A Proof of Proposition

Proof. Let consider the subgraph G(*) containing all the nodes that have been assigned to V; or V; at
the end of iteration i of Algorithm [2| Let us denote m (") the number of edges in the graph G(*).

At the first iteration, the algorithm chooses the node 1, computes n; = 0 and no = 0, and then

assigns node 1 to V. With only one node in G(!), we have m(!) = 0. By denoting ¢(*) the number of
additional cut edges induces by the assignment of node : at iteration ¢, we have

1

1)
m
0>
> e = > = 5)
=1

Indeed, at the end of iteration 1, there is only one node assigned, hence the number of cut edges
induced by this assignment is c(l) =0.

Suppose that 37 ¢ > m ! for a certain p € {1,. — 1}, let us prove that > ¢() >
mP+1) /2,

Indeed, at the iteration p + 1, the algorithm chooses the node (p + 1) and computes 11 and n2. Since
ny represents the number of neighbors of the node (p + 1) in V4, if the node p + 1 is added to V5,
then 2 x n; edges would be cut (the factor 2 comes from the fact that between two nodes ¢ and j,
there are the edges (i, j) and (4, )). Similarly, since ny represents the number of neighbors of the
node (p + 1) in V4, if the node (p + 1) is added to V3, then 2 X ng edges would be cut. Notice also
that there is a total of 2 x n; + 2 x 1y edges between the node (p + 1) and the nodes in G(»). In the
algorithm, the node (p + 1) is added to V; or V5 such that we cut the most edges, indeed one has

2 2
P = max (2n4, 2ny) > w =n;+ng .
Hence,
ptl P (») (»)
Zc @ 4 P > 7m2 + P > 7m2 +ny +no (6)
i=1 i=1

The number of edges that is added to the subgraph G») when adding the node (p+ 1) is equal to
201 + 2ns = m®PtY — (@) hence,

m(P) m®  petl) ) ()
= — 7
5~ tritne 5t 5 7 )
We have shown that Z _, > m ! and that if Z" @ > m” fora certain pe{l,. -1},
(p+1)

then Zp+1 ) > m . Thus, Zle M > mT for any p € {1, ...,n}, especially forp =n

where G(™) = G. By deﬁnition Dy ¢ is the total number of edges that are cut which also means
that

D ) =Card{(i,j) e E| i € ViAjEVR) V(i € Vo AjET)})

i=1

B Proof of Theorem and Theorem

To properly derive the regret bounds, we will have to make connections between our setting and a
standard linear bandit that chooses sequentially 7'm arms. For that matter, let us consider an arbitrary

12



order on the set of edges E and denote E[7] the i-th edge according to this order with ¢ € {1,...,m}.
We define forall t € {1,...,T}and p € {1,...,m} the OLS estimator

joo_ A—1
9t,p - At,pbtm )

where
t—1 m
—AIdH‘ZZZSE E[b]T+ZZ E[k ,
s=1 b=1
with A a regularization parameter and
t—1 m
bip = > llyEl Z My P 8)
s=1b=1 k=1
We define also the confidence set
N 14+ tmL2/)\
Ct,p(é): {9 ||9_6t7PHA:;§ O\/d2log( + T;l / ) _|_\/XS} 5 (9)

where with probability 1 — §, we have that 0, € Cy ,() forallt € {1,..., T}, pe {1,...,m} and
d € (0,1].

Notice that the confidence set Cy(8) defined in Section[3|is exactly the confidence set Cy,,, (6) defined
here. The definitions of the matrix A ,, and the vector b; ,,, follow the same reasoning.

