A Theoretical Framework for Discovering Groups and Unitary Representations via Tensor Factorization

Dongsung Huh¹ Halyun Jeong²

¹ IBM Research ² University at Albany, SUNY

Motivation: Symmetry Discovery

The Status Quo: Hard-Coded Symmetry.

Geometric Deep Learning (e.g., Equivariant NN) relies on *a priori* knowledge of symmetries to constrain the model. This guarantees generalization but limits applicability when symmetries are unknown.

The Challenge: Automated Discovery.

Can a model *discover* the underlying symmetry group directly from data (e.g., an operation table), without hard-coding it?

HyperCube is a tensor factorization model that exhibits a strong inductive bias toward Groups and Unitary Representations, effectively learning symmetry from data.

Problem Setup

 (Q, \circ) : a binary operation. |Q| = n.

Cayley Tensor: $\delta_{abc} = \mathbb{I}_{\{a \circ b = c\}}$. Quasigroup: δ is a Latin-square.

Group: A quasigroup that is associative.

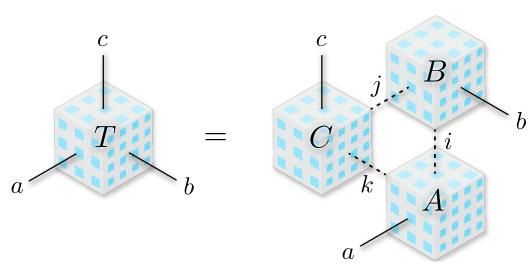
 $|\delta| := \sum_{a,b,c} \delta_{abc} = n^2$.

HyperCube Model

Approximates δ via a trilinear product of parameter tensors $\Theta=(A,B,C)$:

$$T_{abc}(\Theta) = \frac{1}{n} \operatorname{Tr}(A_a B_b C_c)$$
 (1)

Uses matrix product of **linear operators** $(A_a \in \mathbb{C}^{n \times n})$ to capture interactions.



Regularization Objective.

Jacobian Penalty: e.g., $\partial T_{abc}/\partial A_a=(B_bC_c)^{\dagger}$

$$\mathcal{H} = \sum_{b,c} \|B_b C_c\|^2 + \sum_{c,a} \|C_c A_a\|^2 + \sum_{a,b} \|A_a B_b\|^2$$
$$= \sum_{a,b,c} \delta_{abc} (\|B_b C_c\|^2 + \|C_c A_a\|^2 + \|A_a B_b\|^2).$$

How does this induce bias towards groups?

Notation

Normalized inner product and norm

$$\langle X, Y \rangle := \frac{1}{n} \operatorname{Tr}(X^{\dagger}Y), \qquad ||X||^2 := \langle X, X \rangle$$

so that $||U||^2 = 1$ for any unitary U.

Geometric Mechanism

1. C-S Lower Bound.

From Cauchy-Schwarz inequality:

$$\left\| \frac{\partial T_{abc}}{\partial A_a} \right\|^2 \ge \frac{|T_{abc}|^2}{\|A_a\|^2}$$

Derive a lower bound $\mathcal{H} \geq \mathcal{B}$:

$$\mathcal{B} := \sum \delta_{abc} |T_{abc}|^2 \left(\frac{1}{\|A_a\|^2} + \frac{1}{\|B_b\|^2} + \frac{1}{\|C_c\|^2} \right)$$

2. Orthogonal Decomposition.

 $\mathcal{H}(\Theta) = \mathcal{B}(\Theta; \delta) + \mathcal{R}(\Theta; \delta)$, where

$$\mathcal{R} := \sum \delta_{abc} \left(\|\Delta_{abc}^{(A)}\|^2 + \|\Delta_{abc}^{(B)}\|^2 + \|\Delta_{abc}^{(C)}\|^2 \right)$$

with
$$\Delta^{(A)}_{abc} := rac{T^*_{abc}}{\|A_a\|^2} A_a - (B_b C_c)^\dagger$$

Orthogonality: $\langle A_a, \Delta_{abc}^{(A)} \rangle = T_{abc}^* - T_{abc}^* = 0$.

3. Collinearity Manifold.

 $\mathcal{R}=0$ iff A_a and $(B_bC_c)^\dagger$ are collinear.

