
Published as a conference paper at ICLR 2024

MATRIX MANIFOLD NEURAL NETWORKS++

Xuan Son Nguyen, Shuo Yang, Aymeric Histace
ETIS, UMR 8051, CY Cergy Paris University, ENSEA, CNRS, France
{xuan-son.nguyen,shuo.yang,aymeric.histace}@ensea.fr

ABSTRACT

Deep neural networks (DNNs) on Riemannian manifolds have garnered increasing
interest in various applied areas. For instance, DNNs on spherical and hyperbolic
manifolds have been designed to solve a wide range of computer vision and nature
language processing tasks. One of the key factors that contribute to the success of
these networks is that spherical and hyperbolic manifolds have the rich algebraic
structures of gyrogroups and gyrovector spaces. This enables principled and ef-
fective generalizations of the most successful DNNs to these manifolds. Recently,
some works have shown that many concepts in the theory of gyrogroups and gy-
rovector spaces can also be generalized to matrix manifolds such as Symmetric
Positive Definite (SPD) and Grassmann manifolds. As a result, some building
blocks for SPD and Grassmann neural networks, e.g., isometric models and multi-
nomial logistic regression (MLR) can be derived in a way that is fully analogous
to their spherical and hyperbolic counterparts. Building upon these works, we
design fully-connected (FC) and convolutional layers for SPD neural networks.
We also develop MLR on Symmetric Positive Semi-definite (SPSD) manifolds,
and propose a method for performing backpropagation with the Grassmann loga-
rithmic map in the projector perspective. We demonstrate the effectiveness of the
proposed approach in the human action recognition and node classification tasks.

1 INTRODUCTION

In recent years, deep neural networks on Riemannian manifolds have achieved impressive perfor-
mance in many applications (Ganea et al., 2018; Skopek et al., 2020; Cruceru et al., 2021; Shimizu
et al., 2021). The most popular neural networks in this family operate on hyperbolic spaces. Such
spaces of constant sectional curvature, like spherical spaces, have the rich algebraic structure of
gyrovector spaces. The theory of gyrovector spaces (Ungar, 2002; 2005; 2014) offers an elegant
and powerful framework based on which natural generalizations (Ganea et al., 2018; Shimizu et al.,
2021) of essential building blocks in DNNs are constructed for hyperbolic neural networks (HNNs).

Matrix manifolds such as SPD and Grassmann manifolds offer a convenient trade-off between struc-
tural richness and computational tractability (Cruceru et al., 2021; López et al., 2021). Therefore, in
many applications, neural networks on matrix manifolds are attractive alternatives to their hyperbolic
counterparts. However, unlike the approaches in Ganea et al. (2018); Shimizu et al. (2021), most
existing approaches for building SPD and Grassmann neural networks (Dong et al., 2017; Huang
& Gool, 2017; Huang et al., 2018; Nguyen et al., 2019; Brooks et al., 2019; Nguyen, 2021; Wang
et al., 2021) do not provide necessary techniques and mathematical tools to generalize a broad class
of DNNs to the considered manifolds.

Recently, the authors of Kim (2020); Nguyen (2022b) have shown that SPD and Grassmann man-
ifolds have the structure of gyrovector spaces or that of nonreductive gyrovector spaces (Nguyen,
2022b) that share remarkable analogies with gyrovector spaces. The work in Nguyen & Yang (2023)
takes one step forward in that direction by generalizing several notions in gyrovector spaces, e.g., the
inner product and gyrodistance (Ungar, 2014) to SPD and Grassmann manifolds. This allows one to
characterize certain gyroisometries of these manifolds and to construct MLR on SPD manifolds.

Although some useful notions in gyrovector spaces have been generalized to SPD and Grassmann
manifolds (Nguyen, 2022a;b; Nguyen & Yang, 2023) that set the stage for an effective way of
building neural networks on these manifolds, many questions remain open. In this paper, we aim at

1

Published as a conference paper at ICLR 2024

addressing some limitations of existing works using a gyrovector space approach. Our contributions
can be summarized as follows:

1. We generalize FC and convolutional layers to the SPD manifold setting.
2. We propose a method for performing backpropagation with the Grassmann logarithmic

map in the projector perspective (Bendokat et al., 2020) without resorting to any approxi-
mation schemes. We then show how to construct graph convolutional networks (GCNs) on
Grassmann manifolds.

3. We develop MLR on SPSD manifolds.
4. We showcase our approach in the human action recognition and node classification tasks.

2 PRELIMINARIES

2.1 SPD MANIFOLDS

The space of n×n SPD matrices, when provided with some geometric structures like a Riemannian
metric, forms SPD manifold Sym+

n (Arsigny et al., 2005). Data lying on SPD manifolds are com-
monly encountered in various domains (Huang & Gool, 2017; Brooks et al., 2019; Nguyen, 2021;
Sukthanker et al., 2021; Nguyen, 2022b;a; Nguyen & Yang, 2023). In many applications, the use of
Euclidean calculus on SPD manifolds often leads to unsatisfactory results (Arsigny et al., 2005). To
tackle this issue, many Riemannian structures for SPD manifolds have been introduced. In this work,
we focus on two widely used Riemannian metrics, i.e., Affine-Invariant (AI) (Pennec et al., 2004)
and Log-Euclidean (LE) (Arsigny et al., 2005) metrics, and a recently introduced Riemannian met-
rics, i.e. Log-Cholesky (LC) metrics (Lin, 2019) that offer some advantages over Affine-Invariant
and Log-Euclidean metrics.

2.2 GRASSMANN MANIFOLDS

Grassmann manifolds Grn,p are the collection of linear subspaces of fixed dimension p of the Eu-
clidean space Rn (Edelman et al., 1998). Data lying on Grassmann manifolds arise naturally in many
applications (Absil et al., 2007; Bendokat et al., 2020). Points on Grassmann manifolds can be rep-
resented from different perspectives (Bendokat et al., 2020). Two typical approaches use projection
matrices or those with orthonormal columns. Each of them can be effective in some problems but
might be inappropriate in some other contexts (Nguyen, 2022b). Although geometrical descriptions
of Grassmann manifolds have been given in numerous works (Edelman et al., 1998), some com-
putational issues remain to be addressed. For instance, the question of how to effectively perform
backpropagation with the Grassmann logarithmic map in the projector perspective remains open.

2.3 NEURAL NETWORKS ON SPD AND GRASSMANN MANIFOLDS

2.3.1 NEURAL NETWORKS ON SPD MANIFOLDS

The work in Huang & Gool (2017) introduces SPDNet with three novel layers, i.e., Bimap, LogEig,
and ReEig layers that has become one of the most successful architectures in the field. In Brooks
et al. (2019), the authors further improve SPDNet by developing Riemannian versions of batch nor-
malization layers. Following these works, some works (Nguyen et al., 2019; Nguyen, 2021; Wang
et al., 2021; Kobler et al., 2022; Ju & Guan, 2023) design variants of Bimap and batch normalization
layers in SPD neural networks. The work in Chakraborty et al. (2020) presents a different approach
based on intrinsic operations on SPD manifolds. Their proposed layers have nice theoretical prop-
erties. A common limitation of the above works is that they do not provide necessary mathematical
tools for constructing many essential building blocks of DNNs on SPD manifolds. Recently, some
works (Nguyen, 2022a;b; Nguyen & Yang, 2023) take a gyrovector space approach that enables
natural generalizations of some building blocks of DNNs, e.g., MLR for SPD neural networks.

2.3.2 NEURAL NETWORKS ON GRASSMANN MANIFOLDS

In Huang et al. (2018), the authors propose GrNet that explores the same rule of matrix backprop-
agation (Ionescu et al., 2015) as SPDNet. Some existing works (Wang & Wu, 2020; Souza et al.,

2

Published as a conference paper at ICLR 2024

2020) are also inspired by GrNet. Like their SPD counterparts, most existing Grassmann neural
networks are not built upon a mathematical framework that allows one to generalize a broad class
of DNNs to Grassmann manifolds. Using a gyrovector space approach, Nguyen & Yang (2023) has
shown that some concepts in Euclidean spaces can be naturally extended to Grassmann manifolds.

3 PROPOSED APPROACH

3.1 NOTATION

Let M be a homogeneous Riemannian manifold, TPM be the tangent space of M at P ∈ M.
Denote by exp(P) and log(P) the usual matrix exponential and logarithm of P, ExpP(W) the
exponential map at P that associates to a tangent vector W ∈ TPM a point ofM, LogP(Q) the
logarithmic map of Q ∈ M at P, TP→Q(W) the parallel transport of W from P to Q along
geodesics connecting P and Q. For simplicity of exposition, we will concentrate on real matrices.
Denote by Mn,m the space of n ×m matrices, Sym+

n the space of n × n SPD matrices, Symn the
space of n×n symmetric matrices, S+

n,p the space of n×n SPSD matrices of rank p ≤ n, Grn,p the
p-dimensional subspaces of Rn in the projector perspective. For clarity of presentation, let G̃rn,p
be the p-dimensional subspaces of Rn in the ONB (orthonormal basis) perspective (Bendokat et al.,
2020). For notations related to SPD manifolds, we use the letter g ∈ {ai, le, lc} as a subscript
(superscript) to indicate the considered Riemannian metric, unless otherwise stated. Other notations
will be introduced in appropriate paragraphs. Our notations are summarized in Appendix A.

3.2 NEURAL NETWORKS ON SPD MANIFOLDS

In Nguyen (2022a;b), the author has shown that SPD manifolds with Affine-Invariant, Log-
Euclidean, and Log-Cholesky metrics form gyrovector spaces referred to as AI, LE, and LC gy-
rovector spaces, respectively. We adopt the notations in these works and consider the case where
r = 1 (see Nguyen (2022b), Definition 3.1). Let ⊕ai,⊕le, and ⊕lc be the binary operations in AI,
LE, and LC gyrovector spaces, respectively. Let 	ai,	le, and 	lc be the inverse operations in AI,
LE, and LC gyrovector spaces, respectively. These operations are given in Appendix G.

3.2.1 FC LAYERS IN SPD NEURAL NETWORKS

Our method for generalizing FC layers to the SPD manifold setting relies on a reformulation of SPD
hypergyroplanes (Nguyen & Yang, 2023). We first recap the definition of SPD hypergyroplanes.

Definition 3.1 (SPD Hypergyroplanes (Nguyen & Yang, 2023)). For P ∈ Sym+,g
n , W ∈

TP Sym+,g
n , SPD hypergyroplanes are defined as

Hspd,gW,P = {Q ∈ Sym+,g
n : 〈LoggP(Q),W〉gP = 0},

where 〈., .〉gP denotes the inner product at P given by the considered Riemannian metric.

