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SEPARATING COMMON FROM SALIENT PATTERNS
WITH CONTRASTIVE REPRESENTATION LEARNING

Robin Louiset1,2∗ Edouard Duchesnay1 Antoine Grigis1 Pietro Gori2

ABSTRACT

Contrastive Analysis is a sub-field of Representation Learning that aims at sep-
arating common factors of variation between two datasets, a background (i.e.,
healthy subjects) and a target (i.e., diseased subjects), from the salient factors of
variation, only present in the target dataset. Despite their relevance, current mod-
els based on Variational Auto-Encoders have shown poor performance in learning
semantically-expressive representations. On the other hand, Contrastive Repre-
sentation Learning has shown tremendous performance leaps in various applica-
tions (classification, clustering, etc.). In this work, we propose to leverage the abil-
ity of Contrastive Learning to learn semantically expressive representations well
adapted for Contrastive Analysis. We reformulate it under the lens of the InfoMax
Principle and identify two Mutual Information terms to maximize and one to mini-
mize. We decompose the first two terms into an Alignment and a Uniformity term,
as commonly done in Contrastive Learning. Then, we motivate a novel Mutual
Information minimization strategy to prevent information leakage between com-
mon and salient distributions. We validate our method, called SepCLR, on three
visual datasets and three medical datasets, specifically conceived to assess the
pattern separation capability in Contrastive Analysis. Code available at https:
//github.com/neurospin-projects/2024_rlouiset_sep_clr

1 INTRODUCTION

In Representation Learning, practitioners estimate parametric models tailored to learn meaningful
and compact representations from high-dimensional data. The objective is to capture relevant fea-
tures to facilitate downstream tasks such as classification, clustering, segmentation, or generation.
Contrastive Representation Learning (CL) has made remarkable progress in learning representations
that encode high-level semantic information about inputs such as images (Zbontar et al. (2021); Wei
et al. (2020); Bachman et al. (2019); He et al. (2020); Goyal et al. (2021); Dufumier et al. (2023);
Barbano et al. (2023a)) and sequential data (Oord et al. (2019); Kong et al. (2019); Tian et al. (2020);
Schneider et al. (2023); Sun et al. (2019)). With a distinct perspective, Contrastive Analysis (CA)
approaches aim to discover the underlying generative factors that 1) distinguish a target dataset
from a background dataset (i.e., salient factors) and that 2) are shared between them (i.e., common
factors). It is usually assumed that target samples comprise additional (or modified) patterns com-
pared to background samples (Abid et al. (2018); Zou et al. (2013; 2022); Severson et al. (2018);
Ruiz et al. (2019); Ge & Zou (2016); Li et al. (2021); Zou et al. (2023)). The ability to distinguish
and separate common from salient generative factors is crucial in various domains. For instance,
in medical imaging, researchers seek to identify pathological patterns in a population of patients
(target) compared to healthy controls (background) Antelmi et al. (2019); Aglinskas et al. (2022).
Contrastive Analysis also concerns other domains like drug research (medicated vs. placebo popu-
lations), surgery (pre-intervention vs. post-intervention groups), time series (signal vs. signal-free
samples), biology and genetics (control vs. characteristic-trait population, Jones et al. (2021) ).
Current Contrastive Analysis methods are based on VAEs (Variational Auto-Encoders) Kingma &
Welling (2014). This choice is particularly suitable for generation and image-level manipulations.
However, as shown in Phuong et al. (2018), VAE can fail to learn meaningful latent representations,
or even learn trivial representations when the decoder is too powerful Chen et al. (2017). Conversely,
Contrastive Learning (CL) methods have demonstrated outstanding results in many domains, such

∗Corresponding author: robin.louiset@gmail.com
1 NeuroSpin, University Paris Saclay, France. 2 LTCI, Télécom Paris, IPParis, France
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as unsupervised learning Chen et al. (2020), deep clustering Li et al. (2020), content vs style identifi-
cation von Kügelgen et al. (2021), background debiasing Wang et al. (2022); Ding et al. (2022), and
multi-modality Yuan et al. (2021). This performance gap might be explained by the following rea-
sons. CL methods produce representations invariant to a set of user-defined image transformations
(translation, zoom, color jittering, etc.), whereas VAEs are highly sensitive to these uninteresting
variability factors. Furthermore, VAEs maximize the log-likelihood, which is only a function of the
marginal distribution of the input data and not of the latent representations. Differently, CL methods
based on the InfoNCE loss implicitly maximize the Mutual Information (MI) between input data
and latent features1. From a representation learning point of view, this makes much sense since
the MI depends on the joint distribution between input data and representation Zhao et al. (2019).
Inspired by these works, we propose to reformulate the Contrastive Analysis problem under the lens
of the well-known InfoMax principle Bell & Sejnowski (1995); Hjelm et al. (2019) and leverage the
representation power of Contrastive Learning (CL) to estimate the MI terms of our newly proposed
Contrastive Analysis setting. We seek to separate the salient patterns of the target dataset from the
shared (common) patterns with the background dataset. Common factors c should be representative
of both target and background datasets (respectively y and x). Thus, we propose to maximize the MI
between x (resp. y) and c. We compute the Entropy and Alignment to estimate the MI, as in Wang
& Isola (2020) and Rodrı́guez-Gálvez et al. (2023). Since salient factors s should only describe
patterns typical of the target data y, we propose to maximize the MI between s and only y. Further-
more, we also add the constraint that background samples’ representations should always be equal
to an informationless vector s′ in the salient space. This objective is close to other recent CA ideas,
such as in Contrastive PCA Abid & Zou (2019) and CA-VAEs, but also to Supervised Anomaly
Detection intuitions, such as in DeepSAD Ruff et al. (2019), where the entropy of anomalies (eq.
target) is maximized, whereas normal samples (eq. backgrounds) are set to a constant vector. We
propose an extension of this salient term when fine-grained target attributes are available and pro-
pose disentangling these attributes within the salient space in a supervised manner. Moreover, to
avoid information leakage between the common c and salient space s, we constrain the MI to be
(exactly) equal to 0. This choice avoids undesirable results since minimizing the MI may bring to
a trivial solution where c and/or s would contain no information. Instead, we propose a method to
estimate and maximize their joint entropy H(c, s) without requiring any assumptions about the form
of its pdf nor a neural network-based approximation. Our contributions are summarized below:

1. We introduce SepCLR, a novel theoretical framework for Contrastive Analysis based on the
InfoMax principle. We identify three Mutual Information terms: a common space term, a
salient space term, and a common-salient independence term.

2. We leverage Contrastive Learning to estimate the common and salient terms. We show
how usual contrastive losses such as InfoNCE and SupCLR can be retrieved from the In-
foMax Principle. Likewise, we derive a novel contrastive method to capture target-specific
variability while canceling background variability in the salient space.

3. To reduce the information leakage between the common and salient spaces, we suggest a
strategy that overcomes the pitfalls of usual Mutual Information Minimization methods.

2 RELATED WORKS

Our work relates to contrastive learning, mutual information, and contrastive analysis.
Contrastive Learning and the InfoMax Principle. Contrastive Learning (CL) hinges on an intu-
ition that dates back to Becker & Hinton (1992). Given an input sample x (image or sequence) and
two different views (i.e., transformations) v and v+ of x that potentially overlap (spatially or sequen-
tially), CL is based on the assumption that v and v+ should share a similar information content. A
parametric encoder fθ is then estimated by maximizing their ”agreement” in the representation space
so that their similarity/dependence is preserved in the embeddings fθ(v) and fθ(v

+). A commonly
used measure of agreement is the Mutual Information between the two views embeddings that is
maximized: θ∗ ←− argmax I(fθ(v); fθ(v

+)), where the choice of fθ imposes some structural con-
straints (i.e., inductive bias). As shown in Tschannen et al. (2019), this objective can be seen as a
lower bound on the InfoMax principle maxθ I(x; fθ(x)) (Linsker (1988), Bell & Sejnowski (1995)).

1as shown in Sec.3.1, the MI between the latent representation of two views, maximized in many recent
methods, is a lower bound of the MI between input data and latent representations.
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Figure 1: SepCLR is trained to identify and separate the salient patterns (color variations) of the
target dataset Y from the common patterns (shape) shared between background X and target dataset
Y . Views (transformations t(·)) of both datasets are fed to two different encoders, one for the
salient space (fθs ) and one for the common space (fθc ). In the hyperspherical common space, C,
embeddings of views of the same image (from both X and Y ) are aligned, while embeddings from
different images are repelled (max I(c;x)+I(c; y)). This enforces C to represent the shared patterns
(shape). In the salient space S, which is a Euclidean space, in order not to capture background
variability (i.e: shape), background embeddings are aligned onto an information-less null vector s’
(DKL(sx||δ(s′)) = 0). Furthermore, embeddings of views of the same image (only from Y ) are
aligned while embeddings from different images are pushed away from each other, and they are all
repelled from s’ (max I(s; y)). This enforces S to capture only the salient patterns of Y (color). To
limit the information leakage between C and S, their MI is constrained to be null, i.e: I(c; s = 0).

Many approaches (Kong et al. (2019); Tian et al. (2020); Bachman et al. (2019); Oord et al. (2019);
Tsai et al. (2020); Barbano et al. (2023b)) propose to maximize I(fθ(v); fθ(v

+)) rather than the
original InfoMax objective since the embeddings f(x) have a lower dimension than the original
samples x and the choice of the transformation for the views gives more flexibility. Wang & Isola
(2020) simplifies the usual CL loss InfoNCE Chen et al. (2020) into an alignment (or reconstruction)
and a uniformity (or entropy) term. While the alignment term trains the encoder to assign similar
representations to positive views, the uniformity term encourages feature distribution to preserve
maximal information i.e.: maximal entropy. Recently, Rodrı́guez-Gálvez et al. (2023) demonstrated
that these terms could be derived from the maximization of I(fθ(V ); fθ(V

+)) and that several clus-
tering methods could be retrieved from this formulation. We build onto these works to introduce the
CL framework required to develop the proposed CA losses.
Contrastive Analysis. Contrastive Analysis (CA) methods are designed to separate salient latent
variables (i.e: patterns that are specific to the target dataset) from common latent variables (i.e:
patterns that are shared between background and target datasets). Recently, contrastive Variational
Auto-Encoders were designed to capture higher-level semantics Abid & Zou (2019); Zou et al.
(2022); Weinberger et al. (2022); Louiset et al. (2023). These methods usually rely on a latent space
split into two parts, common and salient, estimated by two different encoders. To limit information
leakage between common and salient spaces, three types of regularization have been proposed. First,
a usual solution is to introduce an explicit regularization on the salient encoder to minimize the back-
ground information expressivity Abid & Zou (2019); Weinberger et al. (2022); Louiset et al. (2023);
Zou et al. (2022; 2023). This regularization forces the salient vectors of the backgrounds to be close
to s’ (information-less vector, often equal to 0). A second idea, proposed in MM-cVAE Weinberger
et al. (2022), is to match the common space distributions of the target and background samples by
minimizing their Maximum Mean Discrepancy (MMD) Gretton et al. (2012). This regularization
reduces the information that would enable discriminating targets from background samples within
the common space. In cVAE Abid & Zou (2019), and SepVAE Louiset et al. (2023), authors mini-
mize the Mutual Information between the common and salient spaces.
Contrastive Analysis is not disentanglement nor style vs. content separation. CA is not about
disentanglement, which aims to isolate independent variation factors in a single data-set Locatello
et al. (2020); Chen et al. (2018); N et al. (2017). In contrast, CA seeks to separate common from
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target-specific generative factors without requiring the isolation of independent factors usually de-
fined in a supervised manner using external attributes. Furthermore, CA is not about separating style
from content (Kazemi et al. (2019); von Kügelgen et al. (2021)), where content is usually defined as
the invariant part of the latent space, namely the part shared across different views. In contrast, style
refers to the varying part that accounts for the differences between views. Content and style depend
on the chosen semantic-invariant transformations, and they are defined for a single dataset. In CA,
we do not necessarily need transformations or views, and we jointly analyze two different datasets.
Mutual Information Minimization. Mutual Information minimization has gained significant at-
tention in diverse applications such as disentangling Kim & Mnih (2018); N et al. (2017), domain
adaptation Gholami et al. (2018), style/content identification Kazemi et al. (2019), and Informa-
tion Bottleneck compression Alemi (2020). Typically, it can serve as a regularizer to diminish the
dependence between variables. However, computing the value of Mutual Information is hardly pos-
sible in cases where closed forms of density functions, joint or marginal, are unknown. In most
machine learning setups, access is limited to only samples drawn from the joint distribution. To
accommodate, most estimation methods (lower bound, upper bound, and reliable estimators) focus
on sample-based estimation. However, most of these works either require strong assumptions about
one of the distributions (e.g., its form) (Alemi (2020); Poole et al. (2019)) or the introduction of
an independent neural network to approximate a distribution in a sample-based variational manner.
For instance, CLUB Cheng et al. (2020) derives an upper bound of the Mutual Information I(X,Y )
by either assuming the closed-form of p(y|x) or, in its variational form, estimating it with a pa-
rameterized neural network qθ(y|x). Another example concerns Total Correlation methods Louiset
et al. (2023); Kim & Mnih (2018) that leverage the Density Ratio trick Sugiyama et al. (2012);
Nguyen et al. (2010) to estimate the density ratio between the joint distribution and the product of
the marginals. This technique demands optimizing an independent discriminator to discriminate
samples drawn from the joint distribution from those drawn from the product of the marginals.

