
A Background on unbalanced optimal transport

Following Liero et al. [2015], this section reviews and generalizes the homogeneous and conic
formulations of unbalanced optimal transport. These three formulations are equal in the convex
setting of UOT. Our relaxed divergence UGW and conic distance CGW defined in Section 2 build
upon those constructions but are not anymore equal due to the non-convexity of GW problems.

A.1 Homogeneous formulation

To ease the description of the homogeneous formulation, we develop and refactor the Csiszàr
divergence terms of (1) in a form analog to Lemma 1. It reads

UW(µ, ν)q = inf
π∈M(X2)

∫
Lλ(d(x,y))(f(x), g(y))dπ(x, y) + ψ′∞(|µ⊥|+ |ν⊥|), (8)

where Lc(r, s) , c+ rϕ(1/r) + sϕ(1/s), |µ⊥| , µ⊥(X) and (f , dµ
dπ1

, g , dν
dπ2

) are the densities
of the Lebesgue decomposition of (µ, ν) with respect to (π1, π2) and

µ = fπ1 + µ⊥ and ν = gπ2 + ν⊥. (9)
Such form is helpful to explicit the terms of pure mass creation/destruction (|µ⊥| + |ν⊥|) and
reinterpret the integral under π as a transport term with a new cost Lλ(d).

Then the authors of Liero et al. [2015] define the homogeneous formulations HUW as

HUW(µ, ν)q , inf
π∈M(X2)

∫
Hλ(d(x,y))(f(x), g(y))dπ(x, y) + ψ′∞(|µ⊥|+ |ν⊥|), (10)

where the 1-homogeneous function Hc is the perspective transform of Lc
Hc(r, s) , inf

θ≥0
θ
(
c+ ψ( rθ ) + ψ( sθ )

)
= inf
θ≥0

θLc(
r
θ ,

s
θ ). (11)

By definition one has Lc ≥ Hc, though after optimization one has UW = HUW.

A.2 Cone sets, cone distances and explicit settings

The conic formulation detailed in Section A.3 is obtained by performing the optimal transport on
the cone set C[X] , X × R+/(X × {0}), where the extra coordinate accounts for the mass of the
particle. Coordinates of the form (x, 0) are merged into a single point called the apex of the cone,
noted 0X . In the sequel, points of X × R+ are noted (x, r) and those of C[X] are noted [x, r] to
emphasize the quotient operation at the apex.

For a pair (p, q) ∈ R+, we define for any [x, r], [y, s] ∈ C[X]2

DC[X]([x, r], [y, s])
q , Hλ(d(x,y))(r

p, sp). (12)
In general DC[X] is not a distance, but it is always definite as proved by the following result described
in De Ponti [2019].
Proposition 5. Assume that d is definite, λ−1({0}) = {0} and ϕ−1({0}) = {1}. Assume also that
for any (r, s), there always exists θ∗ such that Hc(r, s) = θ∗Lc(

r
θ∗ ,

s
θ∗ ). Then DC[X] is definite on

C[X], i.e. DC[X]([x, r], [y, s]) = 0 if and only if (r = s = 0) or (r = s and x = y).

Proof. Assume DC[X]([x, r], [y, s]) = 0, and write θ∗ such that

DC[X]([x, r], [y, s])
q = θ∗Lc(

rp

θ∗ ,
sp

θ∗ ) = θ∗λ(d(x, y)) + rpϕ( θ
∗

rp ) + sϕ( θ
∗

sp ),

where the last line is given by the definition of reverse entropy. There are two cases. If θ∗ > 0,
since all terms are positive, there are all equal to 0. By definiteness of d it yields x = y and because
ϕ−1({0}) = {1} we have rp = sp = θ∗ and r = s. If θ∗ = 0 then DC[X]([x, r], [y, s])

q =

ϕ(0)(rp + sp). The assumption ϕ−1({0}) = {1} implies ϕ(0) > 0, thus necessarily r = s = 0.

The functionHc can be computed in closed form for a certain number of common entropies ϕ, and we
refer to Liero et al. [2015, Section 5] for an overview. Of particular interest are those ϕ where DC[X]

is a distance, which necessitates a careful choice of λ, p and q. We now detail three particular settings
where this is the case. In each setting we provide (Dϕ, λ, p, q) and its associated cone distance DC[X].
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Gaussian Hellinger distance It corresponds to

Dϕ = KL, λ(t) = t2 and q = p = 2,

DC[X]([x, r], [y, s])
2 = r2 + s2 − 2rse−d(x,y)/2,

in which case it is proved in Liero et al. [2015] that DC[X] is a cone distance.

Hellinger-Kantorovich / Wasserstein-Fisher-Rao distance It reads

Dϕ = KL, λ(t) = − log cos2(t ∧ π
2 ) and q = p = 2,

DC[X]([x, r], [y, s])
2 = r2 + s2 − 2rs cos(π2 ∧ d(x, y)),

in which case it is proved in Burago et al. [2001] that DC[X] is a cone distance.

The weight λ(t) = − log cos2(t ∧ π
2 ), which might seem more peculiar, is in fact the penalty that

makes unbalanced OT a length space induced by the Gaussian-Hellinger distance (if the ground metric
d is itself geodesic), as proved in Liero et al. [2016], Chizat et al. [2018c]. This weight introduces a
cut-off, because λ(d(x, y)) = +∞ if d(x, y) > π/2. There is no transport between points too far
from each other. The choice of π/2 is arbitrary, and can be modified by scaling λ 7→ λ(·/s) for some
cutoff s.

Partial optimal transport It corresponds to

Dϕ = TV, λ(t) = tq and q ≥ 1 and p = 1,

DC[X]([x, r], [y, s])
q = r + s− (r ∧ s)(2− d(x, y)q)+,

in which case it is proved in Chizat et al. [2018a] thatDC[X] is a cone distance. The case Dϕ = TV is
equivalent to partial unbalanced OT, which produces discontinuities (because of the non-smoothness
of the divergence) between regions of the supports which are being transported and regions where
mass is being destroyed/created. Note that Liero et al. [2015] do not mention that this DC[X] defines
a distance, so this result is new to the best of our knowledge, although it can be proved without a
conic lifting that partial OT defines a distance as explained in Chizat et al. [2018a].

A.3 Conic formulation of UW

The last formulation reinterprets UW as an OT problem on the cone, with the addition of two linear
constraints. Informally speaking, Hc becomes DC[X], the term (|µ⊥|+ |ν⊥|) is taken into account
by the constraints (14) below, and the variables (f, g) are replaced by (rp, sp). It reads

CUW(µ, ν)q , inf
α∈Up(µ,ν)

∫
DC[X]([x, r], [y, s]))

qdα([x, r], [y, s]), (13)

where the constraint set Up(µ, ν) is defined as

Up(µ, ν) ,

{
α ∈M+(C[X]2) :

∫
R+

rpdα1(·, r) = µ,

∫
R+

spdα2(·, s) = ν

}
. (14)

Thus CUW consists in minimizing the Wasserstein distance WDC[X]
(α1, α2) on the cone

(C[X],DC[X]). The additional constraints on (α1, α2) mean that the lift of the mass on the cone
must be consistent with the total mass of (µ, ν). When DC[X] is a distance, CUW inherits the metric
properties of WDC[X]

. Our theoretical results rely on an analog construction for GW.