B.1 Proof of Theorem[3.2]

Proof. Recall that (zV, ..., 2™) = arg max,_ . . o aWTM, 2O is the optimal
(ac( )yl )) (i,5)€E p
joint arm, and we define for each edge (7, j) € F the optimal edge arm 209 = vec (a5 @)U )T)

We recall that the a-pseudo-regret is

T
Ra(M) 23" 3N a0, — ().0.) (10)
t=1 (i,j)eEE
T ..
3N a-a)E ) (11)
t=1 (i,j)eB

where the pseudo-regret R(T') is defined by
Z Z (4.9) 0,) — (= giyj)79*> )
=1 (¢,j)€E
Let us borrow the notion of Critical Covariance Inequality introduced in [Chan et al.|[2021], that is
foragivenround t € {1,...,T}and p € {1,...,m}, the expected covariance matrix A, , satisfies
the critical covariance inequality if

Atfl,m N Atp 2-At 1m - (12)

Let us now define the event D, as the event where at a givenround ¢, forall p € {1,...,m}, A, ,
satisfies the critical covariance inequality (CCI).

We can write the pseudo-regret as follows:

13



t=1 (i,j)EE t=1
(a) (b)

We know that the approximation Max-CUT algorithm returns two subsets of nodes V; and V5 such
that there are at least m /2 edges between V; and V5, and to be more precise: at least m/4 edges from
Vi to V5 and at least m/4 edges from V5 to V3. Hence at each time ¢, if all the nodes of V; pull the
node-arm x; and all the nodes of V5 pull the node-arm a}, we can derive the term (a) as follows:

T
=310 Y (700 —1lie Vi nj e Vel (7, 6.)

t=1 (i,j)€E
—1[ieVanjeWi)(z",6,)
—1[ieVinjeW] (=", 06,)
—1[ieVange Vel (25,0,) .

Notice that 3 ; jyc i @0 = = Y iJ)eE m (k)R 2{¥D 50 one has

T

()= D] Y 1[i€VinjeV] <; > zﬁ’“’”»e*>—<z§i’”,e*>

t=1 (i))ER (kDEE

T
+Z]l[Dt] Z 1[ieVonje V] < )9*> (209 9,
t=1

(i,5)€EE
(a2)
T 1 o
+> U[D] > i€ Vinje W] < A% 0, ><z§m),9*>
t=1 (id)EE m
(a3)
- 1 LD (i-9)
1 k.l (6
PP Y tlicvnic <m o) - 0.0
t=1 (i,J)€EE
Let us analyse the first term:
T 9 '
(a) =Y _1[Dy] Z S 1fieving e < PO (zgl’]) +z(“)) ,9*> . (13)
t=1 i=1jEN; ™ wner
J>i
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By defining (7, ) = argmax, ,/ex2(2za’ + 2u7z,0x), and noticing that in the case where a

(4,.9) _

node ¢ is in V3 and a neighbouring node j inis Va, then z;, " = z,,,/, we have,

2 Z <Z£k,l)76*> *ZZ< kl)+ lk)0>

m
(k,l)eE k=1j€EN
>k

72 Z Za:*;v/ —|—Zm m*,e >

k= 1]€Nk
>k

= <Zac*9:; + Zx’*;c*ao*>
< <th'pi + Zr;zt7ét—1,m> w.p 1-6
= (2" +Z£j’i)79~t71,m> :

I A

Plugging this last inequality in yields, with probability 1 — §,

HM’%

1[D;] Z Z [ieVingeVs <zt(i’j) + Zt(j’i), 9~t71,m - 9*>

=1 jEN;
j>i

I
-

1D 3 1lieVinjeVy <z§i’j>,§t,1,m - 9*> .
(i,5)€E

We define, as in Algorithm E 1 [2f* = 2,,4;] £ 1[i € Vi A j € V3]. Then, one has, with proba-
bility 1 — 4,

T o
(a1) < ; [Dy] (”2)2]51 [Z(’J) = Zu,u, ] <Z§17J)>9t71,m _ 0*>
- éﬂ[l)t] ki_lll {Zf[k] _ Zwtw;:| <Zf[k]’ét—1,m B 0*>

= Z 1[Dy] i]l {Zf[k] = thm;:| <ZtE[k], étfl,m - étfl,m> + <ZtE[k]79At71,m - 9*>
k=