3 THE INFOMAX PRINCIPLE FOR CONTRASTIVE ANALYSIS

Let X = {xi}NX
i=1 and Y = {yj}NY

j=1 be the background and target data-sets of images respectively.
As it is commonly done in Contrastive Analysis Abid & Zou (2019); Weinberger et al. (2022);
Louiset et al. (2023), we suppose that both xi and yj are drawn i.i.d. from the same conditional
distribution pθ(·|c, s), that is parameterized by unknown parameters θ and that depends on two
latent variables: the common generative factors c ∈ RDc , shared between X and Y , and the salient
(or target-specific) generative factors s ∈ RDs , which are only present in Y and not in X . The
separation between c and s can be considered a weakly supervised learning problem since the only
level of supervision is the population-based label X or Y . The user has no knowledge about the
common and salient generative factors at training (or test) time. By grounding our method on the
InfoMax principle Bell & Sejnowski (1995); Hjelm et al. (2019), and since we want the common
factors c to be representative of both datasets, we propose to maximize the mutual information I
between c and both datasets X and Y . Similarly, we propose maximizing the mutual information
between the salient factors s and only the target samples Y . Since we want the background samples
x to be fully encoded by c, we enforce the salient factors s of x to be always equal to a constant
value s′ (i.e., no information): xi ∼ pθ(x|ci, si = s′). Mathematically, we do that by minimizing
the Kullback–Leibler divergence DKL between p(s|x) and δ(s′), a Dirac Delta distribution centered
at s′. Furthermore, to enforce the separation (i.e., independence) between c and s, we also propose
to use I(c, s) = 0 as a regularization constraint.

Our objective is to separate and infer the common c and salient s factors given the input data X
and Y . We use two probabilistic encoders, fθc and fθs , parameterised by θc and θs, to approximate
the conditional distributions p(c|·) and p(s|·) respectively. The two encoders are shared between
X and Y . Furthermore, as commonly done in recent representation learning papers, we assume to
have multiple views v of each image x (or y) generated via a stochastic augmentation function t:
v = t(·). By denoting c = fθc(v), s = fθs(v), sx = fθs(t(x)), our goal becomes finding the
optimal parameters θ∗ = {θ∗c , θ∗s} that maximize the following cost function:

argmax
θ

λC(I(x; c) + I(y; c))︸ ︷︷ ︸
Common InfoMax

+ λSI(y; s)︸ ︷︷ ︸
Salient InfoMax

s.t. DKL(sx||δ(s′)) = 0︸ ︷︷ ︸
Information-less hyp.

and I(c, s) = 0︸ ︷︷ ︸
Independence hyp.

(1)
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In Sec. 3.1, we show how to estimate the common terms, I(x; c) and I(y; c), via a formulation
similar to the alignment and entropy terms introduced in Wang & Isola (2020). In Sec. 3.2, we take
into account the information-less hypothesis (i.e. background embeddings should always be equal
to an information-less vector in the salient space) to estimate the salient term I(y; s). Ultimately, in
Sec. 3.3, we propose a strategy to enforce the independence hypothesis i.e. I(c; s) = 0, that prevents
information leakage between the common and salient space.

3.1 RETRIEVE INFONCE FROM INFOMAX FOR COMMON SPACE

In this section, we demonstrate that I(x; c) and I(y; c) can be estimated via the multi-view alignment
and uniformity losses inspired by Wang & Isola (2020). Full derivation can be found in Appendix
Sec. A. Let fθC be the common encoder and c ∼ fθC (t(.)) be the common representations. The MI
I(x; c) (same reasoning is also valid for I(y; c)) can be decomposed into:

I(x; c) = −Ex∼px
H(c|x)︸ ︷︷ ︸

Alignment

+H(c)︸ ︷︷ ︸
Entropy

(2)

Entropy (Uniformity). As in Wang & Isola (2020), the entropy can be computed with a non-
parametric estimator described in Ahmad & Lin (1976). To do so, we compute the approximate
density function p̂(ci) with a Kernel Density Estimator as in Parzen (1962); Rosenblatt (1956),
based on views vj (random augmentation of an image with index j) uniformly sampled from both
the target dataset fθc(t(y)) ∼ p(c|y) and the background dataset fθc(t(x)) ∼ p(c|x). We choose
a Gaussian kernel with constant standard deviation τ , which results in an L2 distance between the
views. However, in practice, we constrain the outputs fθC (.) to be unit-normed, which is equivalent
to directly choosing a von Mises-Fischer kernel with concentration parameter 1

τ . 2 As in Wang &
Isola (2020), we optimize a lower bound of this estimator in practice, called −Lunif:

Lunif = log
1

NX +NY

NX+NY∑
i=1

1

NX +NY

NX+NY∑
j=1

exp
−||fθC (vi)− fθC (vj)||22

2τ
+ log

√
2πτ︸ ︷︷ ︸

Constant term

(3)

Alignment: Differently from Wang & Isola (2020), we propose to estimate the conditional entropy
−H(c|x) with a re-substitution entropy estimator. We compute the approximate density function
p̂(ci|xi) with a Kernel Density Estimator based on samples uniformly drawn from the conditional
distribution cki ∼ p(c|xi), where cki = fθ(v

k
i ) and vki are K views obtained via the stochastic process

t(.). As for the entropy term, we choose a Gaussian kernel with constant standard deviation τ to
derive an L2 distance between the views. Our formulation generalizes Wang & Isola (2020), as we
directly retrieve a multi-view alignment term between K positive views of the same image and not a
single-view alignment as in Wang & Isola (2020). However, in practice, to reduce the computational
burden, we also choose a single view K=1, as in Wang & Isola (2020). Combining the background
alignment −H(c|x) and the target alignment −H(c|y), we obtain:

Lalign = − 1

NX +NY

NX+NY∑
i=1

log
1

K

K∑
k=1

exp
−||fθC (vi)− fθC (v

k
i )||22

2τ
+ log(

√
2πτ)︸ ︷︷ ︸

Constant term

(4)

On the relation with I(fθ(v), fθ(v
′). Many recent representation learning works (Chen & He

(2020); Wang & Isola (2020)) maximize the MI between two views v and v′ of x: I(fθ(v), fθ(v′).
Inspired by the InfoMax principle, we propose instead maximizing I(fθ(v), x). As shown in
Tschannen et al. (2019), by directly applying the data processing inequality, one can demonstrate
that I(fθ(v), fθ(v′) is a lower bound of I(fθ(v), x).

3.2 DERIVE THE BACKGROUND-CONTRASTING ALIGNMENT AND UNIFORMITY TERMS

In this section, we consider the maximization of the salient term I(s; y), which is decomposed into
an alignment and uniformity term as before, constrained by the information-less hypothesis:

argmax I(s; y) = − Ey∼pyH(s|y)︸ ︷︷ ︸
Target-only Alignment

+ H(s)︸ ︷︷ ︸
s′-Entropy

s.t. DKL(sx||δ(s′)) = 0︸ ︷︷ ︸
Information-less hyp.

(5)

2Intuitively, if ||fθC (.)||2 = 1, the L2 distance between two representations can be simplified into a negative
dot-product: ||fθC (vi)− fθC (vj)||2 = 2− 2fθC (vi)

T .fθC (vj). Full proof in Appendix Sec .A.2.1.
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Target-only alignment. To estimate the target samples’ alignment term, we use the same estimation
method as in 3.1. Namely, we derive an alignment term between two views vi = t(yi) and vki =
t(yki ) of the same target image yi. As in Sec. 3.1, we use a re-substitution estimator with a Gaussian
Kernel Density Estimation with constant standard deviation τ and K = 1 in practice.

Ly-align = − 1

NY

NY∑
i=1

log
1

K

K∑
k=1

exp
−||fθS (vi)− fθS (v

k
i )||22

2τ
+ log(

√
2πτ)︸ ︷︷ ︸

Constant term

(6)

s′-Uniformity. Concerning the Entropy term, as in Sec. 3.1, we propose to develop the salient
entropy with a re-substitution entropy estimator. Again, we use a lower bound of Ĥ(S) called
−Ls′-unif. Then, we estimate the density p̂(s) with a Gaussian Kernel Density Estimator based
on samples uniformly drawn from the target dataset fθS (t(y)) ∼ p(s|y) and from the back-
ground dataset fθS (t(x)) ∼ p(s|x). Importantly, the information-less hypothesis constrains the
salient encoder to produce background embeddings always equal to the information-less vector s′:
fθS (t(x)) ∼ δ(s′). Using this hypothesis in the computations (see Sec. B.2 of the Supplementary)
and ignoring constant terms, we obtain:

Ls′-unif = log
1

NY

NY∑
i=1

(
exp
−||fθs(t(yi))− s′||22

τ
+

1

NY

NY∑
j=1

exp
−||fθs(t(yi))− fθs(t(yj))||22

2τ

)
(7)

To respect the Information-less hypothesis, we re-write Eq. 5 as a Lagrangian function, with the con-
straint expressed as a β-weighted (β ≥ 0) KL regularization. Assuming that sx follows a Gaussian
distribution centered on fθs(x) with a standard deviation τ (constant hyper-parameter), we derive
the KL divergence as an L2-distance between fθs(t(x)) and s′, as in He et al. (2019):

F(θS , β;x, y, s) = −λSLy-align − λSLs′-unif − β
1

NX

NX∑
i=1

||fθs(t(xi))− s′||22
2τ

(8)

3.3 ON THE NULL MUTUAL INFORMATION CONSTRAINT

In Eq. 1, to avoid information leakage between common and salient space, we constrain our prob-
lem so that the MI between c and s is null. Another common choice would be to simply minimize
I(c, s) instead than forcing it to be equal to 0. In Tab. 1 and 2, we show that the latter choice (i.e.,
I(c, s) = 0) clearly outperforms (variational) MI minimization methods, as vCLUB Cheng et al.
(2020), vL1out Poole et al. (2019), vUB Alemi (2020), and TC Louiset et al. (2023), (see Sec. F.7).
Minimizing H(c) + H(s) is detrimental: By def., I(c; s) = −H(c, s) + H(c) + H(s) ≥ 0,
which entails H(c; s) ≤ H(c)+H(s). Thus, a trivial way to minimize I(c; s) would be minimizing
H(c)+H(s). However, it reduces the quantity of information contained in either c or s, which could
be detrimental. Furthermore, the Common and Salient InfoMax losses of our framework seek to
maximize H(c) and H(s) rather than minimizing them. This is why, instead of minimizing I(c; s),
we propose to simultaneously maximize H(c, s), H(c) and H(s), until H(c, s) = H(c) +H(s), to
respect the constraint I(c; s) = 0.3
To estimate and maximize H(c, s), we propose a new method, called kernel-based Joint En-
tropy Maximization (k-JEM), that requires no assumptions about the form of the pdf nor a
neural network-based approximation (Cheng et al. (2020); Alemi (2020); Poole et al. (2019)).
Inspired by Holmes et al. (2007), we develop H(c, s) with a re-substitution entropy estimator:
−Ĥ(c, s) = 1

NX+NY

∑NX+NY

i=1 log p̂(ci, si). We estimate the density p̂θ(ci, si) with a Gaussian
Kernel Density Estimation with a constant standard deviation parameter τ with samples (c, s) uni-
formly drawn from the target dataset (fθS (t(y)), fθC (t(y))) ∼ p(c, s|y) and from the background
dataset (fθS (t(x)), fθC (t(x))) ∼ p(c, s|x). The indices i and j refer to two different samples in the
dataset. Full computations in Appendix, Sec. D.