The following proposition states the equality of the three formulations and recapitulates its main
properties. The proofs are detailed in Liero et al. [2015].
Proposition 6 (From Liero et al. [2015]). One has UW = HUW = CUW, which are symmetric,
positive and definite. Furthermore, if (X, dX) and (C[X],DC[X]) are metric spaces withX separable,
thenM+(X) endowed with CUW is a metric space.

Proof. The equality UW = HUW is given by Liero et al. [2015, Theorem 5.8], while the equality
HUW = CUW holds thanks to Liero et al. [2015, Theorem 6.7 and Remark 7.5], where the latter
theorem can be straightforwardly generalized to any cone distance built as in Section 2.2.1. Since
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DC[X] is symmetric, positive and definite (see Proposition 3), then so is CUW. Furthermore, if DC[X]

satisfies the triangle inequality, separability of X allows to apply the gluing lemma [Liero et al.,
2015, Corollary 7.14] which generalizes to any exponent p defining Up(µ, ν) and any cone distance
DC[X].
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B UGW formulation and definiteness

We present in this section the proofs of the properties of our divergence UGW. We refer to Section 2
for the definition of the UGW formulation and its related concepts. For conciseness we write
Γ(x, x′, y, y′) = |dX(x, x′)− dY (y, y′)|.
We first start with the existence of minimizers stated in Proposition 1. It illustrates in some sense that
our divergence is well-defined.
Proposition 7 (Existence of minimizers). Assume (X ,Y) to be compact mm-spaces and that we
either have

1. ϕ superlinear, i.e ϕ′∞ =∞

2. λ has compact sublevel sets in R+ and 2ϕ′∞ + inf λ > 0

Then there exists π ∈M+(X × Y ) such that UGW(X ,Y) = L(π).

Proof. We adapt here from Liero et al. [2015, Theorem 3.3]. The functional is lower semi-continuous
as a sum of l.s.c terms. Thus it suffices to have relative compactness of the set of minimizers. Under
either one of the assumptions, coercivity of the functional holds thanks to Jensen’s inequality

L(π) ≥ m(π)2 inf λ(Γ) +m(µ)2ϕ(
m(π)2

m(µ)2
) +m(ν)2ϕ(

m(π)2

m(ν)2
)

≥ m(π)2
[

inf λ(Γ) +
m(µ)2

m(π)2
ϕ(
m(π)2

m(µ)2
) +

m(ν)2

m(π)2
ϕ(
m(π)2

m(ν)2
)
]
.

As m(π)→ +∞ the right hand side converges to 2ϕ′∞ + inf λ > 0, which under either one of the
assumptions yields L(π)→ +∞, hence the coercivity. Thus we can assume there exists some M
such that m(π) < M . Since the spaces are assumed to be compact, the Banach-Alaoglu theorem
holds and gives relative compactness inM+(X × Y ).

Take any sequence of plans πn that approaches UGW(X ,Y) = inf L(π). Compactness gives that
a subsequence πnk

weak* converges to some π∗. Because L is l.s.c, we have L(π∗) ≤ inf L(π),
thus L(π∗) = inf L(π). The existence of such limit reaching the infimum gives the existence of a
minimizer.

Note that this formulation is nonegative and symmetric because the functionalL is also nonegative and
symmetric in its inputs (X ,Y). This formulation allows straightforwardly to prove the definiteness
of UGW.
Proposition 8 (Definiteness of UGW). Assume that ϕ−1({0}) = {1} and λ−1({0}) = {0}. The
following assertions are equivalent:

1. UGW(X ,Y) = 0

2. ∃π ∈ M+(X × Y ) whose marginals are (µ, ν) such that dX(x, x′) = dY (y, y′) for
π ⊗ π-a.e. (x, x′, y, y′) ∈ (X × Y )2.

3. There exists a mm-space (Z, dZ , η) with full support and Borel maps ψX : Z → X and
ψY : Z → Y . such that (ψX)]η = µ, (ψY )]η = ν and dZ = (ψX)]dX = (ψY )]dY

4. There exists a Borel measurable bijection between the measures’ supports ψ : spt(µ) →
spt(ν) with Borel measurable inverse such that ψ]µ = ν and dY = ψ]dX .

Proof. Recall that (2) ⇔ (3) ⇔ (4) from Sturm [2012, Lemma 1.10]. thus it remains to prove
(1)⇔ (2).

If there is such coupling plan π between (µ, ν) then one has π ⊗ π-a.e. that Γ = 0, and all
ϕ-divergences are zero as well, yielding a distance of zero a.e.

Assume now that UGW(X ,Y) = 0, and write π an optimal plan. All terms of L are positive, thus
under our assumptions we have Γ = 0, π1 ⊗ π1 = µ⊗ µ and π2 ⊗ π2 = ν ⊗ ν. Thus we get that π
has marginals (µ, ν) and that dX(x, x′) = dY (y, y′) π ⊗ π-a.e.
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We end with a result on the reformulation of UGW which is the first step to connnect it with the conic
formulation CGW. It is the same proof as in the main body.

Lemma 2. Defining Lc(r, s) , c + rϕ(1/r) + sϕ(1/s), and writing (f , dµ
dπ1

, g , dν
dπ2

) the
Lebesgue densities of (µ, ν) w.r.t. (π1, π2) such that µ = fπ1 + µ⊥ and ν = gπ2 + ν⊥, one has

L(π) =

∫
X2×Y 2

Lλ(Γ)(f ⊗ f, g ⊗ g)dπdπ + ϕ(0)(|(µ⊗ µ)⊥|+ |(ν ⊗ ν)⊥|).

Proof. Using Equation (24), one has

L(π) =

∫
X2×Y 2

λ(Γ)dπdπ + D⊗ϕ (π1|µ) + D⊗ϕ (π2|ν)

=

∫
X2×Y 2

λ(Γ)dπdπ + D⊗ψ (µ|π1) + D⊗ψ (ν|π2)

=

∫
X2×Y 2

λ(Γ)dπdπ +

∫
X2

ψ(f ⊗ f)dπ1dπ1 +

∫
Y 2

ψ(g ⊗ g)dπ2dπ2

+ ϕ(0)(|(µ⊗ µ)⊥|+ |(ν ⊗ ν)⊥|)

=

∫
X2×Y 2

Lλ(Γ)(f ⊗ f, g ⊗ g)dπdπ + ϕ(0)(|(µ⊗ µ)⊥|+ |(ν ⊗ ν)⊥|).

C Conic formulation and metric properties

We present in this section the proofs of the properties mentioned in Section 2. We refer to Section 2
and Appendix A for the definition of the conic formulation and its related concepts.

In this section we frequently use the notion of marginal for neasures. For any sets E,F , we write
P(E) : E × F → E the canonical projection such that for any (x, y) ∈ E × F, P(E)(x, y) = x.
Consider two complete separable mm-spaces X = (X, dX , µ) and Y = (Y, dY , ν). Write π ∈
M+(X × Y ) a coupling plan, and define its marginals by π1 = P

(X)
] π and π2 = P

(Y )
] π. The

definition of the marginals can also be seen by the use of test functions. In the case of π1 it reads for
any test function ξ ∫

ξ(x)dπ1(x) =

∫
ξ(x)dπ(x, y).

C.1 Preliminary results

We present in this section concepts and properties which are necessary for the proof of Theorem 1.
We introduce a dilation operator whose role is to rescale the radial coordinate of a measure with a
given scaling.