Proposition 3.2 gives an equivalent definition for SPD hypergyroplanes.

Proposition 3.2. Let P ∈ Sym+,g
n , W ∈ TP Sym+,g

n , and Hspd,gW,P be the SPD hypergyroplanes
defined in Definition 3.1. Then

Hspd,gW,P = {Q ∈ Sym+,g
n : 〈	gP⊕g Q,ExpgIn(T gP→In

(W))〉g = 0},

where In denotes the n× n identity matrix, and 〈., .〉g is the SPD inner product in Sym+,g
n (Nguyen

& Yang, 2023) (see Appendix G.7 for the definition of the SPD inner product).

Proof See Appendix I.

In DNNs, an FC layer linearly transforms the input in such a way that the k-th dimension of the
output corresponds to the signed distance from the output to the hyperplane that contains the origin
and is orthonormal to the k-th axis of the output space. This interpretation has proven useful in
generalizing FC layers to the hyperbolic setting (Shimizu et al., 2021).

3

Published as a conference paper at ICLR 2024

Notice that the equation of SPD hypergyroplanes in Proposition 3.2 has the form 〈	gP ⊕g
Q,W′〉g = 0, where W′ ∈ Sym+,g

n . This equation can be seen as a generalization of the hy-
perplane equation 〈w, x〉 + b = 〈−p + x,w〉 = 0, where w, x, p ∈ Rn, b ∈ R, and 〈p, w〉 = −b.
Therefore, Proposition 3.2 suggests that any linear function of an SPD matrix X ∈ Sym+,g

n can be
written as 〈	gP ⊕g X,W〉g , where P,W ∈ Sym+,g

n . The above interpretation of FC layers now
can be applied to our case for constructing FC layers in SPD neural networks. For convenience of
presentation, in Definition 3.3, we will index the dimensions (axes) of the output space using two
subscripts corresponding to the row and column indices in a matrix.
Definition 3.3. Let Eg(i,j), i ≤ j, i, j = 1, . . . ,m be the (i, j)-th axis of the output space. An SPD
hypergyroplane that contains the origin and is orthonormal to the Eg(i,j) axis can be defined as

Hspd,g
Logg

Im
(Eg

(i,j)
),Im

= {Q ∈ Sym+,g
m : 〈Q, Eg(i,j)〉

g = 0}.

It remains to specify an orthonormal basis for each family of the considered Riemannian metrics
of SPD manifolds. Proposition 3.4 gives such an orthonormal basis for AI gyrovector spaces along
with the expression for the output of FC layers with Affine-Invariant metrics.
Proposition 3.4 (FC layers with Affine-Invariant Metrics). Let (e1, . . . , em), ‖ei‖ = 1, i =
1 . . . ,m be an orthonormal basis of Rm. Let 〈., .〉aiP be the Affine-Invariant metric computed at
P ∈ Sym+,ai

m as

〈V,W〉aiP = Tr(VP−1WP−1) + β Tr(VP−1) Tr(WP−1),

where β > − 1
m . An orthonormal basis Eai(i,j), i ≤ j, i, j = 1, . . . ,m of Sym+,ai

m can be given as

Eai(i,j) =

exp
(
eie

T
j − 1

m

(
1− 1√

1+mβ

)
Im

)
, if i = j

exp
(eie

T
j +eje

T
i√

2

)
, if i < j

Denote by v(i,j)(X) = 〈	aiP(i,j) ⊕ai X,W(i,j)〉ai,P(i,j),W(i,j) ∈ Sym+,ai
n , i ≤ j, i, j =

1, . . . ,m. Let α = 1
m (
√

1 +mβ − 1). Then the output of an FC layer is computed as Y =

exp
(
[y(i,j)]

m
i,j=1

)
, where [y(i,j)]

m
i,j=1 is the matrix having y(i,j) as the element at the i-th row and

j-th column, and y(i,j) is given by

y(i,j) =


v(i,j)(X) + α

∑m
k=1 v(k,k)(X), if i = j

1√
2
v(i,j)(X), if i < j

1√
2
v(j,i)(X), if i > j

Proof See Appendix J.

As shown in Arsigny et al. (2005), a Log-Euclidean metric on Sym+,le
n can be obtained from any

inner product on Symn. In this work, we consider a metric that is invariant under all similarity
transformations, i.e., the metric 〈W,V〉leIn = Tr(WV). We have the following result.

Proposition 3.5 (FC layers with Log-Euclidean Metrics). An orthonormal basis Ele(i,j), i ≤
j, i, j = 1, . . . ,m of Sym+,le

m can be given by

Ele(i,j) =

exp
(
eie

T
j

)
, if i = j

exp
(eie

T
j +eje

T
i√

2

)
, if i < j

Let v(i,j)(X) = 〈	leP(i,j) ⊕le X,W(i,j)〉le,P(i,j),W(i,j) ∈ Sym+,le
n , i ≤ j, i, j = 1, . . . ,m.

Then the output of an FC layer is computed as Y = exp
(
[y(i,j)]

m
i,j=1

)
, where y(i,j) is given by

y(i,j) =


v(i,j)(X), if i = j
1√
2
v(i,j)(X), if i < j

1√
2
v(j,i)(X), if i > j

4

Published as a conference paper at ICLR 2024

Proof See Appendix K.

Finally, we give the characterization of an orthonormal basis for LC gyrovector spaces and the
expression for the output of FC layers with Log-Cholesky metrics.
Proposition 3.6 (FC layers with Log-Cholesky Metrics). An orthonormal basis Elc(i,j), i ≤
j, i, j = 1, . . . ,m of Sym+,lc

m can be given by

Elc(i,j) =

{
(e− 1)eie

T
j + Im, if i = j

(eje
T
i + Im)(eie

T
j + Im), if i < j

Let v(i,j)(X) = 〈	lcP(i,j) ⊕lc X,W(i,j)〉lc,P(i,j),W(i,j) ∈ Sym+,lc
n , i ≤ j, i, j = 1, . . . ,m.

Then the output of an FC layer is computed as Y = YY
T

, where Y = [y(i,j)]
m
i,j=1, and y(i,j) is

given by

y(j,i) =


exp(v(i,j)(X)), if i = j

v(i,j)(X), if i < j

0, if i > j

Proof See Appendix L.

3.2.2 CONVOLUTIONAL LAYERS IN SPD NEURAL NETWORKS

Consider applying a 2D convolutional layer to a multi-channel image. Let Nin and Nout be
the numbers of input and output channels, respectively. Denote by yk(i,j), i = 1, . . . , Nrow, j =

1, . . . , Ncol, k = 1, . . . , Nout the value of the k-th output channel at pixel (i, j). Then

yk(i,j) =

Nin∑
l=1

〈w(l,k),xl(i,j)〉+ bk, (1)

where xl(i,j) is a receptive field of the l-th input channel, w(l,k) is the filter associated with the
l-th input channel and the k-th output channel, and bk is the bias for the k-th output channel.
Let X(i,j) = concat(x1

(i,j), . . . ,x
Nin

(i,j)), Wk = concat(w(1,k), . . . ,w(Nin,k)), where operation
concat(.) concatenates all of its arguments. Then Eq. (1) can be rewritten (Shimizu et al., 2021) as

yk(i,j) = 〈Wk,X(i,j)〉+ bk. (2)

Note that Eq. (2) has the form 〈w, x〉 + b and thus the computations discussed in Section 3.2.1 can
be applied to implement convolutional layers in SPD neural networks. Specifically, given a set of
SPD matrices Pi ∈ Sym+,g

n , i = 1, . . . , N , operation concatspd(P1, . . . ,PN) produces a block
diagonal matrix having Pi as diagonal elements.

In Chakraborty et al. (2020), the authors design a convolution operation for SPD neural networks.
However, their method is based on the concept of weighted Fréchet Mean, while ours is built upon
the concepts of SPD hypergyroplane and SPD pseudo-gyrodistance from an SPD matrix to an SPD
hypergyroplane (Nguyen & Yang, 2023). Also, our convolution operation can be used for dimen-
sionality reduction, while theirs always produces an output of the same dimension as the inputs.

3.3 MLR IN STRUCTURE SPACES

Motivated by the works in Nguyen (2022a); Nguyen & Yang (2023), in this section, we aim to build
MLR on SPSD manifolds. For any P ∈ S+

n,p, we consider the decomposition P = UPSPU
T
P ,

where UP ∈ G̃rn,p and SP ∈ Sym+
p . Each element of S+

n,p can be seen as a flat p-dimensional
ellipsoid in Rn (Bonnabel et al., 2013). The flat ellipsoid belongs to a p-dimensional subspace
spanned by the columns of UP , while the p × p SPD matrix SP defines the shape of the ellipsoid
in Sym+

p . A canonical representation of P in structure space G̃rn,p × Sym+
p is computed by iden-

tifying a common subspace and then rotating UP to this subspace. The SPD matrix SP is rotated
accordingly to reflect the changes of UP . Details of these computations are given in Appendix H.

5

Published as a conference paper at ICLR 2024

Assuming that a canonical representation in structure space G̃rn,p×Sym+
p is obtained for each point

in S+
n,p, we now discuss how to build MLR in this space. As one of the first steps for developing

network building blocks in a gyrovector space approach is to construct some basic operations in the
considered manifold, we give the definitions of the binary and inverse operations in the following.

Definition 3.7 (The Binary Operation in Structure Spaces). Let (UP ,SP), (UQ,SQ) ∈ G̃rn,p×
Sym+,g

p . Then the binary operation ⊕psd,g in structure space G̃rn,p × Sym+,g
p is defined as

(UP ,SP)⊕psd,g (UQ,SQ) = (UP ⊕̃grUQ,SP ⊕g SQ),

where ⊕̃gr is the binary operation in G̃rn,p (see Appendix G.6 for the definition of ⊕̃gr).

Definition 3.8 (The Inverse Operation in Structure Spaces). Let (UP ,SP) ∈ G̃rn,p × Sym+,g
p .

Then the inverse operation 	psd,g in structure space G̃rn,p × Sym+,g
p is defined as

	psd,g(UP ,SP) = (̃grUP ,	gSP),

where 	̃gr is the inverse operation in G̃rn,p (see Appendix G.6 for the definition of 	̃gr).