−H(c, s) =
1

NX +NY

NX+NY∑
i=1

log
1

NX +NY

N∑
j=1

exp
−||ci − cj ||22

2τ
exp
−||si − sj ||22

2τ
(9)

3In this work, we implicitly assume that the encoders fθc and fθs can model any distribution.
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4 DISENTANGLING ATTRIBUTES IN THE SALIENT SPACE

Here, we propose to explore an extension of the salient contrastive loss in the case where indepen-
dent fine-grained attributes about the target dataset {ai ∈ RDS}NY

i=1 are available. We assume the
existence of DS attributes and each attribute ad is generated by a single factor of generation sdy of
the target dataset. We also make the hypothesis that the given attributes describe the entire salient
variability of the target dataset,4 and thus construct our salient encoder to output (exactly) DS la-
tent dimensions. We aim to construct a salient space where each salient latent dimension Sds only
depends on its corresponding attribute ads . By leveraging the attributes in a supervised manner, we
re-write Eq. 1 by replacing I(y; s) with the sum of all attribute Supervised InfoMax terms :

argmax I(x; c)+ I(y; c)+
1

DS

Ds∑
d=1

I(ad; sd)︸ ︷︷ ︸
d-th SupInfoMax

s.t. DKL(sx||δ(s′)) = 0 and I(c, s) = 0 (10)

Taking inspiration from Dufumier et al. (2021a;b), we then decompose each d-th attribute Super-
vised InfoMax term in a supervised alignment and uniformity term:

I(ad; sd) ≥ 1

NY

NY∑
i=1

wσ(a
d
i , a

d
j )
||sdi − sdj ||2

τ
+ Ĥ(sd) = Ld-th SupInfoMax (11)

where the indices i and j refer to two different samples in the target dataset and the scalar weight

wσ(a
d
i , a

d
j ) =

KA(ad
i ,a

d
j )∑

j=1 KA(ad
i ,a

d
j )

measures the similarity between their attributes. We define KA as a

Gaussian kernel and the entropy Ĥ(sd) is also estimated, as before, with a Gaussian kernel.

5 EXPERIMENTS

Here, we measure our method’s ability to separate common from target-specific variability factors.
We train a Logistic (or Linear) Regression on inferred factors to assess whether the information
about a characteristic present in both populations, or only in the target one, is captured in the com-
mon (C) or in the salient (S) latent space. We compute (Balanced) Accuracy scores (=(B-)ACC), or
Area-under Curve scores (=AUC) for categorical variables, Mean Average Error (=MAE) for con-
tinuous variables, and the sum of the differences (δtot) between the obtained results and the expected
ones.
Hyper-parameters. We empirically choose τ = 0.5 for all experiments and losses. The other
hyper-parameters are λC and λS , which weigh the common terms and salient terms, respectively,
and λ, which weighs the independence regularization. The choice of these weights depends on the
ratio between common and target-salient information quantity, which might differ among datasets.
Architectures and hyper-parameters are chosen as the top-performing ones for each experiment.
SOTA CA methods We have compared the performance of our method with the most recent and
best-performing CA-VAE methods whose code was available: cVAE Abid & Zou (2019) 5, conVAE
Aglinskas et al. (2022) 6, MM-cVAE Weinberger et al. (2022) and SepVAE Louiset et al. (2023). In
each experiment, all CA-VAE use the same encoder-decoder architecture, as described in the Sup-
plementary F. The architecture used for SepCLR is also described in Sec. F.
Digits superimposed on natural backgrounds. In this experiment particularly suited to CA and
inspired from Zou et al. (2013), we consider CIFAR-10 images as the background dataset (y = 0)
and CIFAR-10 images with an overlaid digit as the target dataset (y = 1). In Tab .1, our model out-
performs all other methods in correctly capturing the common factors of variability (i.e: objects) in
the common space and the target-specific factors of variability (i.e: digits) in the salient space.
CelebA accessories dataset. We consider a subset of CelebA Liu et al.. The target class (y = 1)
contains images of celebrities wearing glasses or hats. The background class (y = 0) contains im-
ages of celebrities without accessories. In Tab .2, SepCLR correctly captures the information that
enables distinguishing glasses from hats only in the salient space, and it puts the information to
distinguish men from females in the common space. Our method globally outperforms all other
methods (smallest δtot). ”Best Expected” reports perfect results (100%) when the attribute should
be present in that latent space and a random result (50%) when it should not.

4If it is not true, one can add a Salient InfoMax term (Eq.1) and increase the salient space dimension.
5Here, for cVAE, we use the fixed version of the TC regularization described in Louiset et al. (2023).
6Here, conVAE corresponds to cVAE method without the TC regularization, as in Aglinskas et al. (2022).
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Table 1: Digits on CIFAR-10 (B-ACC). Details in Sec.F.7.

DIGITS OBJECTS δTOT ↓
S ↑ C ↓ S ↓ C ↑

CVAE 90.6 23.0 11.2 33.4 90.2
CONVAE 86.2 21.0 10.6 35.6 89.8
MM-CVAE 88.8 19.6 12.2 32.0 93.6
SEPVAE 90.6 17.8 10.6 36.6 81.2
SEPCLR-VCLUB SYM 94.4 18.0 8.0 14.6 97.0
SEPCLR-VCLUB C → S 95.2 39.4 9.2 27.2 106.2
SEPCLR-VCLUB S → C 95.2 57.0 8.8 31.8 118.8
SEPCLR-VL1O SYM 95.0 18.4 8.4 15.4 96.4
SEPCLR-VL1O C → S 94.0 23.0 10.0 31.8 87.2
SEPCLR-VL1O S → C 95.4 41.0 9.2 28.8 106.0
SEPCLR-VUB SYM 94.6 42.0 8.2 29.0 106.6
SEPCLR-VUB C → S 92.8 23.4 7.8 22.6 95.8
SEPCLR-VUB S → C 96.6 41.8 8.6 28.6 105.2
SEPCLR-TC 95.2 68.6 10.2 24.2 139.4
SEPCLR-MMD 94.6 21.2 9.0 62.2 53.4
SEPCLR-NO K-JEM 95.6 94.4 9.0 42.0 145.8
SEPCLR-K-MI 96.2 19.8 8.0 65.8 45.8
SEPCLR-K-JEM 96.2 11.0 10.4 73.2 32.0
BEST EXPECTED 100.0 10.0 10.0 100.0 0.0

Table 2: CelebA accessories (B-ACC).
HATS/GLSS SEX δTOT ↓
S ↑ C ↓ S ↓ C ↑

83.89 66.56 60.25 60.60 82.32
81.64 65.94 61.53 58.93 86.90
84.60 66.43 60.56 61.57 80.82
84.46 65.19 60.12 59.20 81.65
98.98 59.62 65.20 54.23 71.61
98.81 73.71 61.77 53.72 82.95
98.66 95.95 67.65 73.16 91.78
98.83 56.94 57.97 51.38 64.60
99.04 93.17 63.35 59.13 89.91
98.46 94.33 65.00 71.77 89.10
98.68 87.33 63.59 56.09 96.15
98.73 94.40 66.58 71.37 90.88
98.78 93.92 62.94 61.27 96.81
98.97 98.76 60.39 74.96 85.22
98.95 67.50 71.83 65.47 74.91
99.03 66.68 98.48 79.48 86.65
98.96 77.10 63.07 71.08 70.13
98.57 55.21 62.52 78.00 41.16
100.0 50.0 50.0 100.0 0.0

Neuroimaging: parsing schizophrenia’s heterogeneity. Separating healthy from pathological la-
tent mechanisms that drive neuro-anatomical variability in schizophrenia is challenging. Yet, this
ability could help understand and anticipate the development of these diseases. Given healthy MRI
scans and patients with schizophrenia, we aim to capture pathological patterns only in the salient
space that should correlate with clinical scales (such as positive symptoms: SAPS, and negative
symptoms: SANS) while not being biased by demographic variables (age, sex or acquisition sites),
which should be encoded in the common space. As in Louiset et al. (2021; 2023), we gather T1w
VBM Ashburner (2000) warped MRIs (1283 voxels) and evaluate our method in a cross-validation
scheme. In Table 3, we can clearly see that our method outperforms all others.

Table 3: Separate healthy from pathological variability in Schizophrenia disorder. Best in bold.
AGE MAE SEX B-ACC SITE B-ACC

C ↓ S ↑ C ↑ S ↓ C ↑ S ↓
CVAE 6.43±0.18 7.27±0.25 75.06±3.48 74.99±2.15 65.12±4.06 59.62±5.42
CONVAE 6.40±0.26 7.46±0.18 74.45±1.80 72.72±1.32 60.42±3.67 54.46±2.46
MM-CVAE 6.55±0.18 7.10±0.34 72.80±3.95 72.15±2.47 63.24±1.41 56.69±9.84
SEPVAE 6.40±0.13 7.98±0.25 74.19±1.81 72.61±2.19 63.89±2.16 44.10±5.78
SEPCLR-K-JEM 6.64±0.21 7.72±0.45 76.5±1.98 70.85±1.89 66.94±5.06 42.40±4.91

SANS MAE SAPS MAE DIAGNOSIS
C ↑ S ↓ C ↑ S ↓ C ↓ S ↑

CVAE 5.89±0.67 4.35±0.26 4.65±0.34 2.98±0.18 60.66±2.63 68.24±5.42
CONVAE 6.17±0.45 3.95±0.28 4.50±0.37 2.76±0.18 61.85±2.60 58.53±4.87
MM-CVAE 6.78±0.54 4.92±0.58 4.52±0.33 3.16±0.05 64.25±2.98 70.94±4.08
SEPVAE 7.05±0.67 4.14±0.39 4.79±0.67 2.60±0.27 60.90±1.75 79.15±3.39
SEPCLR-K-JEM 9.17±2.49 3.74±0.12 5.54±0.70 2.52±0.16 60.16±1.19 79.90±1.57

Chest and eye pathologies subtyping. We propose two experiments using subsets of CheXpert
Irvin (2019) and ODIR dataset (Ocular Disease Intelligent Recognition dataset) 7 to assess the abil-
ity of our method in a controlled environment. About CheXpert, we have healthy X-ray scans (back-
ground) and diseased scans (target) divided into 3 distinct subtypes: cardiomegaly, lung edema, and
pleural effusion. In the ODIR dataset, there are healthy (background) and diseased fundus images
(target) which are divided into 5 subtypes: Diabetes, Glaucoma, Cataract, Age macular degenera-
tion, and pathological Myopia. Sex-related patterns should only be captured in the common encoder.
Disentangling dSprites while contrasting with a background. To evaluate CA method enriched
with target attributes, we provide a novel toy dataset. Background dataset X consists of 4 MNIST
digits (1-4) regularly placed on a grid. Target dataset Y consists of a dSprites item added upon the
grid of digits. dSprites only exhibit 5 generation factors (shape, zoom, rotation, X position, Y posi-
tion). Using Eq. 10, we train our salient encoders in a supervised manner to capture and disentangle
each attribute in a single salient space dimension (Fig. 2a). The common encoder is instead trained
to capture the background variability (Fig. 2b). Quantitatively, 1st salient dimension distinguishes
shapes (B-ACC= 98.23%) while the concatenation of other salient dimensions and common di-
mensions does not (B-ACC= 36.08%). 2nd predicts zoom attribute (R2 = 0.977) while others don’t

7https://www.kaggle.com/datasets/andrewmvd/ocular-disease-recognition-odir5k
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0.002. 3rd predicts rotation (R2 = 0.947), others don’t R2 = 0.0. 4th predicts horizontal translation
(R2 = 0.995), others don’t R2 = 0.017. 5th predicts vertical translation (R2 = 0.995), others don’t
R2 = 0.009. This shows that our method correctly separate common from salient information and
disentangle salient factors (in a supervised manner) at the same time.