Definition 2 (dilations). Consider v([x, r], [y, s]) a Borel measurable scaling function depending
on [x, r], [y, s] ∈ C[X] × C[Y ]. Take a plan α ∈ M+(C[X] × C[Y ]). We define the dilation
Dilv : α 7→ (hv)](v

pα) where

hv([x, r], [y, s]) , ([x, r/w], [y, s/w]),

where w = v([x, r], [y, s]). It reads for any test function ξ∫
ξ([x, r], [y, s])dDilv(α) =

∫
ξ([x, r/w], [y, s/w])wpdα.

The importance of dilations is given by the following lemma.

Lemma 3 (Invariance to dilation). The problem CGW is invariant to dilations, i.e. for any α ∈
Up(µ, ν), we have Dilv(α) ∈ Up(µ, ν) andH(α) = H(Dilv(α)).
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Proof. First we prove the stability of Up(µ, ν) under dilations. Take α ∈ Up(µ, ν). For any test
function ξ defined on X we have∫

ξ(x)rpdDilv(α) =

∫
ξ(x)(

r

v
)p.vpd(α) =

∫
ξ(x)rpdα =

∫
ξ(x)dµ(x).

Similarly we get P(Y )
] (sqDilv(α)) = ν, thus Dilv(α) ∈ Up(µ, ν).

It remains to prove the invariance of the functional. Recall that Dq is p-homogeneous. It yields

H(Dilv(α)) =

∫
D([dX(x, x′), rr′], [dY (y, y′), ss′]))qdDilv(α)dDilv(α)

=

∫
D([dX(x, x′),

r

v
· r
′

v
], [dY (y, y′),

s

v
· s
′

v
]))qvp · vpdαdα

=

∫
1

v2p
D([dX(x, x′), rr′], [dY (y, y′), ss′]))qv2pdαdα

=

∫
D([dX(x, x′), rr′], [dY (y, y′), ss′]))qdαdα

= H(α)

Both the functional and the constraint set are invariant, thus the whole CGW problem is invariant to
dilations.

The above lemma allows to normalize the plan such that one of its marginal is fixed to some value.
Fixing a marginal allows to generalize the gluing lemma which is a key ingredient of the triangle
inequality in optimal transport.
Lemma 4 (Normalization lemma). Assume there existsα ∈ Up(µ, ν) such that CGW(X ,Y) = H(α).
Then there exists α̃ such that α̃ ∈ Up(µ, ν) and CGW(X ,Y) = H(α̃) and whose marginal on C[Y ]

is νC[Y ] = P(C[Y ])]α̃ = δ0Y
+ p](ν ⊗ δ1), where p is the canonical injection from Y × R+ to C[Y ].

Proof. The proof is exactly the same as Liero et al. [2015, Lemma 7.10] and is included for com-
pleteness. Take an optimal plan α. Because the functional and the constraints are homogeneous in
(r, s), the plan α̂ = α+ δ0X

⊗ δ0Y
verifies α̂ ∈ Up(µ, ν) andH(α̂) = H(α). Indeed, because of this

homogeneity the contribution δ0X
⊗ δ0Y

has (r, s) = (0, 0) which has thus no impact.

Considering α̂ instead of α allows to assume without loss of generality that the transport plan charges
the apex, i.e. setting

S = {[x, r], [y, s] ∈ C[X]× C[Y ], [y, s] = 0Y }, (15)

one has ωY , α̂(S) ≥ 1. Then we can define the following scaling

v([x, r], [y, s]) =

{
s if s > 0

ω
−1/q
Y otherwise.

(16)

We prove now that Dilv(α̂) has the desired marginal on C(Y ) by considering test functions ξ([y, s]).
We separate the integral into two parts with the set S, and write α̂ = α̂|S + α̂|Sc their restrictions to
S and Sc respectively. It reads∫

ξ([y, s])dDilv(α̂) =

∫
ξ([y, s/v])vpdα̂

=

∫
ξ([y, s/v])vpd α̂|S +

∫
ξ([y, s/v])vpd α̂|Sc

=

∫
ξ(0Y )ω−1

Y d α̂|S +

∫
ξ([y, s/s])spd α̂|Sc

= ξ(0Y ) · ωY · ω−1
Y +

∫
ξ([y, 1])spdα̂

= ξ(0Y ) +

∫
ξ(p(y, s))d(ν(y)⊗ δ1(s))

=

∫
ξ([y, s])d(δ0Y

+ p](ν ⊗ δ1)),
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which is the formula of the desired marginal on C[Y ]. Since α̂ ∈ Up(µ, ν), its dilation is also in
Up(µ, ν), andH(α) = H(α̂) = H(Dilv(α̂)).

C.1.1 Proof of Theorem 1

Non-negativity and symmetry hold since H is a sum of non-negative symmetric terms. To prove
Definiteness, assume CGW(X ,Y) = 0, and write α an optimal plan. We have α ⊗ α-a.e. that
dX(x, x′) = dY (y, y′) and rr′ = ss′ because D is definite (see Proposition 3). Thanks to the
completeness of (X ,Y) and a result from Sturm [2012, Lemma 1.10], such property implies the
existence of a Borel isometric bijection with Borel inverse between the supports of the measures
ψ : Supp(µ) → Supp(ν), where Supp denotes the support. The bijection ψ verifies dX(x, x′) =
dY (ψ(x), ψ(x′)). To prove X ∼ Y it remains to prove ψ]µ = ν. Due to the density of continuous
functions of the form ξ(x)ξ(x′), the constraints of Up(µ, ν) are equivalent to

∫
R+

(rr′)pdα1(·, r)dα1(·, r′) = µ⊗ µ,
∫
R+

(ss′)pdα2(·, s)dα2(·, s′) = ν ⊗ ν.

Take a continuous test function ξ defined on Supp(ν)2. Writing y = ψ(x) and y′ = ψ(x′), one has

∫
ξ(y, y′)dνdν =

∫
ξ(y, y′)(ss′)pdαdα

=

∫
ξ(ψ(x), ψ(x′))(ss′)pdαdα

=

∫
ξ(ψ(x), ψ(x′))(rr′)pdαdα

=

∫
ξ(ψ(x), ψ(x′))dµdµ

=

∫
ξ̃(x, x′)dψ]µdψ]µ.

Since ψ is a bijection, there is a bijection between continuous functions ξ of Supp(ν)2 and functions
ξ̃ of Supp(µ)2. Thus we obtain ν = ψ]µ and we have X ∼ Y .