T m
<> 1Dy 1 [zf““] - zm;} ||zf““]||A;;,l||et-1,m ~ b mlla,

(14)

IA
[M]=
=
S
NE
=
Y
Ty
=
|
:]N
H_E*Z
=
=
>
5
=
3
N
:
>

E[k j
1 2 1 as VIO 1 Ol

<Y1 M = | 22BN as)
k=1

1

T m
<3228 Ma (16)

1
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with /3(0) < 0\/ d?log (W) ++/AS and where (T4) uses the critical covariance inequality

(12), comes from the definition of the confidence set Cy_1 ,,, () (9) and upper bounds the
indicator functions by 1.

Using a similar reasoning, we obtain the same bound for (as):

(a2) < SN 228, @)1 M40 (17)

t,k—1
t=1 k=1

Let us bound the terms (a3) and (ay).

T
(as) =Y 1[0} 3 n[zt“"”:zxtxt} <;L > zi’“’”,o*>—<z§i7-“,9*> (18)

t=1 (i,j)EE (k,D)eE

For all z € X, let v, be the following ratio

T = oz 02) : (19)

<$ Sper 9*>

and let v be the worst ratio

XTIy 9*
= min {2 )

. (20)
T k,l
e <% Z(k,l)eE Z£ ),9*>

We have

T
(a3)zz]l[Dt] Z ]l[zéi’j)zzztm} <771,L Z Z£k71)79*>_7m<; Z Z£k7l)79*>

t=1 (i,.J)EE (k,l))eE (k,l))eE
d > 1 1
< Z]l[Dt] Z 1 [Z,EM) = zmm} < Z zik’l)79*> _ < Z zﬁk’l),9*>
t=1 (4,J)EE m (k,l))eE m (k,)H)eE
T
i 1
= Z]l[Dt] Z 1 |:Zt( ) Zztfft} (1 - ’y) <m Z z£k,l)79*>
t=1 (i,5)€E (k,l)eEE
m 1 (k1)
<T4(1_’7)<m Z Zx a0*> (21
(k,1)EE
T
1 i
ZZ Z 1(1—7) <Z£7'7),9*> ,
t=1 (i,j)€E

where (21)) comes from the fact that there is at most 1m /4 edges that goes from node in V; to other
nodes in V; and that 1[D;] < 1 for all ¢.

The derivation of this bound for (a3) gives the same one for (a4)

(@)<Y Y G- (0 22)
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By rewriting (a), we have :

T m
1
<Y V2O s 50 E6)

t=1 k=1

In [Chan et al.,|2021], they bounded the term (b) as follows

2
LSmZ]l ] < LSm [dQIOgQ (TméL/Aﬂ . (23)

We thus have the regret bounded by

(- Bk 1 (i:9) > TmL?/X
<D0 4V2B,0) 1% s 5=, 00) + LSm | dlogy (———— ) |

2 5
t=1 k=1

which gives us

o Bl ) TmL?/\
<Y 2RO M g +LSm | d log,

)
t=1 k=1

Let us bound the first term with the double sum as it is done in [|[Abbasi-Yadkori et al.,[2011, |Chan
et al.,[2021]:

B
NE

/28,012 p s

t,k—1

~
I
-
o~
Il

[~ 7
Ms

min <2LS 4\/W||Z1§E[k]”A_k 1)

W
Il
_
£l
Il
-

M=
NE

44/23:(6) min (LS ||Zt k]HA ! 1)

t=1 k=1
T m
< | Tm x 3267(6 Zme ( (LS)? ||zt k]|| >
t=1 k=1 -
T m
< 3210223 (2, (18" (1+ 1, ) 4
t=1 k=1 nEt

T m
= | 32TmpBr(8) max (2, (LS)2) > log (1 + ||zEH 'if;_)

IN

(25)

32T mpBr(8) max (2, (LS)?) d? log (1 n TmLQ/)\>

d2

< \/32de2 max (2, (LS)?) log (1 + TmLQ/)\> ((7\/612 log (1—|—TmL2/)\> + \65)

d? 0
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where uses the fact that for all a,x > 0, min(a, x) < max(2,a)log(1 + ), (25)) uses the fact
that 32, 7 log (1 + ||z Bk ||2 ) < d?log (1 + Lmk /)‘) from Lemma 19.4 in|Lattimore

and Szepesvari [2018].