Table 4: CheXpert X-ray scans (B-ACC).

SUBTYPE SEX δTOT ↓
S ↑ C ↓ S ↓ C ↑

CVAE 45.77 49.27 54.24 81.26 93.48
CONVAE 42.31 52.53 60.88 79.30 108.8
MM-CVAE 42.50 50.89 57.04 80.19 102.24
SEPVAE 42.20 51.10 56.38 79.95 102.34
SEPCLR-K-JEM 61.30 52.85 61.57 80.25 89.87
BEST EXPECTED 100.0 33.0 50.0 100.0 0.0

Table 5: ODIR fundus images (B-ACC).

SUBTYPE SEX δTOT ↓
S ↑ C ↓ S ↓ C ↑

46.13 43.91 49.11 51.86 120.03
49.80 52.01 50.82 47.01 131.86
42.79 43.66 54.91 53.76 131.02
38.64 41.44 52.91 52.62 124.75
68.54 47.71 52.48 59.62 97.03
100.0 25.0 50.0 100.0 0.0

(a) Given the latent vector of the upper left image,
we modify only one salient dimension in each row
while freezing the others, then fetch the image in
the dataset whose latent vector is the closest.

(b) Given the common latent vector of an image (left col-
umn), we fetch the image in the dataset whose inferred com-
mon latent vector is the closest in terms of L2 distance.

Figure 2: Qualitative results on attribute-supervised SepCLR

6 LIMITATIONS AND PERSPECTIVES

An important question in Contrastive Analysis, is the identifiability of the models. Namely, under
which conditions can the models recover the true latent factors of the underlying data-generating
process. Recent works have shown that non-linear models, VAEs included, are generally not iden-
tifiable. To obtain identifiability, two different solutions have been proposed: 1) either regulariz-
ing Kivva et al. (2022) the encoder or 2) introducing an auxiliary variable so that the latent factors
are conditionally independent given the auxiliary variable Hyvarinen et al. (2019); Khemakhem
et al. (2020). In CA, neither of these solutions may be used 8. Even though SepCLR effectively
separates common from salient factors, it does not assure that all true generative factors have been
identified (like all CA methods). This is a serious limitation of CA methods that we leave for future
works. Intriguingly, we also noticed that adding a reconstruction loss during the training degrades
performance, see Sec. G.2 in Appendix. However, adding a powerful generator, as in Zou et al.
(2023); Carton et al. (2024), on top of the frozen encoders would allow synthesizing new images
and increase interpretability.

7 CONCLUSION

In this paper, we leverage the power of Contrastive Learning to learn semantically relevant repre-
sentations for Contrastive Analysis. We reformulate Contrastive Analysis as a constrained InfoMax
paradigm. Then, we propose to estimate the Mutual Information terms via alignment and uniformity
terms. Importantly, we motivate a novel independence term between common and salient spaces
computed via Kernel Density Estimation (KDE). Our method outperforms related works on toy,
natural, and medical datasets specifically made to evaluate the common/salient separation ability.

8The dataset label could be considered as an auxiliary variable, but it does not make c and s independent
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A RETRIEVE THE INFONCE LOSS

Let X = {(xi)}Ni=1 be the data-set of background images xi, and Y = {(xi)}Ni=1 be the data-set of
target images yi. Input samples are assumed to be independently generated from latent unobserved
variables C = {ci ∈ RD}Ni=1. Our objective is to estimate an encoder fθC that infers latent factors
of generation c from the inputs (and its views v).
To do so, we entitle c the latent codes produced by the common encoder fθC (t(.)), where t(.) = v are
the views generated from either x or y via a stochastic augmentation function t(.). The objective is to
construct an encoder fθC (t(.)) that is invariant to data augmentation. From the InfoMax perspective,
we seek the optimal parameters θ∗ that maximize the MI between x and c ∼ fθC (t(x)). Foremost,
we decompose the MI I(x; c) into:

I(x; c) = −Ex∼pxH(c|x)︸ ︷︷ ︸
Alignment

+ H(c)︸ ︷︷ ︸
Entropy

(12)

but the same reasoning is valid for the target dataset: I(c; y) = −Ey∼py
H(c|y) +H(c).

A.1 DERIVE THE UNIFORMITY TERM FROM THE ENTROPY TERM

In this section, we propose to make the correspondence between the concept of Entropy, well-known
in Mutual Information literature, and the concept of Uniformity introduced in Wang & Isola (2020).
The entropy can be derived with a non-parametric estimator described in Ahmad & Lin (1976) with
samples uniformly drawn from both the target dataset and the background dataset.

Ĥ(c) = − 1

NX +NY

NX+NY∑
i=1

log p̂(ci) (13)

Then, we compute the approximate density function p̂(ci) with a Kernel Density Estimator, based
on samples uniformly drawn from both the target dataset fθc(t(y)) ∼ p(c|y) and the background
dataset fθc(t(x)) ∼ p(c|x):

Ĥ(c) = − 1

NX +NY

NX+NY∑
i=1

log
1

NX +NY

NX+NY∑
j=1

KC(ci, cj) (14)

For simplicity, we choose a Gaussian kernel with constant standard deviation τ to derive an L2
distance between the views. This enables us to obtain:

Ĥ(c) = − 1

NX +NY

NX+NY∑
i=1

log
1

NX +NY

N∑
j=1

exp
−||fθ(vi)− fθ(vj)||22

2τ
+ log(

√
2πτ)︸ ︷︷ ︸

Constant term

(15)

where cj = fθ(vj) and ci = fθ(vi). And where vi and vj are the views obtained by feeding the
input with index i (can be a target or a background sample) through the stochastic data augmentation
function t(.). In practice, Wang & Isola (2020) minimize the asymptotic lower bound of this term
entitled Uniformity term. Using Jensen’s inequality, we obtain:

− 1

NX +NY

NX+NY∑
i=1

log
1

NX +NY

NX+NY∑
j=1

exp
−||fθ(vi)− fθ(vj)||22

2τ︸ ︷︷ ︸
=Ĥ(c)−log(

√
2πτ)

≥

− log
1

NX +NY

NX+NY∑
i=1

1

NX +NY

NX+NY∑
j=1

exp
−||fθC (vi)− fθC (vj)||22

2τ︸ ︷︷ ︸
=−Luniform

(16)

Given a bounded support, minimizing Lunif encourages the latent vectors to match a uniform distri-
bution (e.g: spherical uniform distribution on unit-norm support in Wang & Isola (2020)).
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A.2 DERIVE THE MULTI-VIEW ALIGNMENT TERM

Differently from Wang & Isola (2020), we propose to estimate the conditional entropy on back-
ground samples −H(c|x) with a re-substitution entropy estimator.

−H(c|x) = 1

NX

NX∑
i=1

log p̂(ci|xi) (17)

We compute the approximate density function p̂(ci|xi) with a Kernel Density Estimator based on
samples uniformly drawn from the conditional distribution cki ∼ p(c|xi), where cki = fθ(v

k
i ) and

vki are K views obtained via the stochastic process t(.).

−H(c|x) = 1

NX

NX∑
i=1

log
1

K

K∑
k=1

KC(fθC (vi)), fθC (v
k
i )) (18)

KC is chosen as a von Mises-Fisher kernel with a constant concentration parameter κ = 1
τ . These

choices enable us to retrieve a Multi-View Alignment term with K positive views rather than only 1
as in Wang & Isola (2020):

−H(c|x) + log(C(κ)) =
1

NX

NX∑
i=1

log
1

K

K∑
k=1

exp
−||fθC (vi)− fθC (v

k
i )||22

2τ
(19)

By estimating the conditional entropy on target samples −H(c|y) in the same fashion and summing
both, we can retrieve the Alignment term written in Eq. 4. For computational reasons, we restrict to
only one view in this paper: K = 1.

A.2.1 ON THE CONNECTION BETWEEN THE GAUSSIAN KERNEL AND THE VON
MISES-FISHER KERNEL

Let us note the kernel similarity between two representations: fθC (xi) and fθC (xj) as
K(fθC (xi), fθC (xj)). Assuming that we are given a Gaussian kernel with a constant standard devi-
ation σ, this term can be estimated as:

KGaussian(fθC (xi), fθC (xj)) =
1√
2πτ

exp
−||fθC (xi)− fθC (xj)||22

2τ
(20)

Now, we can divide the square norm into three terms:

KGaussian(fθC (xi), fθC (xj)) =
1√
2πτ

exp
−||fθC (xi)||22 − 2fθC (xi)

T .fθC (xj) + ||fθC (xj)||22
2τ

(21)
Let assume that fθC (xi) and fθC (xj) are unit-normed, then this estimation get simplified into:

KGaussian(fθC (xi), fθC (xj)) =
1√
2πτ

exp
−1 + fθC (xi)

T .fθC (xj)

τ
(22)

which can be further simplified:

KGaussian(fθC (xi), fθC (xj)) =
1

e1
√
2πτ

exp
fθC (xi)

T .fθC (xj)

τ
(23)

Ignoring the normalization terms, we recognize the von Mises-Fisher kernel with concentration
hyper-parameter κ = 1

τ :

KvMF =
1

C(κ)
exp

fθC (xi)
T .fθC (xj)

τ

B DERIVE THE BACKGROUND-CONTRASTING INFONCE LOSS IN THE
SALIENT SPACE

In this section, we propose deriving the salient term I(s; y) into a novel loss entitled BC-InfoNCE.
Foremost, let us decompose the constrained Mutual Information maximization:

argmax−Ey∼py
H(s|y)︸ ︷︷ ︸

Target Alignment

+ H(s)︸ ︷︷ ︸
s′-Entropy

s.t. DKL(sx||δ(s′)) = 0︸ ︷︷ ︸
Information-less hyp.

(24)
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B.1 ALIGNMENT OF TARGET SAMPLES:

In order to estimate the target samples’ alignment term, we use the same estimation method as in
3.1. First, we derive an alignment term between two views fθS (vi) and fθS (v

+
i ) of the same target

image yi using re-substitution estimation:

−Ey∼pyĤ(s|y) = 1

NY

NY∑
i=1

p̂(si|yi) (25)

Then, the density p̂(si|yi) is estimated with a Kernel Density Estimator based on samples uniformly
drawn from ps|yi

, i.e.: {fθ(t(yi)k)|yi}Kk=1, where t(yi)
k = vki are K views uniformly drawn from

the stochastic input-transformation process t(yi):

−Ey∼pyĤ(s|y) = 1

N

N∑
i=1

log
1

N

K∑
k=1

KZ(fθ(vi), fθ(v
k
i )) (26)

KZ is chosen as a von Mises-Fisher kernel with a constant concentration parameter κ = 1
τ and only

K = 1 positive view is chosen. These choices enable us to derive the target alignment term:

−Ey∼py
Ĥ(s|y) = 1

NY

NY∑
i=1

−||fθ(vi)− fθ(v
+
i )||22

2τ
(27)

B.2 s′-UNIFORMITY:

Now, concerning the Entropy term, we propose to develop the salient entropy with a resubstitution
entropy estimator from samples drawn from X ∪ Y .

