1
	Proof of Theorem 3.2 and Theorem 4.1
	Proof of Theorem 3.2
	Proof of Theorem 4.1

	Additional information on the experiments
	Table 1
	Figure 1
	Figure 2