It remains to prove the triangle inequality. Assume now that D satisfies it. Given three mm-spaces
(X ,Y,Z) respectively equipped with measures (µ, ν, η), consider α, β which are optimal plans for
CGW(X ,Y) and CGW(Y,Z). Using Lemma 4 to both α and β, we can consider measures (ᾱ, β̄)
which are also optimal and have a common marginal ν̄ on C[Y ]. Thanks to this common marginal
and the separability of (X,Y, Z), the standard gluing lemma [Villani, 2003, Lemma 7.6] applies and
yields a glued plan γ ∈M+(C[X]× C[Y ]× C[Z]) whose respective marginals on C[X]× C[Y ] and
C[Y ] × C[Z] are (ᾱ, β̄). Furthermore, the marginal γ̄ of γ on C[X] × C[Z] is in Up(µ, η). Indeed,
(γ̄, ᾱ) have the same marginal on C[X] and same for (γ̄, β̄) on C[Z], hence this property. Write
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dX = dX(x, x′) for sake of conciseness (and similarly for Y, Z). The calculation reads

CGW(X ,Z)
1
q (17)

≤
(∫
D([dX , rr

′], [dZ , tt
′])qdγ̄([x, r], [z, t])dγ̄([x′, r′], [z′, t′])

) 1
q (18)

≤
(∫
D([dX , rr

′], [dZ , tt
′])qdγ([x, r], [y, s], [z, t])dγ([x′, r′], [y′, s′], [z′, t′])

) 1
q (19)

≤
(∫

(D([dX , rr
′], [dY , ss

′]) +D([dY , ss
′], [dZ , tt

′]))qdγdγ
) 1
q (20)

≤
(∫
D([dX , rr

′], [dY , ss
′])qdγdγ

) 1
q

+
(∫
D([dY , ss

′], [dZ , tt
′])qdγdγ

) 1
q (21)

≤
(∫
D([dX , rr

′], [dY , ss
′])qdᾱ([x, r], [y, s])dᾱ([x′, r′], [y′, s′])

) 1
q

+
(∫
D([dY , ss

′], [dZ , tt
′])qdβ̄([y, s], [z, t])dβ̄([y′, s′], [z′, t′])

) 1
q (22)

≤ CGW(X ,Y)
1
q + CGW(Y,Z)

1
q . (23)

Since γ̄ ∈ Up(µ, η), it is thus suboptimal, which yields Equation (18). Because γ̄ is the marginal of γ
we get Equation (19). Equations (20) and (21) are respectively obtained by the triangle and Minkowski
inequalities, which hold because D which is a distance. Equation (22) is the marginalization of γ,
and Equation (23) is given by the optimality of (ᾱ, β̄), which ends the proof of the triangle inequality.

C.1.2 Proof of the inequality between UGW and CGW

The proof consists in considering an optimal plan π for UGW, building a lift α of this plan into the
cone such that L(π) ≥ H(α), and prove that α is admissible for the program CGW, thus suboptimal.

Using Equation (9), we have

µ⊗ µ = (f ⊗ f)π1 ⊗ π1 + (µ⊗ µ)⊥,

(µ⊗ µ)⊥ = µ⊥ ⊗ (fπ1) + (fπ1)⊗ µ⊥ + µ⊥ ⊗ µ⊥,
ν ⊗ ν = (g ⊗ g)π2 ⊗ π2 + (ν ⊗ ν)⊥,

(ν ⊗ ν)⊥ = ν⊥ ⊗ (gπ2) + (gπ2)⊗ ν⊥ + ν⊥ ⊗ ν⊥.

(24)

Recall that the canonic injection p reads p(x, r) = [x, r]. Based on the above Lebesgue decomposition,
we define the conic plan

α = (p(x, f(x)
1
p ), p(y, g(y)

1
p ))]π(x, y) + δ0X

⊗ p][ν
⊥ ⊗ δ1] + p][µ

⊥ ⊗ δ1]⊗ δ0Y
. (25)

We have that α ∈ Up(µ, ν). Indeed for the first marginal (and similarly for the second) we have for
any test function ξ(x)∫

ξ(x)(r)pdα =

∫
ξ(x)f(x)dπ1(x) + 0 +

∫
ξ(x)(1)pdµ⊥(x)

=

∫
ξ(x)d(f(x)π1 + µ⊥)

=

∫
ξ(x)dµ(x).

We define θ∗ = θ∗c (r, s) the parameter which verifies Hc(r, s) = θ∗Lc(r/θ
∗, s/θ∗). We restrict

α ⊗ α to the set S = {θ∗λ(Γ)((rr
′)p, (ss′)p) > 0}. By construction, θ∗c (r, s) is 1-homogeneous in

(r, s). Thus on S we necessarily have r, r′, s, s′ > 0. It yields

α⊗ α|S = (p(x, f(x)
1
p ), p(y, g(y)

1
p ), p(x′, f(x′)

1
p ), p(y′, g(y′)

1
p ))](π ⊗ π).
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Concerning the orthogonal part of the decomposition, note that whenever θ∗ = 0, due to the definition
of H the cone distance reads

D([x, r], [y, s])q = ϕ(0)(rp + sp). (26)

It geometrically means that the shortest path between [x, r] and [y, s] must pass via the apex, which
corresponds to a pure mass creation/destruction regime.

Furthermore we have that

|(µ⊗ µ)⊥| =
∫

(r · r′)pd (α⊗ α)|Sc ,

|(ν ⊗ ν)⊥| =
∫

(s · s′)pd (α⊗ α)|Sc .

Indeed, thanks to Equation (25) we have for the first marginal that

|(µ⊗ µ)⊥| =
(
µ⊥ ⊗ (fπ1) + (fπ1)⊗ µ⊥ + µ⊥ ⊗ µ⊥

)
(X2)

=

∫
(rr′)pdp][µ

⊥ ⊗ δ1]dp(x′, f(x′)
1
p )]π1(x′)

+

∫
(rr′)pdp(x, f(x)

1
p )]π1(x)dp][µ

⊥ ⊗ δ1]

+

∫
(rr′)pdp][µ

⊥ ⊗ δ1]dp][µ
⊥ ⊗ δ1]

=

∫
(rr′)pd (α⊗ α)|Sc .

Note that the last equality holds because each term of α ⊗ α involving a measure δ0X
cancels out

when integrated against (rr′)p.

Eventually the computation gives (thanks to Lemma 1)

L(π) =

∫
X2×Y 2

Lλ(Γ)(f ⊗ f, g ⊗ g)dπdπ + ϕ(0)(|(µ⊗ µ)⊥|+ |(ν ⊗ ν)⊥|)

≥
∫
Hλ(Γ)(f ⊗ f, g ⊗ g)dπdπ + ϕ(0)(|(µ⊗ µ)⊥|+ |(ν ⊗ ν)⊥|)

≥
∫
D([dX(x, x′), (f ⊗ f)

1
p ], [dY (y, y′), (g ⊗ g)

1
p ])qdπdπ

+

∫
ϕ(0)(rr′)pd (α⊗ α)|Sc +

∫
ϕ(0)(ss′)pd (α⊗ α)|Sc

≥
∫
D([dX(x, x′), rr′], [dY (y, y′), ss′])qd (α⊗ α)|S

+

∫
ϕ(0)((rr′)p + (ss′)p)d (α⊗ α)|Sc

≥
∫
D([dX(x, x′), rr′], [dY (y, y′), ss′])qdαdα

≥ H(α).

Thus we have UGW(X ,Y) = L(π) ≥ H(α) ≥ CGW(X ,Y).
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D Optimization, algorithms and formulas

We present in this section the important results of Section 3. We start with Theorem 2 stating that
for a wide range of quadratic programs, performing a bi-convex relaxation yields the same objective
value as the original program. We prove its application in Theorem 3. We provide a decomposition
property of KL⊗, followed by the proof of Proposition 4, and a description of the algorithm in a
discrete setting, where computationnaly implementable formulas are provided.