Ĥ(S) =− 1

(NY +NX)

∑
v∈t(X∪Y )

log p̂(fθS (v)) (28)

Then we estimate the density p̂(fθS (v)) with a Gaussian Kernel Density Estimator based on latent
vectors drawn from the target view fθS (t(y)) and from the background views fθS (t(x)).

Ĥ(s) =− 1

NY +NX

∑
v∈t(X∪Y )

log
1

NY +NX

∑
v+∈t(X∪Y )

exp
−||fθs(v)− fθs(v

+)||22
τ (29)

We consider the asymptotic form of the Entropy. Therefore, we pull the log out of the exterior
sum. In practice, it is equivalent to considering a lower bound of the Entropy. Now, separating the
background and the target datasets inside the log yields:

expLs′uniform =− 1

NY +NX

NY∑
i=1

1

NY +NX

NX∑
j=1

exp
−||fθs(yi)− fθs(xj)||22

τ

− 1

NY +NX

NY∑
i=1

1

NY +NX

NY∑
j=1

exp
−||fθs(yi)− fθs(yj)||22

τ

− 1

NY +NX

NX∑
i=1

1

NY +NX

NX∑
j=1

exp
−||fθs(xi)− fθs(xj)||22

τ

− 1

NY +NX

NX∑
i=1

1

NY +NX

NY∑
j=1

exp
−||fθs(xi)− fθs(yj)||22

τ

(30)
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Importantly, the information-less hypothesis constrains the specific encoder to produce background
embeddings aligned on the information-less vector s′. This property implies that background sam-
ples should not have any variability expressed in the latent space. Assuming that the salient encoder
respects this property yields fθS (t(x)) = s′, it enables to express Ĥ(S) as:

− expLs′uniform =2
1

NY +NX

NY∑
i=1

NX

NY +NX
exp
−||fθs(yi)− s′||22

τ
+

NX

NY +NX

NX

NY +NX

1

NY +NX

NY∑
i=1

1

NY +NX

NY∑
j=1

exp
−||fθs(yi)− fθs(yj)||22

τ

(31)

Assuming that the target and background datasets are balanced: NX = NY = N and ignoring the
constant terms, we obtain:

Ls′uniform = − log
1

NY

NY∑
i=1

(
exp
−||fθs(yi)− s′||22

τ
+

1

2NY

NY∑
j=1

exp
−||fθs(yi)− fθs(yj)||22

τ

)
(32)

B.3 ON THE INFORMATION-LESS HYPOTHESIS:

To respect the Information-less hypothesis, we re-write Eq. 5 as a Lagrangian function, with the con-
straint expressed as a β-weighted (β ≥ 0) KL regularization. Assuming that sx follows a Gaussian
distribution centered on fθs(x) with a constant standard deviation τ permits deriving the KL diver-
gence into an L2-distance between fθs(x) and s′. Let us re-write Eq. 5 under the KKT conditions:

−F(θS , β;x, y, s) = Ly-alignment + Ls′-uniformity + β
1

NX

NX∑
i=1

||fθs(xi)− s′||22 (33)

C RETRIEVE THE SUPERVISED INFONCE LOSS

The Supervised counterpart of the InfoNCE loss has been introduced in Khosla et al. (2020). Com-
pared to SimCLR, it consists of choosing positive pairs from the same class, while the negative pairs
term remains unchanged. Let X = {(xi)}Ni=1 be a data-set of images xi, Y = {(yi)}Ni=1 be their
associated discrete or continuous labels yi, and Z = {(zi)}Ni=1 the associated latent codes zi. Let us
introduce the maximization of Mutual Information between the labels Y and latent vectors Z. The
Mutual Information can be decomposed as follows:

I(z; y) = −Ey∼py
H(z|y)︸ ︷︷ ︸

Supervised Alignment term

+ H(z)︸ ︷︷ ︸
Uniformity term

(34)

The Supervised counterpart of the InfoNCE loss has been introduced in Khosla et al. (2020). In
this section, we show that it can be derived from the MI between Y and fθ(t(X)). Compared to
InfoNCE, it consists in aligning positive views (t(xi), t(xj)) from the same class yi = yj via a
supervised alignment term −Ey∼pyH(z|y), while the entropy term estimation H(z) remains the
same. Using the re-substitution estimator and the KDE, we derive the supervised alignment term
into the alignment term of Lin

sup in Khosla et al. (2020):

−Ey∼pyH(z|y) + log(
√
2πτ) =

1

N

N∑
i=1

log
1

|P (i)|
∑

j∈P (i)

exp
−||fθ(vi)T − fθ(vj)||22

2τ
(35)

where P (i) is the set of indices of samples belonging to class yi and |P (i)| is its cardinality.
In Dufumier et al. (2021a), the authors proposed a generalized version of SupCon, which accounts
for continuous label y.
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C.1 ON THE DISTINCTION BETWEEN LIN
SUP AND LOUT

SUP :

In Khosla et al. (2020), the authors show that it is preferable to optimize Lout
sup, a variant of Lin

sup where
positive samples are summed outside of the logarithm. We propose to derive Lout

sup rather than Lin
sup

by simply computing a lower bound of the Alignment term via Jensen’s inequality:

−Ey∼py
H(z|y) + log(

√
2πτ) ≥ − 1

N

N∑
i=1

1

|P (i)|
∑

j∈P (i)

||fθ(vi)T − fθ(vj)||22
2τ

(36)

C.2 QUANTIFY THE JENSEN GAP FOR SUPINFONCE:

In Eq.36, we derived a lower bound of the Conditional Entropy of the Supervised InfoMax formula-
tion via Jensen’s inequality. In this paragraph, we propose to a) quantify Jensen’s Gap between both
formulations and b) describe under which condition these formulations are equal (tight bound). The
Jensen’s Gap can be computed as:

JGAP =
1

N

N∑
i=1

log
1

|P (i)|
∑

j∈P (i)

exp
−||fθ(vi)T − fθ(vj)||22

2τ
− 1

|P (i)|
∑

j∈P (i)

−||fθ(vi)T − fθ(vj)||22
2τ︸ ︷︷ ︸

Dsup
GAP

(37)

where JGAP ≥ 0. Let us note JGAP = 0 if and only if Dsup
GAP = 0. We simplified Dsup

GAP into
the difference between a LogSumExp and a SumLogExp of fθ(vi)

T .fθ(v
′
j). Using the fact that

LogSumExp consists of a smooth approximation of the max function, DGAP = 0 if and only if:

max
j
||fθ(vi)T − fθ(vj)||22 + log

1

N
=

1

N

N∑
j=1

||fθ(vi)T − fθ(vj)||22 , ∀i in |[1, N ]| (38)

where yi = yj , i.e: vi, vj and v′j are views from images from the same class y.

C.3 THE CASE OF A CONTINUOUS y:

In Dufumier et al. (2021a), the authors proposed a generalized version of SupCon, which accounts
for continuous label y. It consists of adding a weight wσ(yi, yj) before the similarity term. Let us
explain how to retrieve this formulation. From Eq. 34, we use the resubstitution estimator:

−Ey∼py
H(z|y) + log(

√
2πτ) =

1

N

N∑
i=1

log p̂(zi|yi) (39)

From there, we can use a Kernel Density estimation for the conditional distributions in the case
where we only have access to samples from the joint distribution:

−Ey∼py
H(z|y) + log(

√
2πτ) =

1

N

N∑
i=1

log
1
N

∑
j=1 KY (yi, yj)KZ(fθ(xi), fθ(xj))

1
N

∑
j=1 KY (yi, yj)

(40)

By choosing KY as a gaussian kernel: Ky(yi, yj) =
1

σ
√
2π

exp− (yi−yj)
2

2σ2 and KZ as a von Mises-
Fisher kernel as usually done in Contrastive Learning literature, we retrieve Dufumier et al. (2021a)’s
Lin

sup formulation.

−Ey∼py
H(z|y) + log(

√
2πτ) =

1

N

N∑
i=1

log
1

N

∑
j=1

wσ(yi, yj) exp
−||fθ(xi)− fθ(xj)||22

2τ
(41)

where wσ(yi, yj) =
KY (yi,yj)

1
N

∑
j=1 KY (yi,yj)

.
Now, the Jensen’s inequality can be utilized to retrieve Dufumier et al. (2021a)’s exact formulation.
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D MAXIMIZE THE JOINT ENTROPY VIA KERNEL DENSITY-BASED
ESTIMATION

In Sec. 3.3, we proposed a method to estimate and minimize −H(c, s) without requiring any as-
sumptions about the form of its pdf nor requiring a neural network-based approximation (Cheng
et al. (2020); Alemi (2020); Poole et al. (2019)). Inspired by Holmes et al. (2007), we develop
H(c, s) with a re-substitution entropy estimator:

−Ĥ(c, s) =
1

NX +NY

NX+NY∑
i=1

log p̂(ci, si) (42)

To do so, we estimate the density p̂θ(ci, si) with a Kernel Density Estimation:

−Ĥ(c, s) =
1

NX +NY

NX+NY∑
i=1

log
1

NX +NY

NX+NY∑
k=1

KC(ci, cj)KS(si, sj) (43)

where cj and sj are drawn from the joint distribution p(c, s). In practice, we will draw pairs (c, s)
from (fθC (x), fθS (x)) and (fθC (y), fθS (y)) where x and y are respectively uniformly drawn from
X and Y . Importantly, as in Sec. 3.2, the information-less constraint still holds:fθS (x) = s′,∀x.
For simplicity, we choose Gaussian kernels for KC and KS with a constant standard deviation
parameter τ , which simplifies the estimation of the joint entropy into:

−Ĥ(c, s) =
1

NX +NY

NX+NY∑
i=1

log
1

NX +NY

NX+NY∑
j=1

exp
−||ci − cj ||22

2τ
exp
−||si − sj ||22

2τ
(44)

E CAPTURING INDEPENDENT ATTRIBUTES AND DISENTANGLE WITH
CONTRASTIVE LEARNING

E.1 SUPERVISED DISENTANGLEMENT

We can also use our framework to derive a supervised disentangling loss with known variability
factors. In this section, we propose to explore an extension of BC-InfoNCE in the case where
independent fine-grained attributes about the target dataset: {ai ∈ RDS}NY

i=1 are available. Given
this set of independent observed characteristics, we can leverage these observations in a supervised
manner to identify the independent factors of generation of the target dataset.

We assume the existence of DS attributes and construct our salient encoder so that it outputs DS

latent dimensions. Our objective is to construct a salient space where each salient latent dimension
Sds only depends on its corresponding attribute ads . Let us re-write Eq. 1 by replacing the salient
InfoMax term by each d-th attribute Supervised InfoMax term:

argmax I(x; c)+ I(y; c)+
1

DS

Ds∑
d=1

I(ad; sd)︸ ︷︷ ︸
d-th SupInfoMax

s.t. DKL(sx||δ(s′)) = 0 and I(c, s) = 0 (45)

From there, we take inspiration from Dufumier et al. (2021a) to decompose each d-th attribute
Supervised InfoMax term in a supervised alignment and a uniformity term:

I(ad; sd) ≥ 1

NY

NY∑
i=1

wσ(a
d
i , a

d
j )
||sdi − sdj ||2

2τ
+ Ĥ(sd) = Ld-th SupInfoMax (46)

We propose to develop the Entropy term for each d-th salient dimension as in Sec. C.3.