Our construction of the binary and inverse operations in G̃rn,p × Sym+,g
p is clearly advantageous

compared to the method in Nguyen (2022a) since this method does not preserve the information
about the subspaces of the terms involved in these operations. In addition to the binary and inverse
operations, we also need to define the inner product in structure spaces.

Definition 3.9 (The Inner Product in Structure Spaces). Let (UP ,SP), (UQ,SQ) ∈ G̃rn,p ×
Sym+,g

p . Then the inner product in structure space G̃rn,p × Sym+,g
p is defined as

〈(UP ,SP), (UQ,SQ)〉psd,g = λ〈UPU
T
P ,UQU

T
Q〉gr + 〈SP ,SQ〉g,

where λ > 0, 〈., .〉gr is the Grassmann inner product (Nguyen & Yang, 2023) (see Appendix G.7).

The key idea to generalize MLR to a Riemannian manifold is to change the margin to reflect the
geometry of the considered manifold (a formulation of MLR from the perspective of distances to
hyperplanes is given in Appendix C). This requires the notions of hyperplanes and margin in the
considered manifold that are referred to as hypergyroplanes and pseudo-gyrodistances (Nguyen &
Yang, 2023), respectively. In our case, the definition of hypergyroplanes in structure spaces, sug-
gested by Proposition 3.2, can be given below.

Definition 3.10 (Hypergyroplanes in Structure Spaces). Let P,W ∈ G̃rn,p × Sym+,g
p . Then

hypergyroplanes in structure space G̃rn,p × Sym+,g
p are defined as

Hpsd,gW,P = {Q ∈ G̃rn,p × Sym+,g
p : 〈	psd,gP⊕psd,g Q,W〉psd,g = 0}.

Pseudo-gyrodistances in structure spaces can be defined in the same way as SPD pseudo-
gyrodistances. We refer the reader to Appendix G.8 for all related notions. Theorem 3.11 gives
an expression for the pseudo-gyrodistance from a point to a hypergyroplane in a structure space.

Theorem 3.11 (Pseudo-gyrodistances in Structure Spaces). Let W = (UW ,SW), P =

(UP ,SP), X = (UX ,SX) ∈ G̃rn,p × Sym+,g
p , and Hpsd,gW,P be a hypergyroplane in structure

space G̃rn,p × Sym+,g
p . Then the pseudo-gyrodistance from X toHpsd,gW,P is given by

d̄(X,Hpsd,gW,P) =
|λ〈(̃grUP ⊕̃grUX)(̃grUP ⊕̃grUX)T ,UWUT

W 〉gr + 〈	gSP ⊕g SX ,SW 〉g|√
λ(‖UWUT

W ‖gr)2 + (‖SW ‖g)2
,

where ‖.‖gr and ‖.‖g are the norms induced by the Grassmann and SPD inner products, respectively.

Proof See Appendix M.

The algorithm for computing the pseudo-gyrodistances is given in Appendix B.

6

Published as a conference paper at ICLR 2024

3.4 NEURAL NETWORKS ON GRASSMANN MANIFOLDS

In this section, we present a method for computing the Grassmann logarithmic map in the projector
perspective. We then propose GCNs on Grassmann manifolds.

3.4.1 GRASSMANN LOGARITHMIC MAP IN THE PROJECTOR PERSPECTIVE

The Grassmann logarithmic map is given (Batzies et al., 2015; Bendokat et al., 2020) by

LoggrP (Q) = [Ω,P],

where P,Q ∈ Grn,p, and Ω is computed as

Ω =
1

2
log
(
(In − 2Q)(In − 2P)

)
.

Notice that the matrix (In − 2Q)(In − 2P) is generally not an SPD matrix. This raises an issue
when one needs to implement an operation that requires the Grassmann logarithmic map in the
projector perspective using popular deep learning frameworks like PyTorch and Tensorflow, since
the matrix logarithm function is not differentiable in these frameworks. To deal with this issue,
we rely on the following result that allows us to compute the Grassmann logarithmic map in the
projector perspective from the Grassmann logarithmic map in the ONB perspective.
Proposition 3.12. Let τ be the mapping such that

τ : G̃rn,p → Grn,p, U 7→ UUT .

Let L̃og
gr

U (V),U,V ∈ G̃rn,p be the logarithmic map of V at U in the ONB perspective. Then

LoggrP (Q) = τ−1(P)
(
L̃og

gr

τ−1(P)(τ
−1(Q))

)T
+ L̃og

gr

τ−1(P)(τ
−1(Q))τ−1(P)T .

Proof See Appendix N.

Note that the Grassmann logarithmic map L̃og
gr

U (V) can be computed via singular value decom-
position (SVD) that is a differentiable operation in PyTorch and Tensorflow (see Appendix E.2.2).
Therefore, Proposition 3.12 provides an effective implementation of the Grassmann logarithmic map
in the projector perspective for gradient-based learning.

3.4.2 GRAPH CONVOLUTIONAL NETWORKS ON GRASSMANN MANIFOLDS

We propose to extend GCNs to Grassmann geometry using an approach similar to Chami et al.
(2019); Zhao et al. (2023). Let G = (V, E) be a graph with vertex set V and edge set E , xli, i ∈ V be
the embedding of node i at layer l (l = 0 indicates input node features), N (i) = {j : (i, j) ∈ E} be
the set of neighbors of i ∈ V , Wl and bl be the weight and bias for layer l, and σ(.) be a non-linear
activation function. A basic GCN message-passing update (Zhao et al., 2023) can be expressed as

pli = Wlxl−1i (feature transformation)

qli =
∑

j∈N (i)

wijp
l
j (aggregation)

xli = σ(qli + bl) (bias and nonlinearity)

For the aggregation operation, the weights wij can be computed using different methods (Kipf &
Welling, 2017; Hamilton et al., 2017). Let Xl

i ∈ Grn,p, i ∈ V be the Grassmann embedding of node
i at layer l. For feature transformation on Grassmann manifolds, we use isometry maps based on
left Grassmann gyrotranslations (Nguyen & Yang, 2023), i.e.,

φM(Xl
i) = exp([LoggrIn,p

(M), In,p])X
l
i exp(−[LoggrIn,p

(M), In,p]),

where In,p =

[
Ip 0
0 0

]
∈ Mn,n, and M ∈ Grn,p is a model parameter. Let Expgr(.) be the

exponential map in Grn,p. Then the aggregation process is performed as

Ql
i = ExpgrIn,p

(∑
j∈N (i)

ki,j LoggrIn,p
(Plj)

)
,

7

Published as a conference paper at ICLR 2024

N
o
d

e
 i

N
o
d

e
 j

N
o
d

e
 k

E
x
p

 m
a
p

E
x
p

 m
a
p

E
x
p

 m
a
p

Iso
m

e
try

 m
a
p

Iso
m

e
try

 m
a
p

Iso
m

e
try

 m
a
p

Initialization Feature transformation Aggregation

B
ia

s a
n
d

 n
o
n
lin

e
a
rity

Input sequence

(a) (b)

Output class probabilities M
LR

 la
y
e
r

C
o
n
v
o
lu

tio
n
a
l la

y
e
r

Figure 1: The pipelines of GyroSpd++ (left) and Gr-GCN++ (right).

where Pli and Ql
i are the input and output node features of the aggregation operation, and ki,j =

|N (i)|− 1
2 |N (j)|− 1

2 represents the relative importance of node j to node i. For any X ∈ Grn,p,

let exp([LoggrIn,p
(X), In,p])̃In,p = VU be a QR decomposition, where Ĩn,p =

[
Ip
0

]
∈ Mn,p,

V ∈ Mn,p is a matrix with orthonormal columns, and U ∈ Mp,p is an upper-triangular matrix.
Then the non-linear activation function (Nair & Hinton, 2010; Huang et al., 2018) is given by

σ(X) = VVT .

Let Bl ∈ Grn,p be the bias for layer l. Then the message-passing update of our network can be
summarized as

Pli = φMl(Xl−1
i) (feature transformation)

Ql
i = ExpgrIn,p

(∑
j∈N (i)

ki,j LoggrIn,p
(Plj)

)
(aggregation)

Xl
i = σ(Bl ⊕gr Ql

i) (bias and nonlinearity)

The Grassmann logarithmic maps in the aggregation operation are obtained using Proposition 3.12.

Another approach for embedding graphs on Grassmann manifolds has also been proposed in Zhou
et al. (2022). However, unlike our method, this method creates a Grassmann representation for a
graph via a SVD of the matrix formed from node embeddings previously learned by a Euclidean
neural network. Therefore, it is not designed to learn node embeddings on Grassmann manifolds.

4 EXPERIMENTS

4.1 HUMAN ACTION RECOGNITION

We use three datasets, i.e., HDM05 (Müller et al., 2007), FPHA (Garcia-Hernando et al., 2018), and
NTU RBG+D 60 (NTU60) (Shahroudy et al., 2016). We compare our networks against the following
state-of-the-art models: SPDNet (Huang & Gool, 2017)1, SPDNetBN (Brooks et al., 2019)2, SPSD-
AI (Nguyen, 2022a), GyroAI-HAUNet (Nguyen, 2022b), and MLR-AI (Nguyen & Yang, 2023).

4.1.1 ABLATION STUDY

Convolutional layers in SPD neural networks Our network GyroSpd++ has a MLR layer
stacked on top of a convolutional layer (see Fig. 1). The motivation for using a convolutional layer

1https://github.com/zhiwu-huang/SPDNet.
2https://papers.nips.cc/paper/2019/hash/6e69ebbfad976d4637bb4b39de261bf7-Abstract.

html.

8

https://github.com/zhiwu-huang/SPDNet
https://papers.nips.cc/paper/2019/hash/6e69ebbfad976d4637bb4b39de261bf7-Abstract.html
https://papers.nips.cc/paper/2019/hash/6e69ebbfad976d4637bb4b39de261bf7-Abstract.html

Published as a conference paper at ICLR 2024

Table 1: Results (mean accuracy ± standard deviation) and model sizes (MB) of various SPD
neural networks on the three datasets (computed over 5 runs).