D.1 Proof of Theorem 2

Proof. The function F is the symmetrization of L, so that F(π, π) = L(π). By the hypothesis on
L, the mimimum values of the functions (if it exists) are finite. The two following inequalities are
obtained by optimality of (π∗, γ∗),

{
F(π∗, γ∗) ≤ F(π∗, π∗)

F(π∗, γ∗) ≤ F(γ∗, γ∗) .
(27)

Note that the hypotheses imply that F(π∗, π∗) and F(γ∗, γ∗) are both finite. Combining these two
inequalities leads to F(π∗, π∗) + F(γ∗, γ∗)− 2F(π∗, γ∗) ≥ 0 , which implies

1

2
〈π∗ − γ∗, k(π∗ − γ∗)〉 ≥ 0 , (28)

since the separable parts in F cancel. Since k is negative, we also have the converse inequality, thus
1
2 〈π∗ − γ∗, k(π∗ − γ∗)〉 = 0. Therefore, we deduce when k is definite that π∗ = γ∗.

We now treat the case when k is not definite. In this case, we only have 1
2 〈π∗ − γ∗, k(π∗ − γ∗)〉 = 0

which implies that π∗ − γ∗ ∈ Ker(k) since k is non positive. The first inequality in (27) implies
f(π∗) ≤ f(γ∗) and by symmetry f(π∗) = f(γ∗) and as a conclusion F(π∗, π∗) = F(π∗, γ∗) =
F(γ∗, γ∗).

The last case follows from the observation that on the segment [π∗, γ∗] ⊂ C, the quadratic part of F
is constant. Indeed one has for t ∈ [0, 1], for z = t(π∗ − γ∗) + γ∗ one has

〈z, k(z)〉 = t2〈(π∗ − γ∗), k(π∗ − γ∗)〉+ 2t〈γ∗, k(π∗ − γ∗)〉+ 〈γ∗, k(γ∗)〉 = 〈γ∗, k(γ∗)〉,

since π∗ − γ∗ ∈ Ker(k). Thus minimizing F on [π∗, γ∗] is reduced to the minimization of f on this
segment. By the above remark, f(π∗) = f(γ∗) which implies π∗ = γ∗ by strict convexity.

D.2 Properties of the quadratic KL divergence

We present in this section an additional property on the quadratic-KL divergence which allows
to reduce the computational burden to evaluate it by involving the computation of a standard KL
divergence.

Proposition 9. For any measures (µ, ν) ∈M+(X ), one has

KL(µ⊗ ν|α⊗ β) = m(ν)KL(µ|α) +m(µ)KL(ν|β)

+ (m(µ)−m(α))(m(ν)−m(β)).
(29)

In particular,

KL(µ⊗ µ|ν ⊗ ν) = 2m(µ)KL(µ|ν) + (m(µ)−m(ν))2. (30)
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Proof. Assuming KL(µ⊗ ν|α⊗ β) to be finite, one has µ = fα and ν = gβ. It reads

KL(µ⊗ ν|α⊗ β) =

∫
log(f ⊗ g)dµdν −m(µ)m(ν) +m(α)m(β)

= m(ν)

∫
log(f)dµ+m(µ)

∫
log(g)dν

−m(µ)m(ν) +m(α)m(β)

= m(ν)
[
KL(µ|α) +m(µ)−m(α)

]
+m(µ)

[
KL(ν|β) +m(ν)−m(β)

]
−m(µ)m(ν) +m(α)m(β)

= m(ν)KL(µ|α) +m(µ)KL(ν|β)

+m(µ)m(ν)−m(ν)m(α)−m(µ)m(β) +m(α)m(β)

= m(ν)KL(µ|α) +m(µ)KL(ν|β)

+ (m(µ)−m(α))(m(ν)−m(β)).

In the Balanced setting, with (µ, ν) probabilities, the regularization reads KL⊗(π|µ ⊗ ν) =
2KL(π|µ ⊗ ν). Thus (up to a factor 2) we retrieve as a particular case the setting of Peyré et al.
[2016].

D.3 Proof of Proposition 4

We now prove Proposition 4 which applies the above result.

Proposition 10. For a fixed γ, the optimal π ∈ arg min
π
F(π, γ) + εKL(π ⊗ γ|(µ ⊗ ν)⊗2) is the

solution of min
π

∫
cεγ(x, y)dπ(x, y) + ρm(γ)KL(π1|µ) + ρm(γ)KL(π2|ν) + εm(γ)KL(π|µ⊗ ν),

where m(γ) , γ(X × Y ) is the total mass of γ, and where we define the cost and weight associated
to γ as

cεγ(x, y) ,
∫
λ(Γ(x, ·, y, ·))dγ + ρ

∫
log(

dγ1

dµ
)dγ1 + ρ

∫
log(

dγ2

dν
)dγ2 + ε

∫
log(

dγ

dµdν
)dγ.

Proof. First note that F(γ, π) = F(π, γ) so that minimizing with the first or the second argument
gives the same solution. Setting γ to be fixed, the rest follows from the factorisation

KL(π1 ⊗ γ1|µ⊗ µ) = m(γ)KL(π1|µ) +m(π)KL(γ1|µ) + (m(γ)−m(µ))(m(π)−m(µ))

= m(π)
[
KL(γ1|µ) +m(γ)−m(µ)

]
+m(γ)KL(π1|µ)−m(γ)m(µ)

= m(π)

∫
log(

dγ1

dµ
)dγ1 +m(γ)KL(π1|µ)−m(γ)m(µ)

=

∫ (∫
log(

dγ1

dµ
)dγ1

)
dπ +m(γ)KL(π1|µ)−m(γ)m(µ),

and also from KL(π1|µ) =
∫

log(dγ1
dµ )dγ1 − (m(γ) −m(µ)). Similar formulas hold for (π2, γ2)

and (π, γ). Summing all KL terms yields the expression for cεγ .

D.4 Discrete setting and formulas

In order to implement those algorithms, one consider discrete mm-spaces X = (xi)
n
i=1 and Y =

(yj)
m
j=1, endowed with discrete measures µ =

∑
i µiδxi and ν =

∑
j νjδyj , where µi, νj ≥ 0. The

distance matrices are DX
i,i′ , dX(xi, xi′) and DX

j,j′ , dX(yj , yj′). Transport plans are thus also
discrete π =

∑
i,j πi,jδ(xi,yj).
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Algorithm 2 – UGW(X , Y , ρ, ε) in discrete form
Input: mm-spaces X = (DX

i,j , (µi)i) and Y = (DY
i,j , (νj)j), relaxation ρ, regularization ε

Output: approximation (π, γ) minimizing 6

1: Initialize matrix πi,j = γi,j = µiνj/
√

(
∑
i µi)(

∑
j νj), vector g(s=0)

j = 0.
2: while π has not converged do
3: Update π ← γ
4: Define m(π)←

∑
i,j πi,j , ρ̃← m(π)ρ, ε̃← m(π)ε

5: Define c← ComputeCost(X , Y , π, ρ, ε)
6: while (f, g) has not converged do
7: f ← − ε̃ρ̃

ε̃+ρ̃ log
[∑

j exp
(
(gj − ci,j)/ε̃+ log νj

)]
8: g ← − ε̃ρ̃

ε̃+ρ̃ log
[∑

i exp
(
(fi − ci,j)/ε̃+ log µi

)]
9: end while

10: Update γi,j ← exp
[
(fi + gj − ci,j)/ε̃

]
µiνj

11: Rescale γ ←
√
m(π)/m(γ)γ

12: end while
13: Return (π, γ).