F DATASETS AND IMPLEMENTATION DETAILS

F.1 DSPRITES WATERMARKED ON A GRID OF DIGITS EXPERIMENT

To evaluate the Contrastive Analysis method enriched with target attributes, we provide a novel toy
dataset. The background dataset X consists of 4 MNIST digits (1-4) regularly placed on a grid.
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The target dataset Y consists of a dSprites item added upon the foreground of this grid of digits.
dSprites is a dataset introduced to evaluate disentanglement. Its images are of size 64x64 pixels. Its
elements only exhibit 5 generation factors, see Fig. 3, making it easy to evaluate the disentanglement.
Possible variations are 1) shape (heart, ellipse, and square), 2) size, 3) position in X, 4) position in
Y, and 5) orientation (i.e. rotation). To construct the Contrastive Analysis dataset we use in this
paper, we randomly sample MNIST images of digits 1, 2, 3, and 4 and regularly place them on
a grid. We create 25,000 background images with this method. Then, we superimpose a random
dSprite element on 25,000 distinct digit grids to create 25 000 target images. We use the same
method to derive 5,000 test images equally balanced between the target and background classes.
Importantly, we constrain the dSprites elements to have a rotation attribute between −45 and +45
degrees. Downstream task performances are computed on the projection head.

Figure 3: Illustration of the dSprites dataset and its different independent variability factors: shape,
zoom, rotation, Y position, and X position.

F.2 MNIST DIGIT SUPERIMPOSED ON CIFAR-10 BACKGROUND

MNIST digit superimposed on CIFAR-10 background is a simple intuitive dataset inspired from
Zou et al. (2013). We consider as the background dataset (y = 0) CIFAR-10 images, and as the
target dataset (y = 1) CIFAR-10 images (background) with an overlaid digit (target pattern), see
Fig. 4. This experiment is particularly suited to CA, we expect our model to successfully capture the
background variability (i.e: natural objects semantic) in the common space and to capture the digits
variability in the salient space. In practice, we used a train set of 50000 images (25000 Cifar-10
images, 25000 Cifar-10 images with random MNIST digits overlaid) and an independent test set of
1000 images (500, 500). Images are of size 32× 32. Pixels were normalized between 0 and 1.
In terms of Data Augmentation for the stochastic transformation process t(.), we remained close to
SimCLR Chen et al. (2020), as we used a RandomCrop(size=(24, 24), scale=(0.2, 1.0)) augmen-
tation, then a RandomHorizontalFlip(p=0.5) augmentation, a RandomColorJitter(0.4, 0.4, 0.4, 0.1)
applied with a probability 0.8 followed from a RandomGrayScale(p=0.2) augmentation.
Concerning the Neural Network architecture, both common and salient encoders were chosen as
ResNet-18 with a representation linear layer as follows: linear(512, 32) and a non-linear projector
layer as follows: (linear(32, 128), batch norm(128), relu(), linear(128, 32)). We used an Adam opti-
mizer with learning rate of 5e-4, batch size of 512, and trained it during 250 epochs.
As for the SepCLR’s hyper-parameters, we chose λC = 1, λS = β = 1000, and λ = 10. As related
works, downstream task performances are computed before the projection head Chen et al. (2020).

Concerning Contrastive Analysis VAE methods, we took inspiration from experimental setups in
Louiset et al. (2023). Namely, we used a standard encoder architecture composed of 4 convolutions
(channels 3, 32, 32, 32, 256), kernel size 4, and padding (1, 1, 1, 0). Then, for each mean and
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Figure 4: the Superimposed MNIST digits on CIFAR background dataset. Target images are CIFAR-
10 images overlaid with an MNIST digit. Background images are CIFAR-10 images.

standard deviations predicted (common and salient), we used two linear layers going from 256 to
hidden size 256 to (common and salient) latent space size 32. The decoder was set symmetrically.
We used the same architecture across all the CA-VAEs concurrent works we evaluated. Interestingly,
we also tried with ResNet-18 encoders but the results actually remained similar. The learning rate
was set to 0.001 with an Adam optimizer. The models were trained during 250 epochs with batch
size equal to 512. We used βc = 0.5 and βs = 0.5, κ = 2, γ = 1e − 9, α = 1

0.025 . For cVAE,
we used βc = 0.5 and βs = 0.5, κ = 2 and κ = 0 for conVAE. For MM-cVAE we used the same
learning rate, βc = 0.5 and βs = 0.5, the background salient regularization weight 100, common
regularization weight of 1000.

Concerning Mutual Information minimization methods, we used the same hyper-parameters as for
k-JEM, except for λ. λ was set to 0.1 for CLUB, as in the original paper Domain Adaptation section
Cheng et al. (2020). Please note that we also tried values of 1 and 10, but it did not give better
results. We also chose 0.1 for vUB and vL1out. For TC, we used λ = 10. For MMD, we used
λ = 50; we motivate this choice in the Sec. G.1.

F.3 CELEBA ACCESSORIES

In CelebA with accessories Weinberger et al. (2022), we consider a subset of CelebA Liu et al.. It
contains two sets, target and background, from a subset of CelebA Liu et al., one with images of
celebrities wearing glasses or hats (target) and the other with images of celebrities not wearing any of
these accessories (background). Importantly, and contrarily to MM-cVAE Weinberger et al. (2022)
and SepVAE Louiset et al. (2023), we take care to balance the distribution of males and females in
the background and the target dataset to avoid gender bias with respect to the accesories. We used a
train set of 20000 images, (10000 no accessories, 5000 glasses, 5000 hats) and an independent test
set of 4000 images (2000 no accessories, 1000 glasses, 1000 hats). Images are of size 128 × 128,
normalized between 0 and 1.
In terms of Data Augmentation for the stochastic transformation process t(.), we remained close to
SimCLR Chen et al. (2020), as we used a RandomCrop(size=(128, 128), scale=(0.2, 1.0)) augmen-
tation, then a RandomHorizontalFlip(p=0.5) augmentation, a RandomColorJitter(0.4, 0.4, 0.4, 0.1)
applied wit a probability 0.8 followed from a RandomGrayScale(p=0.2) augmentation.
Concerning the Neural Network architecture, both common and salient encoders were chosen as
ResNet-18 with a representation linear layer as follows: linear(512, 16) and a non-linear projector
layer as follows: (linear(16, 128), batch norm(128), relu(), linear(128, 16)). We used an Adam opti-
mizer with learning rate 5e-4, batch size of 256, and trained it during 250 epochs.
As for the SepCLR’s hyper-parameters, we chose, as in MNIST superimposed on CIFAR-10 exper-
iment, λC = 1, λS = β = 1000, and λ = 10. As related works, downstream task performances are
computed before the projection head Chen et al. (2020).

Concerning Contrastive Analysis VAE methods, we took inspiration from experimental setups in
Louiset et al. (2023). Notably, we used images of size 64x64 pixels. Namely, we use a standard
encoder architecture composed of 5 convolutions (channels 3, 32, 32, 64, 128, 256), kernel size 4,
stride 2, and padding (1, 1, 1, 1, 1). Then, concerning the mean and standard deviations predicted
(common and salient), we used two linear layers going from 256 to hidden size 32 to (common and
salient) latent space size 16. The decoder was set symmetrically. We used the same architecture
across all the CA-VAEs concurrent works we evaluated. The learning rate was set to 0.001 with an
Adam optimizer. The models were trained during 250 epochs with batch size equal to 512. We used
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βc = 0.5 and βs = 0.5, κ = 2, γ = 1e − 10, σp = 0.025. For cVAE, we used βc = 0.5 and
βs = 0.5, κ = 2 and κ = 0 for conVAE. For MM-cVAE, we used the same learning rate, βc = 0.5
and βs = 0.5, the background salient regularization weight 100, common regularization weight of
1000.

Concerning Mutual Information minimization methods, we used the same hyper-parameters as for
k-JEM, except for λ. λ was set to 0.1 for CLUB, as in the original paper Domain Adaptation section
Cheng et al. (2020). Please note that we also tried values of 1 and 10, but it did not give better
results. We also chose 0.1 for vUB and vL1out. For TC, we used λ = 10. For MMD, we used
λ = 50; we motivate this choice in the Sec. G.1.

Figure 5: Celeba accessories dataset. The upper row consists of background images. The lower row
shows target images.

F.4 CHEXPERT

In the CheXpert subtyping experiment, we select a subset of CheXpert separated in the background
dataset: 10,000 healthy X-rays and the target dataset: 3,000 with edema, 3,000 with pleural effu-
sion, and around 2,000 images with cardiomegaly. Images are resized to 224x224 pixels. Pixels are
normalized between 0 and 1.
For SepCLR, in terms of Data Augmentation for the stochastic transformation process t(.), we re-
mained close to SimCLR Chen et al. (2020), as we used a RandomCrop(size=(224, 224), scale=(0.2,
1.0)) augmentation, a RandomColorJitter(0.4, 0.4, 0.4, 0.1) applied with a probability 0.8 followed
from a RandomGrayScale(p=0.2) augmentation, a RandomRotation(degrees=45), and then a Ran-
domHorizontalFlip(p=0.5) augmentation.
Concerning the Neural Network architecture, both common and salient sizes are 32. Both common
and salient encoders were chosen as a pre-trained ResNet-18 with a representation linear layer as fol-
lows: linear(512, 32) and a non-linear projector layer as follows: (linear(32, 128), batch norm(128),
relu(), linear(128, 32)). We used an Adam optimizer with a learning rate of 5e-4, a batch size of
256, and trained it during 200 epochs. As for the SepCLR’s hyper-parameters, we chose λC = 1,
λS = 1, β = 10, and λ = 5. As related works, downstream task performances are computed before
the projection head Chen et al. (2020).

Concerning the Contrastive VAEs, we use the same common and salient encoders. For the decoders,
we chose an architecture composed of a linear layer, taking into input the concatenation of common
and salient space, mapping it to a size of 256. Then 7 deconvolution layers were used with a kernel
size of 4, stride of 2, and padding of 1 with filters (256 to 512, 256, 128, 64, 32, 16, 3). Output
images are of size 256× 256 and are cropped to 224× 224. The final activation layer is chosen as a
sigmoid layer.

We used the same architecture across all the CA-VAEs concurrent works we evaluated. The learning
rate was set to 0.001 with an Adam optimizer. The models were trained during 200 epochs with
batch size equal to 256. We used βc = 0.5 and βs = 0.5, κ = 2, γ = 1e− 9, σp = 0.05. For cVAE,
we used βc = 0.5 and βs = 0.5, κ = 2 and κ = 0 for conVAE. For MM-cVAE, we used the same
learning rate, βc = 0.5 and βs = 0.5, the background salient regularization weight 100, common
regularization weight of 1000.

F.5 ODIR (OCULAR DISEASE IMAGE RECOGNITION)

In the ODIR subtyping experiment, we select a subset of the ODIR dataset separated into a back-
ground and a target dataset. Train dataset contains 1890 healthy images, 363 diabetes images,
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278 glaucoma images, 281 cataract images, 242 age-related macular degeneration images, and 227
pathological myopia images. On the other hand, TEST dataset contains respectively 210 healthy, 37
diabetes, 26 glaucoma, 39 cataract, 23 macular degeneration, 30 myopia images. Pixels are normal-
ized between 0 and 1.
For SepCLR, in terms of Data Augmentation for the stochastic transformation process t(.), we
remained close to SimCLR Chen et al. (2020), as we used a RandomCrop(size=(224, 224),
scale=(0.75, 1.0)) augmentation, a RandomColorJitter(0.4, 0.4, 0.4, 0.1) applied wit a probabil-
ity 0.8 followed from a RandomGrayScale(p=0.2) augmentation, a RandomRotation(degrees=45),
and then a RandomVerticalFlip(p=0.5) augmentation.
Concerning the Neural Network architecture, both common and salient encoders were chosen as a
pre-trained ResNet-18 with a representation linear layer as follows: linear(512, 32) and a non-linear
projector layer as follows: (linear(32, 128), batch norm(128), relu(), linear(128, 32)). We used an
Adam optimizer with a learning rate of 5e-4, a batch size of 256, and trained it during 200 epochs.
As for the SepCLR’s hyper-parameters, we chose λC = 1, λS = 1, β = 100, and λ = 10. As
related works, downstream task performances are computed before the projection head Chen et al.
(2020).