Method HDM05 #HDM05 FPHA #FPHA NTU60 #NTU60
SPDNet 71.36 ± 1.49 6.58 88.79 ± 0.36 0.99 76.14 ± 1.43 1.80
SPDNetBN 75.05 ± 1.38 6.68 91.02 ± 0.25 1.03 78.35 ± 1.34 2.06
GyroAI-HAUNet 77.05 ± 1.35 0.31 95.65 ± 0.23 0.11 93.27 ± 1.29 0.02
SPSD-AI 79.64 ± 1.54 0.31 95.72 ± 0.44 0.11 93.92 ± 1.55 0.03
MLR-AI 78.26 ± 1.37 0.60 95.70 ± 0.26 0.21 94.27 ± 1.32 0.05
GyroSpd++ (Ours) 79.78 ± 1.42 0.76 96.84 ± 0.27 0.27 95.28 ± 1.37 0.07
GyroSpsd++ (Ours) 78.52 ± 1.34 0.75 97.90 ± 0.24 0.27 96.64 ± 1.35 0.07

Table 2: Results and computation times (seconds) per epoch of Gr-GCN++ and its variant based on
the ONB perspective. Node embeddings are learned on G̃r14,7 and Gr14,7 for Gr-GCN-ONB and
Gr-GCN++, respectively. Results are computed over 5 runs.

Method Gr-GCN-ONB Gr-GCN++

Airport
Accuracy ± standard deviation 81.9 ± 1.2 82.8 ± 0.7
Training 0.49 0.97
Testing 0.40 0.69

Pubmed
Accuracy ± standard deviation 76.2 ± 1.5 80.3 ± 0.5
Training 3.40 6.48
Testing 2.76 4.47

Cora
Accuracy ± standard deviation 68.1 ± 1.0 81.6 ± 0.4
Training 0.57 0.77
Testing 0.46 0.52

is that it can extract global features from local ones (covariance matrices computed from joint coor-
dinates within sub-sequences of an action sequence). We use Affine-Invariant metrics for the convo-
lutional layer and Log-Euclidean metrics for the MLR layer. Results in Tab. 1 show that GyroSpd++
consistently outperforms the SPD baselines in terms of mean accuracy. Results of GyroSpd++ with
different designs of Riemannian metrics for its layers are given in Appendix D.4.1.

MLR in structure spaces We build GyroSpsd++ by replacing the MLR layer of GyroSpd++ with
a MLR layer proposed in Section 3.3. Results of GyroSpsd++ are given in Tab. 1. Except SPSD-
AI, GyroSpsd++ outperforms the other baselines on HDM05 dataset in terms of mean accuracy.
Furthermore, GyroSpsd++ outperforms GyroSpd++ and all the baselines on FPHA and NTU60
datasets in terms of mean accuracy. These results show that MLR is effective when being designed
in structure spaces from a gyrovector space perspective.

4.2 NODE CLASSIFICATION

We use three datasets, i.e., Airport (Zhang & Chen, 2018), Pubmed (Namata et al., 2012a), and
Cora (Sen et al., 2008), each of them contains a single graph with thousands of labeled nodes. We
compare our network Gr-GCN++ (see Fig. 1) against its variant Gr-GCN-ONB (see Appendix E.2.4)
based on the ONB perspective. Results are shown in Tab. 2. Both networks give the best performance
for n = 14 and p = 7. It can be seen that Gr-GCN++ outperforms Gr-GCN-ONB in all cases. The
performance gaps are significant on Pubmed and Cora datasets.

5 CONCLUSION

In this paper, we develop FC and convolutional layers for SPD neural networks, and MLR on SPSD
manifolds. We show how to perform backpropagation with the Grassmann logarithmic map in the
projector perspective. Based on this method, we extend GCNs to Grassmann geometry. Finally,
we present our experimental results demonstrating the efficacy of our approach in the human action
recognition and node classification tasks.

9

Published as a conference paper at ICLR 2024

REFERENCES

Pierre-Antoine Absil, Robert E. Mahony, and Rodolphe Sepulchre. Optimization Algorithms on
Matrix Manifolds. Princeton University Press, 2007.

Vincent Arsigny, Pierre Fillard, Xavier Pennec, and Nicholas Ayache. Fast and Simple Computa-
tions on Tensors with Log-Euclidean Metrics. Technical Report RR-5584, INRIA, 2005.

E. Batzies, K. Hper, L. Machado, and F. Silva Leite. Geometric Mean and Geodesic Regression on
Grassmannians. Linear Algebra and its Applications, 466:83–101, 2015.

Thomas Bendokat, Ralf Zimmermann, and P. A. Absil. A Grassmann Manifold Handbook: Basic
Geometry and Computational Aspects. CoRR, abs/2011.13699, 2020. URL https://arxiv.
org/abs/2011.13699.

Silvère Bonnabel, Anne Collard, and Rodolphe Sepulchre. Rank-preserving Geometric Means of
Positive Semi-definite Matrices. Linear Algebra and its Applications, 438:3202–3216, 2013.

Daniel A. Brooks, Olivier Schwander, Frédéric Barbaresco, Jean-Yves Schneider, and Matthieu
Cord. Riemannian Batch Normalization for SPD Neural Networks. In NeurIPS, pp. 15463–
15474, 2019.

Rudrasis Chakraborty, Jose Bouza, Jonathan H. Manton, and Baba C. Vemuri. ManifoldNet: A Deep
Neural Network for Manifold-valued Data with Applications. TPAMI, 44(2):799–810, 2020.

Ines Chami, Rex Ying, Christopher R, and Jure Leskovec. Hyperbolic Graph Convolutional Neural
Networks. CoRR, abs/1910.12933, 2019. URL https://arxiv.org/abs/1910.12933.

Weize Chen, Xu Han, Yankai Lin, Hexu Zhao, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou.
Fully Hyperbolic Neural Networks. In ACL, pp. 5672–5686, 2022.

Calin Cruceru, Gary Bécigneul, and Octavian-Eugen Ganea. Computationally Tractable Riemannian
Manifolds for Graph Embeddings. In AAAI, pp. 7133–7141, 2021.

Jindou Dai, Yuwei Wu, Zhi Gao, and Yunde Jia. A Hyperbolic-to-Hyperbolic Graph Convolutional
Network. In CVPR, pp. 154–163, 2021.

Zhen Dong, Su Jia, Chi Zhang, Mingtao Pei, and Yuwei Wu. Deep Manifold Learning of Symmetric
Positive Definite Matrices with Application to Face Recognition. In AAAI, pp. 4009–4015, 2017.

Alan Edelman, Tomás A. Arias, and Steven T. Smith. The Geometry of Algorithms with Orthogo-
nality Constraints. SIAM Journal on Matrix Analysis and Applications, 20(2):303–353, 1998.

Octavian-Eugen Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks. In
NeurIPS, pp. 5350–5360, 2018.

Guillermo Garcia-Hernando, Shanxin Yuan, Seungryul Baek, and Tae-Kyun Kim. First-Person
Hand Action Benchmark with RGB-D Videos and 3D Hand Pose Annotations. In CVPR, pp.
409–419, 2018.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive Representation Learning on Large
Graphs. In NIPS, pp. 1025–1035, 2017.

Mehrtash Harandi, Mathieu Salzmann, and Richard Hartley. Dimensionality Reduction on SPD
Manifolds: The Emergence of Geometry-Aware Methods. TPAMI, 40:48–62, 2018.

Zhiwu Huang and Luc Van Gool. A Riemannian Network for SPD Matrix Learning. In AAAI, pp.
2036–2042, 2017.

Zhiwu Huang, Jiqing Wu, and Luc Van Gool. Building Deep Networks on Grassmann Manifolds.
In AAAI, pp. 3279–3286, 2018.

Catalin Ionescu, Orestis Vantzos, and Cristian Sminchisescu. Matrix Backpropagation for Deep
Networks with Structured Layers. In ICCV, pp. 2965–2973, 2015.

10

https://arxiv.org/abs/2011.13699
https://arxiv.org/abs/2011.13699
https://arxiv.org/abs/1910.12933

Published as a conference paper at ICLR 2024

Ce Ju and Cuntai Guan. Graph Neural Networks on SPD Manifolds for Motor Imagery Classifica-
tion: A Perspective From the Time-Frequency Analysis. IEEE Transactions on Neural Networks
and Learning Systems, pp. 1–15, 2023.

Qiyu Kang, Kai Zhao, Yang Song, Sijie Wang, and Wee Peng Tay. Node Embedding from Neural
Hamiltonian Orbits in Graph Neural Networks. In ICML, pp. 15786–15808, 2023.

Sejong Kim. Ordered Gyrovector Spaces. Symmetry, 12(6), 2020.

Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional Net-
works. CoRR, abs/1609.02907, 2017. URL https://arxiv.org/abs/1609.02907.

Reinmar J. Kobler, Jun ichiro Hirayama, Qibin Zhao, and Motoaki Kawanabe. SPD Domain-
specific Batch Normalization to Crack Interpretable Unsupervised Domain Adaptation in EEG.
In NeurIPS, pp. 6219–6235, 2022.

Guy Lebanon and John Lafferty. Hyperplane Margin Classifiers on the Multinomial Manifold. In
ICML, pp. 66, 2004.

Zhenhua Lin. Riemannian Geometry of Symmetric Positive Definite Matrices via Cholesky Decom-
position. SIAM Journal on Matrix Analysis and Applications, 40(4):1353–1370, 2019.

Qi Liu, Maximilian Nickel, and Douwe Kiela. Hyperbolic Graph Neural Networks. In NeurIPS, pp.
8228–8239, 2019.

Ziyu Liu, Hongwen Zhang, Zhenghao Chen, Zhiyong Wang, and Wanli Ouyang. Disentangling and
Unifying Graph Convolutions for Skeleton-Based Action Recognition. In CVPR, pp. 143–152,
2020.

Federico López, Beatrice Pozzetti, Steve Trettel, Michael Strube, and Anna Wienhard. Vector-
valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices. In
NeurIPS, pp. 18350–18366, 2021.

Meinard Müller, Tido Röder, Michael Clausen, Bernhard Eberhardt, Björn Krüger, and Andreas
Weber. Documentation Mocap Database HDM05. Technical Report CG-2007-2, Universität
Bonn, June 2007.

Vinod Nair and Geoffrey E. Hinton. Rectified Linear Units Improve Restricted Boltzmann Ma-
chines. In ICML, pp. 807–814, 2010.

Galileo Namata, Ben London, Lise Getoor, and Bert Huang. Query-driven Active Surveying for
Collective Classification. In 10th International Workshop on Mining and Learning with Graphs,
volume 8, pp. 1, 2012a.

Galileo Namata, Ben London, Lise Getoor, and Bert Huang. Query-driven Active Surveying for
Collective Classification. In Workshop on Mining and Learning with Graphs, 2012b.

Xuan Son Nguyen. GeomNet: A Neural Network Based on Riemannian Geometries of SPD Matrix
Space and Cholesky Space for 3D Skeleton-Based Interaction Recognition. In ICCV, pp. 13379–
13389, 2021.