The functional L now reads in this discrete setting∫
(dX(x, x′)− dY (y, y′))2dπ(x, y)dπ(x′, y′) =

∑
i,j,k,`

(DX
i,j −DY

k,`)
2πi,kπj,`,

and KL(π1 ⊗ π1|µ⊗ µ) =
∑
i,j

log
(π1,iπ1,j

µiµj

)
π1,iπ1,j −

∑
i,j

π1,iπ1,j +
∑
i,j

µiµj

= 2m(π)
∑
i

log
(π1,i

µi

)
π1,i −m(π)2 +m(µ)2,

where we define the marginals π1,k ,
∑
j πk,j , π2,` ,

∑
i πi,` and m(π) =

∑
i,j πi,j .

When one runs the stabilized implementation of Sinkhorn’s iterations with a ground cost Ci,j =
C(xi, yj) between the points, it is necessary to use a Log-Sum-Exp reduction which reads

fi ← −
ερ

ε+ ρ
LSEj

[
(gj − Ci,j)/ε+ log(µj)

]
(31)

where LSEj is a reduction performed on the index j. It reads

LSEj(Ci,j) , log
(∑

j

exp(Ci,j −max
k

Ci,k)
)

+ max
k

Ci,k, (32)

where the logarithm and exponential are pointwise operations.

We also provide an algorithm that computes the cost cεπ defined in Proposition (10). We focus on the
case Dϕ = ρKL and λ(t) = t2 which is computable with complexity O(n3) as shown in Peyré et al.
[2016]. Indeed, note that one has∫

(dX(x, x′)− dY (y, y′))2dπ(x′, y′) =

∫
dX(x, x′)2dπ1(x′) +

∫
dY (y, y′)2dπ2(y′)

− 2

∫
dX(x, x′)dY (y, y′)dπ(x′, y′).
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Algorithm 3 – ComputeCost(X , Y , π, ρ, ε) in discrete form
Input: mm-spaces X = (DX

i,j , (µi)i) and Y = (DY
k,`, (νj)j), transport matrix (πj,k)j,k, relaxation

ρ, regularization ε
Output: cost cεπ defined in Proposition 10

1: Compute π1,j ←
∑
k πj,k and π2,k ←

∑
j πj,k {π1 = π1 and π2 = π>1}

2: Compute Ai ←
∑
j(D

X
i,j)

2π1,j {A = (DX)◦2π1}
3: Compute B` ←

∑
k(DY

k,`)
2π2,k {B = (DY )◦2π2}

4: Compute Ci,` ←
∑
j D

X
i,j

(∑
kD

Y
k,`πj,k

)
{C = DXπDY }

5: Compute E ← ρ
∑
j log

(π1,j

µj

)
π1,j + ρ

∑
k log

(π2,k

νk

)
π2,k + ε

∑
j,k log

( πjk

µjνk

)
πj,k

6: Return cεπ,i,` ← Ai +B` − 2Ci,` + E
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E Supplementary experiments

We provide in this section details on Section 4. We start with supplementary synthetic experiments
illustrating various features of UGW. We present our approach to approximate the distance CGW
using a bi-convex relaxation and alternate minimization. We prove the tightness of this relaxation
and provide details on the experiments of Section 3. Then we provide details on the PU learning
experiments.

E.1 Synthetic experiments

Robustness to outlier Figure 4 shows another experiment on a 2-D dataset, using the same display
convention as in Figure 1. It corresponds to the two moons dataset with additional outliers (displayed
in cyan). Decreasing the value of ρ (thus allowing for more mass creation/destruction in place
of transportation) is able to reduce and even remove the influence of the outliers, as expected.
Furthermore, using small values of ρ tends to favor “local structures”, which is a behavior quite
different from UW (1). Indeed, for UW, ρ→ 0 sets to zero all the mass of π outside of the diagonal
(points are not transported), while for UGW, it is rather pairs of points with dissimilar pairwise
distances which cannot be transported together.

GW
ρ =∞

UGW
ρ = 100

UGW
ρ = 10−1

UW
ρ = 10−2

Figure 4: GW and UGW applied to two moons with outliers. A matching using UW is provided to
display how invariance to isometries is encoded in the matching.

Graph matching and comparison with Partial-GW. We now consider two graphs (X,Y )
equipped with their respective geodesic distances. These graphs correspond to points embedded in
R2, and the length of the edges corresponds to their Euclidean length. These two synthetic graphs
are close to be isometric, but differ by addition or modification of small sub-structures. The colors
c(x) are defined on the “source” graph X and are mapped by an optimal plan π on y ∈ Y to a
color 1

π1(y)

∫
X
c(x)dπ(x, y). This allows to visualize the matching induced by GW and UGW for a

varying ρ, as displayed in Figure 5. The graphs for GW should be taken as reference since there is no
mass creation. The POT library [Flamary and Courty, 2017] is used to compute GW.

For large values of ρ, UGW behaves similarly to GW, thus producing irregular matchings which
do not preserve the overall geometry of the shapes. In sharp contrast, for smaller values of ρ (e.g.
ρ = 10−1), some fine scale structures (such as the target’s small circle) are discarded, and UGW is
able to produce a meaningful partial matching of the graphs. For intermediate values (ρ = 100), we
observe that the two branches and the blue cluster of the source are correctly matched to the target,
while for GW the blue points are scattered because of the marginal constraint.

Figure 6 shows a comparison with Partial-GW [Chapel et al., 2020], computed using the POT library.
It is close to UGW with a TV⊗ penalty, since partial OT is equivalent to the use of a TV relaxation
of the marginal. UGW with a KL⊗ penalty is first computed for a given ρ, then the total mass
m of the optimal plan is computed, and is used as a parameter for PGW which imposes this total
mass as a constraint. Figure 5 and 6 display the transportation strategy associated to both methods.
KL-UGW operates smooth transitions between transportation and creation of mass, while PGW
either performs pure transportation or pure destruction/creation of mass. In Figure 6 nodes of the
graphs are removed and thus ignored by the matching. Note also that since PGW is equivalent to
solving GW on sub-graphs, the color distribution of GW and PGW are similar.
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ρ = 0.1 ρ = 1 ρ = 10 GW (ρ =∞)

Figure 5: Comparison of UGW and GW for graph matching.

So
ur

ce
X

Ta
rg

et
Y

m=0.64 m=0.93 m=0.98 GW (m=1)

Figure 6: Comparison of Partial-GW for graph matching. Here m is the budget of transported mass.

Influence of ε. Figures 1, 4, 5 and 6 do not show the influence of ε. This parameter is set of a low
value ε = 10−2 on a domain [0, 1]2 so as to approximate the optimal plan of the unregularized UGW
problem. We present now an experiment on graphs which highlights the impact of (ε, ρ) on the plan
π.

We compare two graphs (X ,Y) displayed Figure 7. The graph X is composed of two communities
of equal size connected with random edges. The graph Y is similar to X , but the communities are
imbalanced and it contains outliers. Moving inside a community costs 1, reaching another community
costs 4 and reaching an outlier 2. We equip the mm-space with uniform weights and shortest path
distance.

We plot in Figure 8 optimal transport plans π for given values of (ε, ρ), including the balanced case
GWε where ρ =∞. The transport matrix has a block structure: the 2 horizontal blocks correspond to
X and its two communities, the 4 vertical blocks corresponds to Y (with, from left to right, the large
blue community, the small red one, then the pink and green outliers). Decreasing ρ results in a more
structured transport matrix: outliers are removed and inter-community matching is avoided. Again,
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Figure 7: Graphs X (left) and Y (right) plotted using networkx.