Concerning the Contrastive VAEs, we use the same common and salient encoders. For the decoders,
we chose an architecture composed of a linear layer, taking into input the concatenation of common
and salient space, mapping it to a size of 256. Then 7 deconvolution layers were used with a kernel
size of 4, stride of 2, and padding of 1 with filters (256 to 512, 256, 128, 64, 32, 16, 3). Output
images are of size 256× 256 and are cropped to 224× 224. The final activation layer is chosen as a
sigmoid layer.

We used the same architecture across all the CA-VAEs concurrent works we evaluated. The learning
rate was set to 0.001 with an Adam optimizer. The models were trained during 200 epochs with
batch size equal to 256. We used βc = 0.5 and βs = 0.5, κ = 2, γ = 1e− 9, σp = 0.05. For cVAE,
we used βc = 0.5 and βs = 0.5, κ = 2 and κ = 0 for conVAE. For MM-cVAE, we used the same
learning rate, βc = 0.5 and βs = 0.5, the background salient regularization weight 100, common
regularization weight of 1000.

F.6 SCHIZOPHRENIA EXPERIMENT

In this study, we analyzed neuroimaging data from several sources including the SCHIZCONNECT
database (which includes 368 healthy controls and 275 patients with schizophrenia) and the BSNIP
database (which includes 199 healthy controls and 190 patients with schizophrenia). The data used
in this study was collected from various scanners and locations and included brain scans from in-
dividuals in the United States. Images are of size 128 × 128 × 128 with voxels normalized on a
Gaussian distribution per image. Experiments were run 5 times with a different train/val split (re-
spectively 75% and 25% of the dataset) to account for initialization and data uncertainty. Inspired by
Louiset et al. (2023), common and salient convolutional encoders were chosen as 5 3D-convolutions
(channels 1, 32, 64, 128, 256, 512), kernel size 4, stride 2, and padding 1 followed by batch normal-
ization layers. Then, we used a linear layer from 32768 to representations (sizes 128 for common
and 32 for salient). Then, the projection heads were set as non-linear with hidden sizes 128 for
common and 32 for salient, with batch normalization(128) and relu() activation functions.
For SepCLR, the data augmentations were inspired from Dufumier et al. (2021a), that is: horizon-
tal flip with probability 0.5; blur with probability 0.5, sigma=(0.1, 0.1); noise with probability 0.5,
sigma=(0.1, 0.1); CutOut with probability 0.5, patch size equal to 32x32x32, RandomCrop of size
(96x96x96) with probability 0.5. The models were trained during 50 epochs with a batch size equal
to 32 with an Adam optimizer of learning rate of 0.0005. As for the SepCLR’s hyper-parameters,
we chose λC = 1, λS = 1, β = 1, and λ = 5. As related works, downstream task performances
are computed before the projection head Chen et al. (2020). Importantly, the classification task is
computed with a 2 layers MLPs in order to be comparable with SepVAE Louiset et al. (2023)

Concerning the Contrastive Analysis VAEs methods we compared with, we use the same experi-
mental setup in terms of hyper-parameters and architecture as in Louiset et al. (2023). Concerning
the architecture, in details, the common and salient convolutional encoders were chosen as 5
3D-convolutions (channels 1, 32, 64, 128, 256, 512), kernel size 4, stride 2, and padding 1 followed
by batch normalization layers. Then, we used a non linear layer from 32768 to directly predict
mean and standard deviations (sizes 256 for common and 256 for salient) with 2048 as hidden
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size with batch normalization and relu as activation functions. The decoder was set symmetrically,
except it has 6 transposed convolutions (channels 512, 256, 128, 64, 32, 16, 1), kernel size 3, stride
2, and padding 1, followed by batch normalization layers.

F.7 MUTUAL INFORMATION MINIMIZATION METHODS

To compare with k-JEM (kernel-Joint Entropy Maximization), we used the implementation of sev-
eral Mutual Information variational upper bound, namely vCLUB Cheng et al. (2020), vUB Alemi
(2020) and vL1out Poole et al. (2019) available at https://github.com/Linear95/CLUB/
tree/master. Interestingly, these methods can be implemented with a variational approximation
of S from C, vice-versa (C from S), or symmetrically (mean of both). We tried all three possibilities
with different weights and chose the best results each time to set in Tab .1 and Tab .2.
We also compared with the exact Mutual Information estimator TC of Louiset et al. (2023) and Abid
& Zou (2019) inspired by the Total Correlation introduced in Kim & Mnih (2018).
In Sec. 3.3, we motivated the idea of minimizing the negative joint entropy (−H(C, S)) rather than
the Mutual Information (H(C) + H(S) − H(C, S)). To prove our point, we implemented k-MI,
a version of k-JEM where we also minimize the entropies H(C) + H(S). To do so, we estimate
H(C) as in the common entropy estimation in Eq. 15 and H(S) as in the salent entropy estimation
in Eq. 29. Interestingly, we can see that k-MI indeed underperforms compared to k-JEM.

G SUPPLEMENTARY RESULTS

G.1 ON MUTUAL INFORMATION MINIMIZATION VERSUS TARGET AND BACKGROUND
DISTRIBUTIONS MATCHING

In Contrastive Analysis, practitioners make use of various regularizations to respect properties estab-
lished a priori. Recent works agree that background input should be mapped to a single information-
less vector in the salient space. However, two regularizations have been proposed in order to reduce
the information leakage between the common and the salient space: 1- match the distributions of
targets and backgrounds in the common space, 2- minimize the mutual information between the
common and salient distributions. In our framework, the latter was naturally derived from the Info-
Max principle. In Tab .6 and Tab .7, we propose to compare both strategies on a) CelebA accessories
and b) Digits superimposed on CIFAR-10 to assess their effect on the common space. In both ex-
periments, we observe that the stronger the regularization is, the less common information (objects
and sex) is captured. Also, we observe that k-JEM ’s ability to diminish target-specific information
(digits and accessories) remains relatively consistent across the regularization strength. Concerning
MMD (Maximum Mean Discrepancy), a high regularization strength is needed to reduce target-
specific information despite its detrimental effect on capturing common patterns. We conclude that
a low-strength k-JEM regularization (we choose λ = 10 in practice) is the right trade-off for captur-
ing common patterns while canceling salient patterns.

Table 6: Digits watermarked on CIFAR-10 (B-ACC). Comparison of k-JEM with
MMD given different strengths.

DIGITS OBJECTS δTOT ↓
S ↑ C ↓ S ↓ C ↑

SEPCLR-NO K-JEM 95.6 94.4 9.0 42.0 145.8
SEPCLR-10 MMD 95.4 86.8 10.8 48.2 56.8
SEPCLR-50 MMD 94.6 21.2 9.0 62.2 134.0
SEPCLR-100 MMD 95.2 13.8 11.0 56.4 53.2
SEPCLR-10 K-JEM 96.2 11.0 10.4 73.2 32.0
SEPCLR-50 K-JEM 95.2 13.2 8.6 59.2 47.4
SEPCLR-100 K-JEM 95.0 12.0 9.2 52.4 53.8
BEST EXPECTED 100.0 10.0 10.0 100.0 0.0
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Table 7: CelebA accessories (B-ACC). Comparison of k-JEM with MMD given dif-
ferent strengths.

HATS/GLSS SEX δTOT ↓
S ↑ C ↓ S ↓ C ↑

SEPCLR-NO K-JEM 99.03 66.68 98.48 79.48 86.65
SEPCLR-10 MMD 98.99 81.53 60.87 76.19 87.14
SEPCLR-50 MMD 98.95 67.50 65.47 71.83 62.19
SEPCLR-100 MMD 99.03 53.25 67.12 52.51 68.83
SEPCLR-10 K-JEM 98.57 55.21 62.52 78.00 41.16
SEPCLR-50 K-JEM 98.83 58.27 62.45 68.38 53.51
SEPCLR-100 K-JEM 98.73 62.00 68.92 57.10 75.09
BEST EXPECTED 100.0 50.0 50.0 100.0 0.0

G.2 ON THE ADD OF A RECONSTRUCTION TERM

Contrastive Analysis, jointly performed with a generative process, enables performing salient or
common characteristics swapping, salient attribute generation or deletion, and novel sample genera-
tion. Therefore, we investigated the addition of a decoder jointly trained with the encoder parameters
to reconstruct the input images (with a Mean Square Error Cost Function) during the optimization
process. We added a reconstruction term from the concatenation of the common and salient space
(as in CA-VAEs but without the need for a re-parameterization trick) with the same decoder as in
CA-VAEs, and it degrades the results. Intriguingly, we found that it tends to degrade the results (see
Tab. 9 and Tab. 8), which could be explained by the fact that the reconstruction task tries to conserve
unnecessary noisy information in the latent space. However, an interesting perspective could be to
include and train a generator or a decoder for generation and interpretability purposes, given frozen
representations learned with SepCLR.

Table 8: Digits watermarked on CIFAR-10 (B-ACC). On the impact of a reconstruc-
tion term in addition to SepCLR.

DIGITS OBJECTS δTOT ↓
S ↑ C ↓ S ↓ C ↑

SEPCLR-K-JEM 96.2 11.0 10.4 73.2 32.0
SEPCLR-K-JEM WITH 0.1 REC 98.8 10.8 40.6 47.2 85.4
SEPCLR-K-JEM WITH 1 REC 94.4 22.2 51.8 27.4 132.2
BEST EXPECTED 100.0 10.0 10.0 100.0 0.0

Table 9: CelebA accessories (B-ACC). On the impact of a reconstruction term in
addition to SepCLR.

HATS/GLSS SEX δTOT ↓
S ↑ C ↓ S ↓ C ↑

SEPCLR-K-JEM 98.57 55.21 62.52 78.00 41.16
SEPCLR-K-JEM WITH 0.1 REC 97.27 67.81 67.53 62.38 75.69
SEPCLR-K-JEM WITH 1 REC 91.51 68.87 62.77 64.39 78.98
BEST EXPECTED 100.0 50.0 50.0 100.0 0.0

G.3 ON THE COMPARISON WITH CONTRASTIVE METHODS

In this section, we propose to compare SepCLR with self-supervised methods that are not based on
the encoder-decoder architecture. As there are no Contrastive Learning methods tailored for Con-
trastive Analysis, we propose to design a naive and simple strategy to compare with SepCLR. First,
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we infer the common features with the features of SimCLR trained on the background dataset only
(as it should have common features only). Then, we propose to infer the salient space with a SupCon
method trained to discriminate the background samples from the target samples. This way, such a
method should capture target-specific patterns while discarding common features. Additionally, we
compare with SimCLR trained on both datasets to get a reference point (even though, in that case,
the common space and the salient space are the same unique space, which cannot perform the sep-
aration of common and salient patterns). See Tab. 10, Tab. 11 and Tab. 12 for the results. SepCLR
always performs better in terms of δtot.

Table 10: Comparison of SepCLR-k-JEM with Contrastive methods on Digits
watermarked on CIFAR-1 (B-ACC)

DIGITS OBJECTS δTOT ↓
S ↑ C ↓ S ↓ C ↑

SIMCLR ON TG AND BG 44.0 44.0 94.6 94.6 180.0
SIMCLR + SUPCON 41.4 51.4 19.0 50.0 159.0
SEPCLR-K-JEM 96.2 11.0 10.4 73.2 32.0
BEST EXPECTED 100.0 10.0 10.0 100.0 0.0

Table 11: Comparison of SepCLR-k-JEM with Contrastive methods on CelebA
accessories (B-ACC).