Xuan Son Nguyen. A Gyrovector Space Approach for Symmetric Positive Semi-definite Matrix
Learning. In ECCV, pp. 52–68, 2022a.

Xuan Son Nguyen. The Gyro-Structure of Some Matrix Manifolds. In NeurIPS, pp. 26618–26630,
2022b.

Xuan Son Nguyen and Shuo Yang. Building Neural Networks on Matrix Manifolds: A Gyrovector
Space Approach. CoRR, abs/2305.04560, 2023. URL https://arxiv.org/abs/2305.
04560.

Xuan Son Nguyen, Luc Brun, Olivier Lézoray, and Sébastien Bougleux. A Neural Network Based
on SPD Manifold Learning for Skeleton-based Hand Gesture Recognition. In CVPR, pp. 12036–
12045, 2019.

11

https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/2305.04560
https://arxiv.org/abs/2305.04560

Published as a conference paper at ICLR 2024

Xavier Pennec, Pierre Fillard, and Nicholas Ayache. A Riemannian Framework for Tensor Comput-
ing. Technical Report RR-5255, INRIA, 2004.

Xavier Pennec, Stefan Horst Sommer, and Tom Fletcher. Riemannian Geometric Statistics in Medi-
cal Image Analysis. Academic Press, 2020.

Chiara Plizzari, Marco Cannici, and Matteo Matteucci. Skeleton-based Action Recognition via
Spatial and Temporal Transformer Networks. Computer Vision and Image Understanding, 208:
103219, 2021.

Prithviraj Sen, Galileo Mark Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina
Eliassi-Rad. Collective Classification in Network Data. AI Magazine, 29(3):93–106, 2008.

Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang. NTU RGB+D: A Large Scale Dataset
for 3D Human Activity Analysis. In CVPR, pp. 1010–1019, 2016.

Ryohei Shimizu, Yusuke Mukuta, and Tatsuya Harada. Hyperbolic Neural Networks++. CoRR,
abs/2006.08210, 2021. URL https://arxiv.org/abs/2006.08210.

Ondrej Skopek, Octavian-Eugen Ganea, and Gary Bécigneul. Mixed-curvature Variational Autoen-
coders. CoRR, abs/1911.08411, 2020. URL https://arxiv.org/abs/1911.08411.

Lincon S. Souza, Naoya Sogi, Bernardo B. Gatto, Takumi Kobayashi, and Kazuhiro Fukui. An
Interface between Grassmann Manifolds and Vector Spaces. In CVPRW, pp. 3695–3704, 2020.

Rhea Sanjay Sukthanker, Zhiwu Huang, Suryansh Kumar, Erik Goron Endsjo, Yan Wu, and Luc Van
Gool. Neural Architecture Search of SPD Manifold Networks. In IJCAI, pp. 3002–3009, 2021.

Abraham Albert Ungar. Beyond the Einstein Addition Law and Its Gyroscopic Thomas Precession:
The Theory of Gyrogroups and Gyrovector Spaces. Fundamental Theories of Physics, vol. 117,
Springer, Netherlands, 2002.

Abraham Albert Ungar. Analytic Hyperbolic Geometry: Mathematical Foundations and Applica-
tions. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.

Abraham Albert Ungar. Analytic Hyperbolic Geometry in N Dimensions: An Introduction. CRC
Press, 2014.

Petar Velic̆ković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Li, and Yoshua
Bengio. Graph Attention Networks. CoRR, abs/1710.10903, 2018. URL https://arxiv.
org/abs/1710.10903.

Rui Wang and Xiao-Jun Wu. GrasNet: A Simple Grassmannian Network for Image Set Classifica-
tion. Neural Processing Letters, 52(1):693–711, 2020.

Rui Wang, Xiao-Jun Wu, and Josef Kittler. SymNet: A Simple Symmetric Positive Definite Mani-
fold Deep Learning Method for Image Set Classification. IEEE Transactions on Neural Networks
and Learning Systems, pp. 1–15, 2021.

Muhan Zhang and Yixin Chen. Link Prediction Based on Graph Neural Networks. CoRR,
abs/1802.09691, 2018. URL https://arxiv.org/abs/1802.09691.

Yiding Zhang, Xiao Wang, Chuan Shi, Nian Liu, and Guojie Song. Lorentzian Graph Convolutional
Networks. In Proceedings of the Web Conference 2021, pp. 1249–1261, 2021.

Yiding Zhang, Xiao Wang, Chuan Shi, Xunqiang Jiang, and Yanfang Ye. Hyperbolic Graph Atten-
tion Network. IEEE Transactions on Big Data, 8(6):1690–1701, 2022.

Wei Zhao, Federico Lopez, J. Maxwell Riestenberg, Michael Strube, Diaaeldin Taha, and Steve
Trettel. Modeling Graphs Beyond Hyperbolic: Graph Neural Networks in Symmetric Positive
Definite Matrices. CoRR, abs/2306.14064, 2023. URL https://arxiv.org/abs/2306.
14064.

Bingxin Zhou, Xuebin Zheng, Yu Guang Wang, Ming Li, and Junbin Gao. Embedding Graphs on
Grassmann Manifold. Neural Networks, 152:322–331, 2022.

Huanyu Zhou, Qingjie Liu, and Yunhong Wang. Learning Discriminative Representations for Skele-
ton Based Action Recognition. In CVPR, pp. 10608–10617, 2023.

12

https://arxiv.org/abs/2006.08210
https://arxiv.org/abs/1911.08411
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1802.09691
https://arxiv.org/abs/2306.14064
https://arxiv.org/abs/2306.14064

Published as a conference paper at ICLR 2024

Symbol Name
Mn,m Space of n×m matrices
Sym+

n Space of n× n SPD matrices
Sym+,ai

n Space of n× n SPD matrices with AI geometry
Symn Space of n× n symmetric matrices
Grn,p Grassmannian in the projector perspective
G̃rn,p Grassmannian in the ONB perspective
S+
n,p Space of n× n SPSD matrices of rank p ≤ n
M Matrix manifold
TPM Tangent space ofM at P

exp(P) Matrix exponential of P
log(P) Matrix logarithm of P

ExpaiP (W) Exponential map of W at P in Sym+,ai
n

LogaiP (Q) Logarithmic map of Q at P in Sym+,ai
n

T aiP→Q(W) Parallel transport of W from P to Q in Sym+,ai
n

ExpgrP (W) Exponential map of W at P in Grn,p

LoggrP (Q) Logarithmic map of Q at P in Grn,p

L̃og
gr

P (Q) Logarithmic map of Q at P in G̃rn,p

⊕ai, 	ai Binary and inverse operations in Sym+,ai
n

⊕gr, 	gr Binary and inverse operations in Grn,p

⊕̃gr, 	̃gr Binary and inverse operations in G̃rn,p

⊕psd,ai Binary operation in G̃rn,p × Sym+,ai
p

	psd,ai Inverse operation in G̃rn,p × Sym+,ai
p

Hspd,aiW,P Hypergyroplane in Sym+,ai
n

Hpsd,aiW,P Hypergyroplane in G̃rn,p × Sym+,ai
p

Eai(i,j) Orthonormal basis of Sym+,ai
m

〈., .〉ai Inner product in Sym+,ai
n

〈., .〉gr Inner product in Grn,p

〈., .〉psd,ai Inner product in G̃rn,p × Sym+,ai
p

〈., .〉aiP Affine-Invariant metric at P
In n× n identity matrix

In,p

[
Ip 0

0 0

]
∈ Mn,n

Ĩn,p

[
Ip

0

]
∈ Mn,p

Table 3: The main notations used in the paper. For the notations related to SPD manifolds, only
those associated with Affine-Invariant geometry are shown.

A NOTATIONS

Tab. 3 presents the main notations used in our paper.

B MLR IN STRUCTURE SPACES

Algorithm 1 summarizes all steps for the computation of pseudo-gyrodistances in Theorem 3.11.

Details of some steps are given below:

13

Published as a conference paper at ICLR 2024

Algorithm 1: Computation of Pseudo-gyrodistances

Input: A batch of SPSD matrices Xi ∈ S+
n,p, i = 1, . . . , N

The number of classes C
The parameters for each class Uc

P ,U
c
W ∈ G̃rn,p,S

c
P ,S

c
W ∈ Sym+

p , c = 1, . . . , C
A constant γ ∈ [0, 1]

Output: An array d ∈ MN,C of pseudo-gyrodistances
1 Um ← Ĩn,p;
2 (Ui,ΣΣΣi,Vi)i=1,...,N ← SVD((Xi)i=1,...,N); /* Xi = UiΣΣΣiV

T
i */

3 (Ui)i=1,...,N ← (Ui[:, : p])i=1,...,N ;
4 if training then
5 U← GrMean((Ui)i=1,...,N);
6 Um ← GrGeodesic(Um,U, γ);
7 end
8 (Ui

X ,S
i
X)i=1,...,N = GrCanonicalize((Xi,Ui)i=1,...,N ,U

m);
9 for c← 1 to C do

10 d((X)i=1,...,N , c) =
|λ〈(̃grU

c
P ⊕̃grUX)(̃grU

c
P ⊕̃grUX)T ,Uc

W (Uc
W)T 〉gr+〈	gS

c
P⊕gSX ,S

c
W 〉

g|√
λ(‖Uc

W (Uc
W)T ‖gr)2+(‖Sc

W ‖g)2
;

11 end

• SVD((Xi)i=1,...,N) performs singular value decompositions for a batch of matrices.
• GrMean((Ui)i=1,...,N) computes the Fréchet mean of its arguments.
• GrGeodesic(Um,U, γ) computes a point on a geodesic from Um to U at step γ (γ = 0.1

in our experiments).
• GrCanonicalize((Xi,Ui)i=1,...,N ,V) computes the canonical representations of Xi, i =

1, . . . , N using V as a common subspace (see Appendix H).
• Line 10: UX = (Ui

X)i=1,...,N ,SX = (SiX)i=1,...,N , and the computation of pseudo-
gyrodistances is performed in batches.

C FORMULATION OF MLR FROM THE PERSPECTIVE OF DISTANCES TO
HYPERPLANES

Given K classes, MLR computes the probability of each of the output classes as

p(y = k|x) =
exp(wTk x+ bk)∑K
i=1 exp(wTi x+ bi)

∝ exp(wTk x+ bk), (3)

where x is an input sample, bi ∈ R, x,wi ∈ Rn, i = 1, . . . ,K.