On the Manifold ($\mathcal{R} = 0$):

4. Constant Gram matrix:

$$X = \frac{A_a A_a^{\dagger}}{\|A_a\|^2} = \frac{C_c^{\dagger} C_c}{\|C_c\|^2}$$

$$\kappa := \frac{\|A_a\|^2 \|B_b\|^2 \|C_c\|^2}{|T_{abc}|^2} = \frac{\operatorname{rank}(X)}{n} \le 1$$

5. AM-GM bound within the manifold:

$$\mathcal{B} \ge 3\kappa^{-1/3}|\delta|$$

 \mathcal{B} forces $\kappa \to 1$ (Full Rank) \Longrightarrow Unitarity.

Theoretical Results

Regular Representation Certificate.

For any group, the Regular Representation (ρ_r) defines a unitary collinear factorization:

$$A_g = B_g = C_g^{\dagger} = \rho_r(g) \implies \mathcal{H} = 3|\delta|, \mathcal{R} = 0.$$

Uniqueness Theorem.

Any unitary collinear factorization ($\mathcal{R}=0$) is unitarily equivalent to ρ_r .

Implication: A quasigroup admitting $\mathcal{R} = 0$ *must* be a group isotope.

Collinearity Dominance Conjecture.

Misalignment penalty \mathcal{R} dominates \mathcal{B} . This ensures optimization stays near $\mathcal{R}=0$, ruling out spurious minima.

Under the conjecture:

Global minimum for Group isotopes.

$$\mathcal{H}_{\min}(\delta) = \mathcal{H}(\Theta^*) = 3|\delta|$$

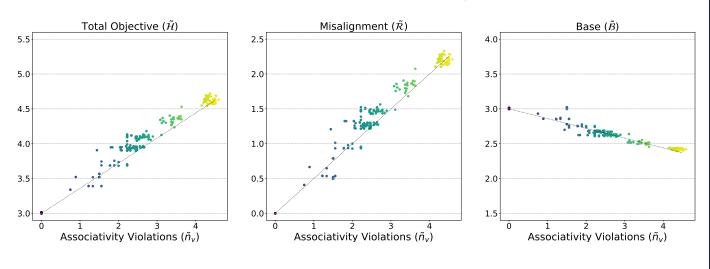
 Θ^* is given by unitary collinear factors: ρ_r .

Non-group isotopes must incur strictly higher loss:

 $\mathcal{H}_{\min}(\mathsf{Non}\text{-}\mathsf{Group}) > \mathcal{H}_{\min}(\mathsf{Group})$

Empirical Verification

We optimized \mathcal{H} for Latin-squares of orders $n \in \{5, 6, 7, 8\}$. We compare the minimum loss against the **Associativity Violation** n_v .



Linear Scaling Laws.

The results reveal a precise tradeoff:

- ► Misalignment Penalty:
 - $\mathcal{R}_{\min} \approx 0.50 \cdot n_v$.
- ▶ Rank "Savings" (Right): \mathcal{B} decreases with non-associativity, but only by $\mathcal{B}_{\min} \approx 3|\delta| 0.14 \cdot n_v$.

Collinearity Dominance.

The penalty slope (0.50) strictly dominates the savings (0.14).

$$\mathcal{H}_{\min}(\delta) \approx 3|\delta| + 0.36 \cdot n_v$$
.

This confirms the global landscape forces optimization to **Group Isotopes** ($\tilde{n}_v = 0$).

Conclusion: \mathcal{H} provides a differentiable proxy for groupness (associativity violation).

Takeaways & Outlook

1. Novel Inductive Bias: Unitarity.

Standard DL models exhibit *Low-Rank* bias (interpolation). In contrast, HyperCube actively **maximizes rank** to achieve unitarity and enables **discrete structure discovery** beyond the limits of interpolation.

2. Mechanism of Discovery.

 ${\cal H}$ decomposes into geometric forces — Collinearity + Rank Maximization — that structurally mandate Group theory.

3. Differentiable Associativity.

 ${\cal H}$ serves as a differentiable proxy for associativity, allowing gradient-based discovery of discrete symmetries.

Future Work.

Analytic proof of the Dominance Conjecture and extension to partial observation (Tensor Completion).

NeuReps Workshop @ NeurIPS 2025