ε = 8. ε = 3. ε = 1.5 ε = 0.5

ρ
=

1.
ρ

=
5.

ρ
=
∞

Figure 8: Display of the optimal transport plan π. The color scale is common to all plots.

the marginal constraint of GWε makes the plan more sensitive to structural noise (e.g. outliers)
in graphs. Concerning the parameter ε, increasing it creates correlations between pairs of points
whose distortion is of order of

√
ε. Indeed, we see for ε = 3 that correlation between communities

and their outliers appear, even for small ρ. Furthermore, when ε is too large the transport becomes
uninformative, which highlights a crucial trade-off between computational speed and expressiveness
of the transport plan.

E.2 Computation of the CGW distance

In this section we focus on computing the distance CGW (4), which is a quadratic minimization
program with linear constraint. Similar to what is performed with UGW 3, we consider a relaxation
using a tensorized conic plan α⊗ β with α, β ∈ Up(µ, ν). The minimized cost thus reads

H(α, β) ,
∫
D([dX(x, x′), rr′], [dY (y, y′), ss′])q dα([x, r], [y, s])dβ([x′, r′], [y′, s′]). (33)
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Note that for fixed β ∈ Up(µ, ν), the minimization w.r.t. α is a convex linear program with the linear
conic constraint set Up(µ, ν) and with cost

CC(x, r, y, s) ,
∫
D([dX(x, x′), rr′], [dY (y, y′), ss′])q dβ([x′, r′], [y′, s′]). (34)

Since we focus on the numerical implementation of CGW, we consider the setting of Gaussian-
Hellinger distance which computes the distortion with λ(t) = t2, due to a reduced memory and
computation complexity to calculate |dX − dY |2 (see Section 3). In that case the cone distance reads
for a given ρ

D([dX(x, x′), rr′], [dY (y, y′), ss′])2 = ρ
[
(rr′)2 + (ss′)2 − 2rr′ss′ e−|dX−dY |

2/2ρ
]
. (35)

Before focusing on the discretization of this problem to make it computable, we prove that when
|dX − dY |2 is a conditionnaly definite kernel then the above cost is a negative kernel on Up(µ, ν).
Thus Theorem 2 holds.
Proposition 11. Assume that the kernel |dX − dY |2 is conditionnaly negative definite. Then the
cost (35) is a negative definite kernel on Up(µ, ν).

Proof. Take any plan α ∈ Up(µ, ν). Integrating against (rr′)2 or (ss′)2 yields a constant term.
Indeed one has for (rr′)2

∫
(rr′)2dα([x, r], [y, s])dα([x′, r′], [y′, s′]) =

(∫
(r)2dα([x, r], [y, s])

)2

=

(∫
dµ(x)

)2

= m(µ)2.

Thus minimizing w.r.t. (35) is equivalent to minimizing w.r.t. −2rr′ss′ e−|dX−dY |
2/2ρ, which is a

product of positive definite kernels (rr′), (ss′) and e−|dX−dY |
2/2ρ thanks to Berg’s Theorem Berg

et al. [1984] and because we assume the kernel |dX − dY |2 is c.n.d. Due to the extra minus sign we
get that the kernel is negative definite, which ends the proof.

An important point is to implement the constraint set Up(µ, ν) which integrates against radial
coordinates (r, s) ∈ R2

+. Such integration is impossible in practice, but thanks to Liero et al. [2015,
Theorem 7.20], we know that the radius can be restricted to [0, R] where R2 = m(µ)2 +m(ν)2 (up
to a dilation of the plan). Thus we propose to discretize the constraint by sampling regularly the
interval as {lR/L, l ∈ J0, LK}.
We consider discrete mm-spaces as in Section D, i.e. mm-spaces noted as X = (DX

i,j , (µi)i) and
Y = (DY

i,j , (νj)j). Write a conic plan αijkl = α([xi, rk], [yj , sl]). The conic constraints read for
k ∈ J0,KK and l ∈ J0, LK∑

j,k,l

(kR
K

)2

αijkl = µi and
∑
i,k,l

( lR
L

)2

αijkl = νj .

The cost CC (34) is computed via the formula

Cijkl ,
∑

i′,j′,k′,l′

ρ

[
(kRK

k′R
K )2 + ( lRL

l′R
L )2 − 2(kRK

k′R
K

lR
L
l′R
L )e−|D

X
i,i′−D

Y
j,j′ |

2/2ρ

]
αi′j′k′l′ .

Eventually, the whole program solving one step of the alternate minimization algorithm is given
Equation (36). The approximation of CGW is performed by alternatively updating α and CC until the
minimization attains a local minima

min
αijkl

{∑
i,j,k,l

Cijklαijkl s.t.
∑
j,k,l

(kRK )2αijkl = µi and
∑
i,k,l

( lRL )2αijkl = νj
}
. (36)
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Dataset # of samples # of positives Dim. PCA Dim.
*-caltech 1,123 151 surf: 800 / decaf: 4096 surf: 10 / decaf: 40
*-amazon 958 92 surf: 800 / decaf: 4096 surf: 10 / decaf: 40
*-webcam 295 29 surf: 800 / decaf: 4096 surf: 10 / decaf: 40

*-dslr 157 12 surf: 800 / decaf: 4096 surf: 10 / decaf: 40

Table 2: Characteristics of datasets

Details on the experiments of Section 4. One can observe in the above procedure that the memory
complexity of α and CC is prohibitively high to use it in practice, due to the discretization of the
radial coordinate which make the size of both tensors scaling as O(NMKL) where N,M are the
number of samples in the spaces (X ,Y). Thus our experiment are performed considering Euclidean
mm-spaces composed of samples N,M ∈ {2, 3, 5}, and we take K = L = 10. To guarantee as
much as possible that we reach the global minima, we consider 10 random initializations and 10
random permutation matrices P lifted as conic plan by setting α··kl = P for any (k, l). The latter
initialization is assumed to be close to extremal points of the constraint polytope. Since Theorem 2
holds for Euclidean mm-spaces, the optimal plan is also an extremal point of the polytope. To
compare CGW with UGW, we set a solver with a level of entropy ε = 10−3. In Figure 3 we set
ρ = 10−1.

E.3 Details on PU learning experiments

Details on training for PU learning tasks. We present the characteristics of the datasets in Table 2.
The variance of the accuracy results presented in Table 1 is presented in Table 4. The computations
were made on an internal GPU cluster composed of 10 Tesla K80 and 3 Tesla P100. We also detail the
parameters of the numerical solver computing UGW which is the core component of our numerical
experiments.

• The maximum number of iteration to update the plan is set to 3000.
• The tolerance on convergence of π in log-scale is set to 10−5, i.e. the algorithm stops when∥∥log πt+1 − log πt

∥∥
∞ < tol.

• The maximum number of iteration to update the Sinkhorn potentials is set to 3000.
• The tolerance on convergence of (f, g) is set to 10−6, i.e. the algorithm stops when∥∥f t+1 − f t

∥∥
∞ < tol.

Initialization for cross-domain tasks. To initialize UGW when the features are different we
propose to use a UOT solution of a matching between distance histograms which reads

FLB(X ,Y) , min

∫
X×Y

|µ̄?dX− ν̄ ?dY |2dπ+ρKL(π1|µ)+ρKL(π2|ν)+εKL(π|µ⊗ν), (37)

where µ ? dX(x) ,
∫
dX(x, x′)dµ(x′) is the eccentricity, i.e. a histogram of aggregated distances,

and µ̄ = µ/m(µ). In Mémoli [2011] this relaxation is refered as FLB and is a lower bound of GW,
but in our unbalanced setting this program cannot a priori be compared with UGW.