As shown in Lebanon & Lafferty (2004), Eq. (3) can be rewritten as

p(y = k|x) ∝ exp(sign(wTk x+ bk)‖wk‖d(x,Hwk,bk)),

where d(x,Hwk,bk) is the distance from point x to a hyperplaneHwk,bk defined as

Hw,b = {x ∈ Rn : 〈w, x〉+ b = 0},
where w ∈ Rn \ {0}, and b ∈ R.

D HUMAN ACTION RECOGNITION

D.1 DATASETS

HDM05 (Müller et al., 2007) It has 2337 sequences of 3D skeleton data classified into 130
classes. Each frame contains the 3D coordinates of 31 body joints. We use all the action classes and
follow the experimental protocol in Harandi et al. (2018) in which 2 subjects are used for training
and the remaining 3 subjects are used for testing.

14

Published as a conference paper at ICLR 2024

FPHA (Garcia-Hernando et al., 2018) It has 1175 sequences of 3D skeleton data classified into
45 classes. Each frame contains the 3D coordinates of 21 hand joints. We follow the experimental
protocol in Garcia-Hernando et al. (2018) in which 600 sequences are used for training and 575
sequences are used for testing.

NTU60 (Shahroudy et al., 2016) It has 56880 sequences of 3D skeleton data classified into 60
classes. Each frame contains the 3D coordinates of 25 or 50 body joints. We use the mutual actions
and follow the cross-subject experimental protocol in Shahroudy et al. (2016) in which data from 20
subjects are used for training, and those from the other 20 subjects are used for testing.

D.2 IMPLEMENTATION DETAILS

D.2.1 SETUP

We use the PyTorch framework to implement our networks and those from previous works. These
networks are trained using cross-entropy loss and Adadelta optimizer for 2000 epochs. The learning
rate is set to 10−3. The factors β (see Proposition 3.4) and λ (see Definition 3.9) are set to 0 and
1, respectively. For GyroSpd++, the sizes of output matrices of the convolutional layer are set
to 34 × 34, 21 × 21, and 11 × 11 for the experiments on HDM05, FPHA, and NTU60 datasets,
respectively. For GyroSpsd++, the sizes of SPD matrices in structure spaces are set to 20 × 20,
14 × 14, and 8 × 8 for the experiments on HDM05, FPHA, and NTU60 datasets, respectively. We
use a batch size of 32 for HDM05 and FPHA datasets, and a batch size of 256 for NTU60 dataset.

D.2.2 INPUT DATA

We use a similar method as in Nguyen (2022b) to compute the input data for our network Gy-
roSpd++. We first identify a closest left (right) neighbor of every joint based on their distance to
the hip (wrist) joint, and then combine the 3D coordinates of each joint and those of its left (right)
neighbor to create a feature vector for the joint. For a given frame t, a mean vector µµµt and a co-
variance matrix ΣΣΣt are computed from the set of feature vectors of the frame and then combined to
create an SPD matrix as

Yt =

[
ΣΣΣt +µµµt(µµµt)

T µµµt
(µµµt)

T 1

]
.

The lower part of matrix log(Yt) is flattened to obtain a vector ṽt. All vectors ṽt within a time
window [t, t+c−1], where c is determined from a temporal pyramid representation of the sequence
(the number of temporal pyramids is set to 2 in our experiments), are used to compute a covariance
matrix as

Zt =
1

c

t+c−1∑
i=t

(ṽi − v̄t)(ṽi − v̄t)
T , (4)

where v̄t = 1
c

∑t+c−1
i=t ṽi. For GyroAI-HAUNet, SPSD-AI, MLR-AI, GyroSpd++, and Gy-

roSpsd++, the input data are the set of matrices obtained in Eq. (4).

For SPDNet and SPDNetBN, each sequence is represented by a covariance matrix (Huang & Gool,
2017; Brooks et al., 2019). The sizes of the covariance matrices are 93×93, 60×60, and 150×150
for HDM05, FPHA, and NTU60 datasets, respectively. For SPDNet, the same architecture as the
one in Huang & Gool (2017) is used with three Bimap layers. For SPDNetBN, the same architecture
as the one in Brooks et al. (2019) is used with three Bimap layers. The sizes of the transformation
matrices for the experiments on HDM05, FPHA, and NTU60 datasets are set to 93 × 93, 60 × 60,
and 150× 150, respectively.

D.2.3 CONVOLUTIONAL LAYERS

In order to reduce the number of parameters and the computational cost for the convolutional layer
in GyroSpd++, we assume a diagonal structure for the parameter P(i,j) (see Propositions 3.4, 3.5,
and 3.6), i.e.,

P(i,j) = concatspd(P
1
(i,j), . . . ,P

L
(i,j)),

where L is the number of input SPD matrices of operation concatspd(.).

15

Published as a conference paper at ICLR 2024

D.2.4 OPTIMIZATION

For parameters that are SPD matrices, we model them on the space of symmetric matrices, and then
apply the exponential map at the identity.

For any parameter P ∈ G̃rn,p, we parameterize it by a matrix B ∈ Mp,n−p such that[
0 B
−BT 0

]
= [LoggrIn,p

(PPT), In,p].

Then parameter P can be computed by

P = exp([LoggrIn,p
(PPT), In,p])̃In,p = exp

([
0 B
−BT 0

])
Ĩn,p.

Thus, we can optimize all parameters on Euclidean spaces without having to resort to techniques
developed on Riemannian manifolds.

D.3 TIME COMPLEXITY ANALYSIS

Let nin × nin be the size of input SPD matrices, nout × nout be the size of output matrices of the
convolutional layer in GyroSpd++, nrank × nrank be the size of SPD matrices in structure spaces,
nc be the number of action classes, ns be the number of SPD matrices encoding a sequence.

• GyroSpd++: The convolutional layer has time complexity O(nsn
2
outn

3
in). The MLR layer

has time complexity O(ncn
3
out).

• GyroSpsd++: The convolutional layer has time complexityO(nsn
2
outn

3
in). The MLR layer

has time complexity O(n3out + ncn
3
rank).

D.4 MORE EXPERIMENTAL RESULTS

D.4.1 ABLATION STUDY

Impact of the factor β in Affine-Invariant metrics To study the impact of the factor β in Affine-
Invariant metrics on the performance of GyroSpd++, we follow the approach in Nguyen (2021).
Denote by (µµµ,ΣΣΣ) the Gaussian distribution where µµµ ∈ Rn and ΣΣΣ ∈ Mn,n are its mean and covari-
ance. We can identify the Gaussian distribution (µµµ,ΣΣΣ) with the following matrix:

(detΣΣΣ)−
1

n+k

[
ΣΣΣ + kµµµµµµT µµµ(k)
µµµ(k)T Ik

]
,

where k ≥ 1,µµµ(k) is a matrix with k identical column vectorsµµµ. The natural symmetric Riemannian
metric resulting from the above embedding is given (Nguyen, 2021) by

〈V,W〉P = Tr(VP−1WP−1)− 1

n+ k
Tr(VP−1) Tr(WP−1),

where P is an SPD matrix, V and W are two tangent vectors at point P of the manifold. This
Riemannian metric belongs to the family of Affine-Invariant metrics where β = − 1

n+k > −
1
n .

For this study, we replace matrix Zt in Eq. (4) with the following matrix:

Z̃t = (detZt)
− 1

n1+k

[
Zt + kv̄tv̄

T
t v̄t(k)

v̄t(k)T Ik

]
,

where n1 × n1 is the size of matrix Zt. The input data for GyroSpd++ are then computed from Z̃t
as before.

Tab. 4 reports the mean accuracies and standard deviations of GyroSpd++ with respect to different
settings of β on the three datasets. GyroSpd++ with the setting β = 0 generally works well on all the
datasets. Setting k = 3 improves the accuracy of GyroSpd++ on NTU60 dataset. We also observe
that setting k to a high value, e.g., k = 10 lowers the accuracies of GyroSpd++ on the datasets.

16

Published as a conference paper at ICLR 2024

Table 4: Results (mean accuracy ± standard deviation) of GyroSpd++ with respect to different
settings of β on the three datasets (computed over 5 runs).

Dataset HDM05 FPHA NTU60
β = 0 79.78 ± 1.42 96.84 ± 0.27 95.28 ± 1.37
k = 3 79.12 ± 1.37 96.16 ± 0.25 96.32 ± 1.33
k = 10 78.25 ± 1.39 95.91 ± 0.29 94.44 ± 1.34

Table 5: Results and computation times (seconds) of GyroSpd++ with respect to different set-
tings of the output dimension of the convolutional layer on FPHA dataset (computed over 5 runs).
Experiments are conducted on a machine with Intel Core i7-8565U CPU 1.80 GHz 24GB RAM.

m Accuracy ± standard deviation
Computation time/epoch
Training Testing

10 94.53 ± 0.31 30.08 12.07
21 96.84 ± 0.27 129.30 50.84
30 96.80 ± 0.26 182.52 71.49

Output dimension of convolutional layers Tab. 5 presents results and computation times of Gy-
roSpd++ with respect to different settings of the output dimension of the convolutional layer on
FPHA dataset. Results show that the setting m = 21 clearly outperforms the setting m = 10 in
terms of mean accuracy and standard deviation. However, compared to the setting m = 21, the
setting m = 30 only increases the training and testing times without improving the mean accuracy
of GyroSpd++.

Design of Riemannian metrics for network blocks The use of different Riemannian metrics for
the convolutional and MLR layers of GyroSpd++ results in different variants of the same archi-
tecture. Results of some of these variants on FPHA dataset are shown in Tab. 6. It is noted that
our architecture gives the best performance in terms of mean accuracy, while the architecture with
Log-Cholesky geometry for the MLR layer performs the worst in terms of mean accuracy.

D.4.2 COMPARISON OF GYROSPD++ AGAINST STATE-OF-THE-ART METHODS

Here we present more comparisons of our networks against state-of-the-art networks. These net-
works belong to one of the following families of neural networks: (1) Hyperbolic neural net-
works: HypGRU (Ganea et al., 2018)3; (2) Graph neural networks: MS-G3D (Liu et al., 2020)4,
TGN (Zhou et al., 2023)5; (3) Transformers: ST-TR (Plizzari et al., 2021)6. Note that MS-G3D,
TGN, and ST-TR are specifically designed for skeleton-based action recognition. We use default
parameter settings for these networks. Results of our networks and their competitors on HDM05,
FPHA, and NTU60 datasets are shown in Tabs. 7, 8, and 9, respectively. On HDM05 dataset, Gy-
roSpd++ outperforms HypGRU, MS-G3D, ST-TR, and TGN by 25.6%, 10.8%, 11.9%, and 9.5%
points in terms of mean accuracy, respectively. On FPHA dataset, GyroSpd++ outperforms Hyp-
GRU, MS-G3D, ST-TR, and TGN by 38.6%, 8.5%, 10.9%, and 6.0% points in terms of mean
accuracy, respectively. On NTU60 dataset, GyroSpd++ outperforms HypGRU, MS-G3D, ST-TR,
and TGN by 7.0%, 3.1%, 4.2%, and 2.2% points in terms of mean accuracy, respectively. Overall,
our networks are superior to their competitors in all cases.