The final bound for the 1Jr77-1regret is

R (T) <\/ 32T'md? max (2, (LS)?) log (1 + ng”) (0 \/ 2 log ( W) N ﬁs)

2
+ LSm [d“‘ log, (T””‘L/Aﬂ

)

B.2 Proof of Theoremd.1]

Proof For the sake of completeness in the proof we recall that we defined the couples (zy, ;) and
(Z4, ") and the quantity A as follows:

(4, 2)) = argmax (2z0/ + 2272, Ox)
(z,z")EX?

~ o~
(I*, SC*) = arg rnax(ml_,g “Zpxt Mot - Zarg M1 - Zge + Mo - Zyrgr, 0*> .
(z,x")eX

and
A = (mi2 (Zi*a"c’* - Zz*z;) + mo1 (Zi’*i:* - Zx;z*)

+mi (22,5, — Ze,a,) + Mo (233, — Zarar) , 0x) -

And we recall that in Algorithmlgl the tuple (z;, '}, 0;_1 ) is obtained as follows:

.
(xuxtﬁt_l,m) = argmax  (Mi2- Zga + Mot - Zore + M - Za0 + Mo - 23700, 0)
(z,x’,0)€X2XxCr_1

We can write the regret R(T') as in the proof of Theorem

R =321D) Y G690 (.0 +1[Dg] 3 (.00 - (.6.)

t=1 (i,5)EE (i,5)EE
T N N T
Z JY0 D00 = (2, 0.) + Lsm > 1[Df]
=1 (m)GE =1
(a) (b)
Here, (b) doesn’t change, we thus only focus on deriving (a).
(a) =3 1D] Y (7,00 — (27,0,
t=1 (i,9)€E
< Z Z <Z£Z’j),9*> - <Z£w),9*> (where 1[D;] < 1)
t=1 (i,j)€E
T m +m mip+m r
_ Z Z 1—2 2~>1< (4,5) 9 +Z Z my T imng 2 (z,]) 0 Z Z 1]) 9
=1 (i)e B i =1 per =1 (i)eB

(a1)
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We have

S

2my_2

-y ¥

t=1(i,j)eE

S

DD IPIEE

t=1 i=1 jeN;
J>1

t=1 i=1 jEN;
Jj>i
T n
t=11i=1 je&
j>

T n
szzz%yz

<Z>(\'i7j)7 9*>

(4,9) +Z(j 12) 9*>

CZp,x, M2

CZp,x, Mo

2z, T M2t

<ZZD*LE; + Za;’*m* 9 9*)

2R ) 9*>

: zw’*w* + mi

CRr, T, +mo - Zav’*w; ) 6*)

CZgL g, T

CZr, +mo - Zw’*:r; ) 0*)