Reducing the number of parameters. In Table 1, the accuracy for UGW is performed by selecting
a pair of parameters (ρ1, ρ2) for each task via a validation protocol detailed Section 4. It is desirable to
reduce the number of parameters, to see if the performance does not significantly decrease, and avoid
overparameterization of the task. We propose in this section two strategies The first case keeps one
pair (ρ1, ρ2) over all tasks. The second case keeps a pair for each pair of domain tasks (i.e. surf↔surf,
decaf↔decaf, surf↔decaf and decaf↔surf) for a total of 8 parameters, which allows to normalize
adaptively each dataset via an adapted choice of parameters (ρ1, ρ2). The validation protocol is
modified since we aggregate accuracies from different tasks. The selected parameters are obtained by
taking the highest mean excess accuracy over all tasks, where the excess is defined by comparing the
accuracy to the case where we only predict false positives. This measure of performance is computed
on the validation folds, and we report the accuracy over the testing folds in Table 3.
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Dataset prior Init (PW) PGW UGW UGW (2 param.) UGW (8 param.)
surf-C→ surf-C 0.1 89.9 84.9 83.9 81.8 83.9
surf-C→ surf-A 0.1 81.8 82.2 83.5 83.1 83.3
surf-C→ surf-W 0.1 81.9 81.3 80.3 80.1 80.4
surf-C→ surf-D 0.1 80.0 81.4 83.2 80.3 83.2
surf-C→ surf-C 0.2 79.7 75.7 75.4 67.5 75.4
surf-C→ surf-A 0.2 65.6 66.0 76.4 74.0 73.0
surf-C→ surf-W 0.2 65.1 64.3 67.3 63.8 64.9

decaf-C→ decaf-C 0.1 93.9 83.0 86.8 84.8 84.8
decaf-C→ decaf-A 0.1 80.1 81.4 85.6 83.7 83.7
decaf-C→ decaf-W 0.1 80.1 82.7 86.1 85.6 85.6
decaf-C→ decaf-D 0.1 80.6 83.8 83.4 83.6 83.6
decaf-C→ decaf-C 0.2 90.6 76.7 80.5 75.7 75.7
decaf-C→ decaf-A 0.2 62.5 68.7 74.7 75.0 75.0
decaf-C→ decaf-W 0.2 65.7 75.9 79.2 80.2 80.2

Dataset prior Init (FLB) PGW UGW UGW (2 param.) UGW (8 param.)
surf-C→ decaf-C 0.1 85.0 85.1 85.6 85.0 85.0
surf-C→ decaf-A 0.1 84.2 87.1 83.6 83.5 83.5
surf-C→ decaf-W 0.1 86.2 88.6 86.8 87.4 87.4
surf-C→ decaf-D 0.1 84.7 91.1 90.7 89.3 89.3
surf-C→ decaf-C 0.2 74.8 75.6 75.9 76.2 76.2
surf-C→ decaf-A 0.2 76.2 87.9 82.4 83.2 83.2
surf-C→ decaf-W 0.2 81.5 88.4 89.9 88.8 88.8
decaf-C→ surf-C 0.1 81.7 81.0 81.1 81.9 82.1
decaf-C→ surf-A 0.1 80.9 81.2 82.4 81.2 82.1
decaf-C→ surf-W 0.1 82.0 81.3 83.5 80.8 80.7
decaf-C→ surf-D 0.1 80.0 80.8 81.5 80.0 81.5
decaf-C→ surf-C 0.2 66.6 63.7 65.2 66.5 67.9
decaf-C→ surf-A 0.2 62.9 62.4 69.3 62.2 68.5
decaf-C→ surf-W 0.2 65.1 61.4 83.3 61.1 65.0

Table 3: Accuracy for all tasks. The left block are domain adaptation experiments with similar
features, where both PGW and UGW are initialised with PW. The right block are domain adaptation
experiments with different features, and the reported init is FLB (see Appendix E) used for UGW.
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Dataset prior Init (PW) PGW UGW UGW (2 param.) UGW (8 param.)
surf-C→ surf-C 0.1 2.05 1.95 2.93 2.14 2.94
surf-C→ surf-A 0.1 1.25 1.89 2.14 2.29 3.33
surf-C→ surf-W 0.1 1.33 1.82 0.73 0.45 0.82
surf-C→ surf-D 0.1 0.00 1.69 2.63 0.73 2.63
surf-C→ surf-C 0.2 2.98 4.66 5.07 2.42 5.07
surf-C→ surf-A 0.2 2.87 3.29 3.59 2.15 9.46
surf-C→ surf-W 0.2 1.95 2.12 9.22 1.82 7.61

decaf-C→ decaf-C 0.1 1.61 2.24 2.46 1.64 1.64
decaf-C→ decaf-A 0.1 0.44 1.91 4.52 2.08 2.08
decaf-C→ decaf-W 0.1 0.44 2.55 1.65 1.90 1.90
decaf-C→ decaf-D 0.1 0.92 1.54 2.06 1.67 1.67
decaf-C→ decaf-C 0.2 2.54 3.59 5.73 2.53 2.54
decaf-C→ decaf-A 0.2 2.09 4.39 7.46 4.52 4.52
decaf-C→ decaf-W 0.2 1.93 3.60 5.89 3.61 3.61

Dataset prior Init (PW) PGW UGW UGW (2 param.) UGW (8 param.)
surf-C→ decaf-C 0.1 2.79 2.64 3.01 2.71 2.71
surf-C→ decaf-A 0.1 2.08 6.50 3.28 2.82 2.82
surf-C→ decaf-W 0.1 1.89 5.63 3.97 3.62 3.62
surf-C→ decaf-D 0.1 1.93 8.09 7.09 7.46 7.46
surf-C→ decaf-C 0.2 2.56 3.32 4.02 3.66 3.66
surf-C→ decaf-A 0.2 3.74 6.61 10.5 8.04 8.04
surf-C→ decaf-W 0.2 2.75 5.82 3.33 3.64 3.64
decaf-C→ surf-C 0.1 1.82 1.61 1.21 1.77 2.29
decaf-C→ surf-A 0.1 1.18 1.94 2.11 1.36 2.10
decaf-C→ surf-W 0.1 1.67 2.03 3.94 1.01 1.17
decaf-C→ surf-D 0.1 0.00 1.60 1.70 0.00 1.70
decaf-C→ surf-C 0.2 3.04 2.92 7.21 3.24 4.08
decaf-C→ surf-A 0.2 1.84 4.54 5.92 2.04 5.19
decaf-C→ surf-W 0.2 2.86 3.23 6.43 1.52 3.76

Table 4: Standard deviation of accuracy for all tasks of Figure 1. The left block are domain adaptation
experiments with similar features, where both PGW and UGW are initialised with PW. The right
block are domain adaptation experiments with different features, and the reported init is FLB (37)
used for UGW.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Due to

the scalability of the method, it might have a limited immediate impact with respect to
individual and societal aspects.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix B

and D.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See supplemen-
tary material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 4 and Appendix E.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See standard deviation table in Appendix E.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix E.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A] Datasets are open source.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

See the supplementary material.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No] The datasets used involve no individual data.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No] The datasets used involve no individual data.
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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