Finally, we present a comparison of computation times of SPD neural networks in Tab. 10.

17

Published as a conference paper at ICLR 2024

Table 6: Results (mean accuracy ± standard deviation) of GyroSpd++ with different designs of
Riemannian metrics for its layers on FPHA dataset (computed over 5 runs).

AI-LE (GyroSpd++) LE-LE AI-AI LE-AI AI-LC
96.84 ± 0.27 94.72 ± 0.25 94.35 ± 0.29 95.21 ± 0.26 89.16 ± 0.26

Table 7: Results of our networks and some state-of-the-art methods on HDM05 dataset (computed
over 5 runs).

Method Accuracy ± Standard deviation
HypGRU (Ganea et al., 2018) 54.18 ± 1.51
MS-G3D (Liu et al., 2020) 68.92 ± 1.72
ST-TR (Plizzari et al., 2021) 67.84 ± 1.66
TGN (Zhou et al., 2023) 70.26 ± 1.48
GyroSpd++ (Ours) 79.78 ± 1.42
GyroSpsd++ (Ours) 78.52 ± 1.34

E NODE CLASSIFICATION

E.1 DATASETS

Airport (Chami et al., 2019) It is a flight network dataset from OpenFlights.org where nodes
represent airports, edges represent the airline Routes, and node labels are the populations of the
country where the airport belongs.

Pubmed (Namata et al., 2012b) It is a standard benchmark describing citation networks where
nodes represent scientific papers in the area of medicine, edges are citations between them, and node
labels are academic (sub)areas.

Cora (Sen et al., 2008) It is a citation network where nodes represent scientific papers in the area
of machine learning, edges are citations between them, and node labels are academic (sub)areas.

The statistics of the three datasets are summarized in Tab. 11.

E.2 IMPLEMENTATION DETAILS

E.2.1 SETUP

Our network is implemented using the PyTorch framework. We set hyperparameters as in Zhao et al.
(2023) that are found via grid search for each graph architecture on the development set of a given
dataset. The best settings of n and p are found from (n, p) ∈ {(2k, k)}, k = 2, 3, . . . , 10. The batch
size is set to the total number of graph nodes in a dataset (Chami et al., 2019; Zhao et al., 2023). The
networks are trained using cross-entropy loss and Adam optimizer for a maximum of 500 epochs.
The learning rate is set to 10−2. Early stopping is used when the loss on the development set has
not decreased for 200 epochs. Each network has two layers that perform message passing twice at
one iteration (Zhao et al., 2023). We use the 70/15/15 percent splits (Chami et al., 2019) for Airport
dataset, and standard splits in GCN Kipf & Welling (2017) for Pubmed and Cora datasets.

3https://github.com/dalab/hyperbolic_nn.
4https://github.com/kenziyuliu/MS-G3D.
5https://github.com/zhysora/FR-Head.
6https://github.com/Chiaraplizz/ST-TR.

18

https://github.com/dalab/hyperbolic_nn
https://github.com/kenziyuliu/MS-G3D
https://github.com/zhysora/FR-Head
https://github.com/Chiaraplizz/ST-TR

Published as a conference paper at ICLR 2024

Table 8: Results of our networks and some state-of-the-art methods on FPHA dataset (computed
over 5 runs).

Method Accuracy ± Standard deviation
HypGRU (Ganea et al., 2018) 58.24 ± 0.29
MS-G3D (Liu et al., 2020) 88.26 ± 0.67
ST-TR (Plizzari et al., 2021) 85.94 ± 0.46
TGN (Zhou et al., 2023) 90.81 ± 0.53
GyroSpd++ (Ours) 96.84 ± 0.27
GyroSpsd++ (Ours) 97.90 ± 0.24

Table 9: Results of our networks and some state-of-the-art methods on NTU60 dataset (computed
over 5 runs).

Method Accuracy ± Standard deviation
HypGRU (Ganea et al., 2018) 88.26 ± 1.40
MS-G3D (Liu et al., 2020) 92.15 ± 1.60
ST-TR (Plizzari et al., 2021) 91.04 ± 1.52
TGN (Zhou et al., 2023) 93.02 ± 1.56
GyroSpd++ (Ours) 95.28 ± 1.37
GyroSpsd++ (Ours) 96.64 ± 1.35

E.2.2 GRASSMANN LOGARITHMIC MAP IN THE ONB PERSPECTIVE

The Grassmann logarithmic map in the ONB perspective is given (Edelman et al., 1998) by

L̃og
gr

P (Q) = U arctan(ΣΣΣ)VT ,

where P,Q ∈ G̃rn,p, U, ΣΣΣ, and V are obtained from the SVD (In−PPT)Q(PTQ)−1 = UΣΣΣVT .

E.2.3 GR-GCN++

To create Grassmann embeddings as input node features, we first transform d-dimensional input
features into p(n− p)-dimensional vectors via a linear map. We then reshape each resulting vector
to a matrix B ∈ Mp,n−p. The input Grassmann embedding X0

i , i ∈ V is computed as

X0
i = exp

([
0 B
−BT 0

])
In,p exp

(
−
[

0 B
−BT 0

])
.

E.2.4 GR-GCN-ONB

To create Grassmann embeddings as input node features, we first transform d-dimensional input
features into p(n− p)-dimensional vectors via a linear map. We then reshape each resulting vector
to a matrix B ∈ Mp,n−p. The input Grassmann embedding X0

i , i ∈ V is computed as

X0
i = exp

([
0 B
−BT 0

])
Ĩn,p.

Feature transformation is performed by first mapping the input to a projection matrix (using the
mapping τ in Section 3.4.1), then applying an isometry map based on left Grassmann gyrotrans-
lations (Nguyen & Yang, 2023), and finally mapping the result back to a matrix with orthonormal
columns. This is equivalent to performing the following mapping:

φM(Xl
i) = M⊕̃grXl

i = exp([LoggrIn,p
(MMT), In,p])X

l
i,

where Xl
i ∈ G̃rn,p and M ∈ G̃rn,p is a model parameter.

19

Published as a conference paper at ICLR 2024

Table 10: Computation times (seconds) per epoch of our networks and some state-of-the-art SPD
neural networks on FPHA dataset. Experiments are conducted on a machine with Intel Core i7-
8565U CPU 1.80 GHz 24GB RAM.

Method SPDNet SPDNetBN GyroAI-HAUNet SPSD-AI MLR-AI GyroSpd++ GyroSpsd++
Training 17.52 40.08 62.21 73.73 102.58 129.30 126.08
Testing 3.48 6.22 30.83 35.54 46.28 50.84 48.06

Table 11: Description of the datasets for node classification.

Dataset #Nodes #Edges #Classes #Features
Airport 3188 18631 4 4
Pubmed 19717 44338 3 500
Cora 2708 5429 7 1433

For any X ∈ G̃rn,p, let X = VU be a QR decomposition of X, where V ∈ Mn,p is a matrix with
orthonormal columns, and U ∈ Mp,p is an upper-triangular matrix. Then the non-linear activation
function is given by

σ(X) = V.

Bias addition is performed using operation ⊕̃gr instead of operation ⊕gr. The output of Gr-GCN-
ONB is mapped to a projection matrix for node classification.

E.2.5 OPTIMIZATION

For any parameter P ∈ Grn,p, we parameterize it by a matrix B ∈ Mp,n−p such that[
0 B
−BT 0

]
= [LoggrIn,p

(P), In,p].

Then parameter P can be computed by

P = exp

([
0 B
−BT 0

])
In,p exp

(
−
[

0 B
−BT 0

])
.

E.3 MORE EXPERIMENTAL RESULTS

E.3.1 ABLATION STUDY

Projector vs. ONB perspective More results of Gr-GCN++ and Gr-GCN-ONB are presented
in Tabs. 12 and 13. As can be observed, Gr-GCN++ outperforms Gr-GCN-ONB in all cases. In
particular, the former outperforms the latter by large margins on Airport and Cora datasets. Results
show that while both the networks learn node embeddings on Grassmann manifolds, the choice of
perspective for representing these embeddings and the associated parameters can have a significant
impact on the network performance.

E.3.2 COMPARISON OF GR-GCN++ AGAINST STATE-OF-THE-ART METHODS

Tab. 14 shows results of Gr-GCN++ and some state-of-the-art methods on the three datasets. The
hyperbolic networks outperform their SPD and Grassmann counterparts on Airport dataset with
high hyperbolicity (Chami et al., 2019). This agrees with previous works (Chami et al., 2019;
Zhang et al., 2022) that report good performances of hyperbolic embeddings on tree-like datasets.
However, our network and its SPD counterpart SPD-GCN outperform their competitors on Pubmed
and Cora datasets with low hyperbolicities. Compared to SPD-GCN, Gr-GCN++ always gives more
consistent results.

20

Published as a conference paper at ICLR 2024

Table 12: Results and computation times (seconds) per epoch of Gr-GCN++ and its variant Gr-
GCN-ONB based on the ONB perspective. Node embeddings are learned on G̃r4,2 and Gr4,2 for
Gr-GCN-ONB and Gr-GCN++, respectively. Results are computed over 5 runs. Experiments are
conducted on a machine with Intel Core i7-9700 CPU 3.00 GHz 15GB RAM.

Method Gr-GCN-ONB Gr-GCN++

Airport
Accuracy ± standard deviation 53.2 ± 1.9 60.1 ± 1.3
Training 0.07 0.21
Testing 0.05 0.12

Pubmed
Accuracy ± standard deviation 75.7 ± 2.1 77.5 ± 1.1
Training 0.50 0.90
Testing 0.38 0.54

Cora
Accuracy ± standard deviation 33.9 ± 2.3 64.4 ± 1.4
Training 0.10 0.12
Testing 0.07 0.08

Table 13: Results and computation times (seconds) per epoch of Gr-GCN++ and its variant Gr-
GCN-ONB based on the ONB perspective. Node embeddings are learned on G̃r6,3 and Gr6,3 for
Gr-GCN-ONB and Gr-GCN++, respectively. Results are computed over 5 runs. Experiments are
conducted on a machine with Intel Core i7-9700 CPU 3.00 GHz 15GB RAM.