HATS/GLSS SEX δTOT ↓
S ↑ C ↓ S ↓ C ↑

SIMCLR ON BG AND TG 98.92 98.92 84.16 84.16 100.0
SIMCLR + SUPCON 97.93 82.15 59.98 80.76 63.44
SEPCLR-K-JEM 98.57 55.21 62.52 78.00 41.16
BEST EXPECTED 100.0 50.0 50.0 100.0 0.0

Table 12: Comparison of SepCLR-k-JEM with Contrastive methods on ODIR
dataset (B-ACC).

SUBTYPE SEX δTOT ↓
S ↑ C ↓ S ↓ C ↑

SIMCLR ON BG AND TG 66.10 66.10 57.20 57.20 125.0
SIMCLR + SUPCON 68.70 57.17 51.94 58.41 107.0
SEPCLR-K-JEM 68.54 47.71 52.48 59.62 97.03
BEST EXPECTED 100.0 25.0 50.0 100.0 0.0

G.4 ABLATION STUDY

In the main text, we investigated the effect of a null Mutual Information constraint by removing the
proposed loss (No k-JEM) or by minimizing the Mutual Information estimate (k-MI) rather than the
Joint Entropy estimate (see Tab. 1 and Tab. 2). Here, we propose a further ablation study in Tab. 13
and Tab. 14. We report the results of our method when removing all proposed losses one by one.
We can observe that each loss is important since, when removing it, we either degrade the capture
of salient patterns or we fail to disregard the common features in the salient space.

Table 13: Ablation Study on Digits watermarked on CIFAR-10 (B-ACC).

DIGITS OBJECTS δTOT ↓
S ↑ C ↓ S ↓ C ↑

SEPCLR-λ = 0 (NO K-JEM) 95.6 94.4 9.0 42.0 145.8
SEPCLR-β = 0 (NO INFOLESS REG) 96.2 11.6 10.4 71.8 34.0
SEPCLR-λS = 0 (NO SALIENT TERM) 93.4 42.0 18.6 40.0 90.25
SEPCLR-λC = 0 (NO COMMON TERM) 94.4 10.4 18.8 20.4 94.4
SEPCLR-K-JEM 96.2 11.0 10.4 73.2 32.0
BEST EXPECTED 100.0 10.0 10.0 100.0 0.0
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Table 14: Ablation Study on CelebA accessories (B-ACC).

HATS/GLSS SEX δTOT ↓
S ↑ C ↓ S ↓ C ↑

SEPCLR - λ = 0 (NO K-JEM) 99.03 66.68 98.48 79.48 86.65
SEPCLR - β = 0 (NO INFOLESS REG) 99.12 53.88 68.82 77.29 46.29
SEPCLR - λS = 0 (NO SALIENT TERM) 77.50 87.73 53.30 77.55 85.98
SEPCLR - λC = 0 (NO COMMON TERM) 98.38 56.32 66.44 53.09 71.29
SEPCLR - K-JEM 98.57 55.21 62.52 78.00 41.16
BEST EXPECTED 100.0 50.0 50.0 100.0 0.0

G.5 PERFORMANCES ON THE BACKGROUND DATASETS

In the main text, we evaluated our method on the ability to linearly predict common attributes in the
common space only and salient attributes in the salient space only on target samples only (as they are
generated from both common and target-specific factors of variability). In this section, we evaluate
the ability to linearly predict common attributes only in the common space. In Tab. 15 and Tab 16,
we can see that the common performances remain good on background samples while the salient
space is non-informative as it is supposed to be. We can also notice that, compared to concurrent
CA-VAE methods, our method is still the best-performing one in terms of δ, as it predicts common
attributes way better.

Table 15: Balanced Accuracy results on Digits watermarked on CIFAR-10 on
background samples.

DIGITS OBJECTS δ ↓
S ↑ C ↓ S ↓ C ↑

MM-CVAE × × 18.2 32.8 75.4
SEPVAE × × 20.0 34.4 75.6
SEPCLR-K-JEM × × 28.0 74.0 44.0
BEST EXPECTED × × 10.0 100.0 0.0

Table 16: Balanced Accuracy results on CelebA accessories on background
samples.

HATS/GLSS SEX δ ↓
S ↑ C ↓ S ↓ C ↑

MM-CVAE × × 64.27 70.48 43.79
SEPVAE × × 56.42 70.19 36.23
SEPCLR - K-JEM × × 64.10 86.63 27.47
BEST EXPECTED × × 50.0 100.0 0.0

G.6 ON THE IMPACT OF LUNIF OR LLOG-SUM-EXP

As shown in Sec. A, we estimate the entropy using a resubstitution entropy estimator. This results
in one of the terms of the standard Contrastive loss (i.e., InfoNCE) that accounts for the negative
samples. As shown in Wang et Isola, this term has the same minimizer as the Lunif loss when the
number of negatives tends to be infinite. We decided to use the Lunif loss instead of the Contrastive
loss because it is computationally less expensive, and it has been shown by Wang et Isola to lead to
good representations and good downstream task performance. Furthermore, we have also compared
the two losses in the CIFAR10-MNIST dataset the CelebA accessories (see Tab. 17 and Tab. 18) and
found that the results are slightly better or similar using Lunif.

G.7 ON THE IMPACT OF THE ENCODERS

In this section, we justify our choices in terms of architecture. In Tab. 19 and Tab. 20, we show
the performance of SepVAE and SepCLR on Digits watermarked on CIFAR-10 and CelebA with
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Table 17: Balanced Accuracy results on Digits watermarked on CIFAR-10.
Comparison between Lunif and Llog-sum-exp to estimate and minimize H(C) and
H(S).

DIGITS OBJECTS δ ↓
S ↑ C ↓ S ↓ C ↑

SEPCLR-K-JEM (LUNIF ) 96.2 11.0 10.4 73.2 32.0
SEPCLR-K-JEM (LOG-SUM-EXP) 96.6 11.6 11.0 71.6 34.4
BEST EXPECTED 100.0 10.0 10.0 100.0 0.0

Table 18: Balanced Accuracy results on CelebA accessories.
Comparison between Lunif and Llog-sum-exp to estimate and minimize H(C) and
H(S).

DIGITS OBJECTS δ ↓
S ↑ C ↓ S ↓ C ↑

SEPCLR-K-JEM (LUNIF ) 98.57 55.21 62.52 78.00 41.16
SEPCLR-K-JEM (LOG-SUM-EXP) 98.73 55.06 61.36 76.94 40.75
BEST EXPECTED 100.0 10.0 10.0 100.0 0.0

accessories with different architectures. SepVAE with ResNet-18 performs less better or similarly
than the one described in our original paper. Conversely, SepCLR with ResNet-18 performs bet-
ter. Overall, SepCLR remains largely better than SepVAE, a consistent method across Contrastive
Analysis VAEs.

Table 19: Results of several different encoder architectures on Digits water-
marked on CIFAR (B-ACC).

DIGITS OBJECTS δTOT ↓
S ↑ C ↓ S ↓ C ↑

SEPVAE 90.6 17.8 10.6 36.6 81.2
SEPVAE - RESNET 18 ENCODER 90.8 23.2 10.2 34.0 88.24
SEPCLR WITH SEPVAE’S ENCODER 75.6 28.8 16.2 52.6 96.8
SEPCLR-K-JEM 96.2 11.0 10.4 73.2 32.0
BEST EXPECTED 100.0 10.0 10.0 100.0 0.0

Table 20: Results of several different encoder architectures on CelebA acces-
sories (B-ACC).

HATS/GLSS SEX δTOT ↓
S ↑ C ↓ S ↓ C ↑

SEPVAE 84.46 65.19 60.12 59.20 81.65
SEPVAE WITH RESNET-18 ENCODER 86.13 67.47 60.04 61.93 81.45
SEPCLR - K-JEM WITH SEPVAE’S ENCODER 97.89 60.01 51.07 70.51 42.68
SEPCLR - K-JEM 98.57 55.21 62.52 78.00 41.16
BEST EXPECTED 100.0 50.0 50.0 100.0 0.0

G.8 DSPRITES ELEMENT SUPERIMPOSED ON A DIGIT GRID

We show supplementary qualitative results on the salient space disentanglement in Fig. 6. We qual-
itatively show that the common space captures background variability rather than foreground vari-
ability in Fig. 7. We qualitatively show that the salient space captures foreground variability rather
than background variability in Fig. 8.

We also show quantitative results in Tab. 21 by computing the Mutual Information Gap (MIG) score
to measure the disentanglement in the DSprite-MNIST experiment. Results are reported below, and
it can be noticed that the proposed method obtains good results (MIG is bounded by 0 and 1, where
1 indicates a perfect result).
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Figure 6: Attribute Supervised SepCLR on dSprites superimposed on a digits grid. Given an image,
sampling of the nearest neighbor images in the latent space given small displacement given an axis of
the salient space. Each row represents the variation of only one element of the salient factor s while
keeping c fixed. We can see a certain disentanglement: shape (line 1), zoom (line 2), orientation
(line 3), X and Y position (lines 4 and 5).

Figure 7: Attribute Supervised SepCLR on dSprites superimposed on a digits grid. Given random
target images on the left, we sample the nearest neighbors in the dataset with respect to their L2
distance in the common space only. We can see that the dSprite object remains the same while the
MNIST digit grid in the background changes across the neighbors.

Figure 8: Attribute Supervised SepCLR on dSprites superimposed on a digits grid. Given random
target images on the left, we sample the nearest neighbors in the dataset with respect to their L2
distance in the salient space only, we can see that the dSprite object remains the same while the
MNIST digits in the background change across the neighbors.
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Table 21: Computation of MIG on the salient space in dSprites on MNIST digit grid experiment.

Z1 (SHAPE) Z2 (ZOOM) Z3 (ROTATION) Z4 (TRANS X) Z5 (TRANS Y) AVG
BEST EXPECTED 1 1 1 1 1 1
ATTR SUP SEPCLR - K-JEM 0.915 0.909 0.674 0.823 0.835 0.831
RANDOM VECTOR 0.002 0.003 0.007 0.007 0.0008 0.003

G.9 QUALITATIVE RESULTS ON CELEBA WITH ACCESSORIES

In this section, we propose to display qualitative results on the CelebA accessories dataset. In Fig.
9 and Fig. 10, we propose to respectively display a 2D t-SNE plot for the salient and common latent
space of SepCLR-k-JEM on the target dataset (portraits of celebrities with accessories). Yellow
points represent people with hats, Purple points represent people with glasses. We can clearly see
that our method has correctly encoded the patterns related to the accessories in the salient space and
not in the common space.

Figure 9: 2D t-SNE plot of the salient space of SepCLR-k-JEM on CelebA with accessories. We
highlight in yellow and purple the actual labeled subgroups (people with hats or with glasses), re-
spectively. We can see that the two subgroups are clearly separated in the salient space. Furthermore,
we train a K-Means (K=2), which successfully identifies the two subgroups, and we propose to dis-
play the 6 nearest images from both centroids. Interestingly, we observe various backgrounds, poses,
and people of different genders but with the same accessories (hats in cluster 0 and glasses in cluster
1). This clearly shows that our method has correctly encoded the patterns related to the accessories
in the salient space and not the general ones (e.g., background, pose, gender, etc.).
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Figure 10: 2D t-SNE plot of the common space of SepCLR-k-JEM on CelebA with accessories
(target dataset). We highlight in yellow and purple the actual labeled subgroups (people with hats
or with glasses), respectively. We can see that the two subgroups overlap in the common space.
This clearly confirms that our method does not encode the patterns related to the accessories in the
common space.
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