CRr, T, + mo - Zav’*:v’* ) 6*>

T
= E (M1 - 2z, + Mo - 235, + M1 - 2,5, +Ma - 2305,0,) — A

IA
(7~
~

5
d
$
Pé\
_|_
3
L
N

3
_|_
&
&

I3
+
3
N
o
3

N
I

>

S

t=1 (i,j)eE

1
T
- E (M1 Zg,z, + M2 - 2220, 04)

= Z Z <Z§i’j),ét—1,m> -

T

ZAfZGn

t=1 t=

1

1 Rz, z, T M2 Zm;m;79*>

By plugging the last upper bound in (a) and with probability 1 — ¢, we have,
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t=1 (i,j)€E t=1 t=1
- my+me (i) - (4,4)
DS PRLELIRENNED i) SRE N
t=1 (i,j)EE t=1 (i,j)EE
T T T
= Z <Zt( j)79t71,m - 0*> - Z A — <m1 “ 2z, Mo Zm’*x’*ae*>
t=1 (4,j)€E t=1 t=1
T
my+ma, (@,
+ Z m < i(( ])79*>
t=1(i,j)eE
T T T N
-y (X Oprm — 0 = > A= e (257 0,) 4+ 2 (259 0,)
t=1 ('L,])GE t=1 t=1 (7,7])€E
T
my+ma, (@,
159D PSRN
t=1(i,j)eE
T d d mi+m T mi+m
i5) 7 1 2 ij 1 2, (i,j
S D @ b =0 =Y A=Y Y 2l ) 1y Y w6
t=1 (i,j)€E t=1 t=1 (i,j)€E t=1 (i,j)€E
_ - (i.9) - - mi + me (i.9)
=3 @@ b — 00 =Y A+ —— (=)=, 0,)
t=1(i,j)eE t=1 t=1 (i,j)€E
T T T
i, i my + mao ij
=3 > b =0 =Y Y e 00+ Y 2 (1= 6)
t=1 (i,j)eEE t=1 (i,j)eEE t=1 (i,j)eEE
T T
mi+m
S DT LN AN ol [ Lhma ) } (9, ,)
t=1 (i,j)EE t=1 (i,j)eE

T T T

R(T) < (& pam = 0.+ [ml M2 ) - 6} (29.0,) + LSm S 1[Df]
t=1(i,j)erE t=1 (i,j)€E t=1

which gives,

a m1+m - T PN T

R(T) =) [1m2<1 -7 - } (0,0 <37 D0 (" b — 0.) + LSm Y 1]
t=1 (i,j)€E t=1 (i,j)€E t=1
T .o -~ T

By oty g (1) 30 32 (™ buiam = 00) + LS Y 1D
t=1 (i,j)€EE t=1

The upper bound of the right hand term follows exactly what we have already done for Theorem [3.2]
by applying the upper bounds and O
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C Additional information on the experiments

C.1 Tabled

The number of nodes in each graph is equal to 100. The random graph corresponds to a graph where
for two nodes ¢ and j in V, the probability that (¢, j) and (j,¢) is in E is equal to 0.6. The results for
the random graph are averaged over 100 draws. The matching graph represents the graph where each
node ¢ € V has only one neighbour: Card(N;) = 1.

C.2 Figure[l]

The graph used in this experiment is a complete graph of 10 nodes. The arm set X = {ey,...,eq}
which gives Z = {ey,...,eq2}. The matrix M, is randomly initialized such that all elements of
the matrix are drawn 1.i.d. from a standard normal distribution, and then we take the absolute value
of each of these elements to ensure that the matrix only contains positive numbers. We plotted the
results by varying ¢ from 0 to 1 with a step of 0.01. We conducted the experiment on 100 different
matrices M, randomly initialized as explained above and plotted the average value of the obtained ,
€, ap and .

C.3 Figure[2]

For the last experiment, we used a complete graph of 5 nodes. The arm set X = {e1,...,eq}
which gives Z = {ey, ..., e42}. The matrix M, is randomly initialized as explained in the previous
experiment. We fixed ¢ = 0 and the horizon 7" = 20000. We ran the experiment 10 times and plotted
the average values (shaded curve) and the moving average curve with a window of 100 steps for more
clarity.

The Explore-Then-Commit algorithm has an exploration phase of 7'/3 rounds and then exploits by
pulling the couple (z¢, 7}) = argmax, . (2zar + 2ava; 0,). Note that we set the exploration phase
to T'/3 because most of the time, it was sufficient for the learner to have the estimated optimal pair
(x¢, x}) equal to the real optimal pair (zy, ) ).

Machine used for all the experiments : Macbook Pro, Apple M1 chip, 8-core CPU

The code is available here.
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https://github.com/MILES-PSL/An-Alpha-No-Regret-Algorithm-for-Graphical-Bilinear-Bandits
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