Method Gr-GCN-ONB Gr-GCN++

Airport
Accuracy ± standard deviation 65.8 ± 1.5 74.1 ± 0.9
Training 0.19 0.34
Testing 0.14 0.21

Pubmed
Accuracy ± standard deviation 75.8 ± 2.0 78.5 ± 0.9
Training 0.90 1.76
Testing 0.75 1.05

Cora
Accuracy ± standard deviation 41.4 ± 2.2 70.5 ± 1.1
Training 0.16 0.22
Testing 0.12 0.16

F LIMITATIONS OF OUR WORK

Our SPD network GyroSpd++ relies on different Riemannian metrics across the layers, i.e., the
convolutional layer is based on Affine-Invariant metrics while the MLR layer is based on Log-
Euclidean metrics. Although we have provided the experimental results demonstrating that Gy-
roSpd++ achieves good performance on all the datasets compared to state-of-the-art methods, it is
not clear if our design is optimal for the human action recognition task. When it comes to building
a deep SPD architecture, it is useful to provide insights into Riemannian metrics one should use for
each network block in order to obtain good performance on a target task.

In our Grassmann network Gr-GCN++, the feature transformation and bias and nonlinearity op-
erations are performed on Grassmann manifolds, while the aggregation operation is performed in
tangent spaces. Previous works (Dai et al., 2021; Chen et al., 2022) on HNNs have shown that this
hybrid method limits the modeling ability of networks. Therefore, it is desirable to develop GCNs
where all the operations are formalized on Grassmann manifolds.

21

Published as a conference paper at ICLR 2024

Table 14: Results (mean accuracy ± standard deviation) of Gr-GCN++ and some state-of-the-art
methods on the three datasets. The best and second best results in terms of mean accuracy are
highlighted in red and blue, respectively.

Method Airport Pubmed Cora
GCN (Kipf & Welling, 2017) 82.2 ± 0.6 77.8 ± 0.8 80.2 ± 2.3
GAT (Velic̆ković et al., 2018) 92.9 ± 0.8 77.6 ± 0.8 80.3 ± 0.6
HGNN (Liu et al., 2019) 84.5 ± 0.7 76.6 ± 1.4 79.5 ± 0.9
HGCN (Chami et al., 2019) 85.3 ± 0.6 76.4 ± 0.8 78.7 ± 0.9
LGCN (Zhang et al., 2021) 88.2 ± 0.2 77.3 ± 1.4 80.6 ± 0.9
HGAT (Zhang et al., 2022) 87.5 ± 0.9 78.0 ± 0.5 80.9 ± 0.7
SPD-GCN (Zhao et al., 2023) 82.6 ± 1.5 78.7 ± 0.5 82.3 ± 0.5
HamGNN (Kang et al., 2023) 95.9 ± 0.1 78.3 ± 0.6 80.1 ± 1.6
Gr-GCN++ (Ours) 82.8 ± 0.7 80.3 ± 0.5 81.6 ± 0.4

G SOME RELATED DEFINITIONS

G.1 GYROGROUPS AND GYROVECTOR SPACES

Gyrovector spaces form the setting for hyperbolic geometry in the same way that vector spaces
form the setting for Euclidean geometry (Ungar, 2002; 2005; 2014). We recap the definitions of
gyrogroups and gyrocommutative gyrogroups proposed in Ungar (2002; 2005; 2014). For greater
mathematical detail and in-depth discussion, we refer the interested reader to these papers.
Definition G.1 (Gyrogroups (Ungar, 2014)). A pair (G,⊕) is a groupoid in the sense that it is
a nonempty set, G, with a binary operation, ⊕. A groupoid (G,⊕) is a gyrogroup if its binary
operation satisfies the following axioms for a, b, c ∈ G:

(G1) There is at least one element e ∈ G called a left identity such that e⊕ a = a.

(G2) There is an element 	a ∈ G called a left inverse of a such that 	a⊕ a = e.

(G3) There is an automorphism gyr[a, b] : G→ G for each a, b ∈ G such that

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c (Left Gyroassociative Law).

The automorphism gyr[a, b] is called the gyroautomorphism, or the gyration of G generated by a, b.

(G4) gyr[a, b] = gyr[a⊕ b, b] (Left Reduction Property).
Definition G.2 (Gyrocommutative Gyrogroups (Ungar, 2014)). A gyrogroup (G,⊕) is gyrocom-
mutative if it satisfies

a⊕ b = gyr[a, b](b⊕ a) (Gyrocommutative Law).

The following definition of gyrovector spaces is slightly different from Definition 3.2 in Ungar
(2014).
Definition G.3 (Gyrovector Spaces). A gyrocommutative gyrogroup (G,⊕) equipped with a scalar
multiplication

(t, x)→ t� x : R×G→ G

is called a gyrovector space if it satisfies the following axioms for s, t ∈ R and a, b, c ∈ G:

(V1) 1� a = a, 0� a = t� e = e, and (−1)� a = 	a.

(V2) (s+ t)� a = s� a⊕ t� a.

(V3) (st)� a = s� (t� a).

(V4) gyr[a, b](t� c) = t� gyr[a, b]c.

(V5) gyr[s� a, t� a] = Id, where Id is the identity map.

22

Published as a conference paper at ICLR 2024

G.2 AI GYROVECTOR SPACES

For P,Q ∈ Sym+
n , the binary operation (Nguyen, 2022a) is given as

P⊕ai Q = P
1
2QP

1
2 .

The inverse operation (Nguyen, 2022a) is given by

	aiP = P−1.

G.3 LE GYROVECTOR SPACES

For P,Q ∈ Sym+
n , the binary operation (Nguyen, 2022a) is given as

P⊕le Q = exp(log(P) + log(Q)).

The inverse operation (Nguyen, 2022a) is given as

	leP = P−1.

G.4 LC GYROVECTOR SPACES

For P,Q ∈ Sym+
n , the binary operation (Nguyen, 2022a) is given as

P⊕lcQ =
(
bL (P)c+bL (Q)c+D(L (P))D(L (Q))

)
.
(
bL (P)c+bL (Q)c+D(L (P))D(L (Q))

)T
,

where bYc is a matrix of the same size as matrix Y ∈ Mn,n whose (i, j) element is Y(i,j) if i > j
and is zero otherwise, D(Y) is a diagonal matrix of the same size as matrix Y whose (i, i) element
is Y(i,i), and L (P) denotes the Cholesky factor of P, i.e., L (P) is a lower triangular matrix with
positive diagonal entries such that P = L (P)L (P)T .

The inverse operation (Nguyen, 2022a) is given by

	lcP =
(
− bL (P)c+ D(L (P))−1

)(
− bL (P)c+ D(L (P))−1

)T
.

G.5 GRASSMANN MANIFOLDS IN THE PROJECTOR PERSPECTIVE

For P,Q ∈ Grn,p, the binary operation (Nguyen, 2022b) is given as

P⊕gr Q = exp([LoggrIn,p
(P), In,p])Q exp(−[LoggrIn,p

(P), In,p]),

where [., .] denotes the matrix commutator.

The inverse operation (Nguyen, 2022b) is defined as

	grP = ExpgrIn,p
(−LoggrIn,p

(P)).

G.6 GRASSMANN MANIFOLDS IN THE ONB PERSPECTIVE

For U,V ∈ G̃rn,p, the binary operation (Nguyen & Yang, 2023) is defined as

U⊕̃grV = exp([LoggrIn,p
(UUT), In,p])V.

The inverse operation can be defined using the approach in Nguyen & Yang (2023) (see Section
2.3.1), i.e.,

	̃grU = τ−1
(
	gr (UUT)

)
,

where the mapping τ is defined in Proposition 3.12, i.e.,

τ : G̃rn,p → Grn,p, U 7→ UUT .

23

Published as a conference paper at ICLR 2024

G.7 THE SPD AND GRASSMANN INNER PRODUCTS

Definition G.4 (The SPD Inner Product). Let P,Q ∈ Sym+,g
n . Then the SPD inner product of P

and Q is defined as

〈P,Q〉g = 〈LoggIn(P),LoggIn(Q)〉gIn .

Definition G.5 (The Grassmann Inner Product). Let P,Q ∈ Grn,p. Then the Grassmann inner
product of P and Q is defined as

〈P,Q〉gr = 〈LoggrIn,p
(P),LoggrIn,p

(Q)〉In,p
,

where 〈., .〉In,p
denotes the inner product at In,p given by the canonical metric of Grn,p.

G.8 THE GYROCOSINE FUNCTION AND GYROANGLES IN STRUCTURE SPACES

Definition G.6 (The Gyrocosine Function and Gyroangles). Let P,Q, and R be three distinct
gyropoints in structure space G̃rn,p × Sym+

p . The gyrocosine of the measure of the gyroangle α,
0 ≤ α ≤ π, between 	psd,gP⊕psd,g Q and 	psd,gP⊕psd,g R is given by the equation

cosα =
〈	psd,gP⊕psd,g Q,	psd,gP⊕psd,g R〉psd,g

‖ 	psd,g P⊕psd,g Q‖psd,g.‖ 	psd,g P⊕psd,g R‖psd,g
,

where ‖.‖psd,g is the norm induced by the inner product in structure spaces. The gyroangle α is
denoted by α = ∠QPR.

G.9 THE GYRODISTANCE FUNCTION IN STRUCTURE SPACES

Definition G.7 (The Gyrodistance Function in Structure Spaces). Let P,Q ∈ G̃rn,p × Sym+
p .

Then the gyrodistance function in structure spaces G̃rn,p × Sym+
p is defined as

d(P,Q) = ‖ 	psd,g P⊕psd,g Q‖psd,g.

G.10 THE PSEUDO-GYRODISTANCE FUNCTION IN STRUCTURE SPACES

Definition G.8 (The Pseudo-gyrodistance Function in Structure Spaces). LetHpsd,gW,P be a hyper-

gyroplane in structure space G̃rn,p×Sym+
p , and X ∈ G̃rn,p×Sym+

p . Then the pseudo-gyrodistance
from X toHpsd,gW,P is defined as

d̄(X,Hpsd,gW,P) = sin(∠XPQ)d(X,P),

where Q is given by

Q = arg max
Q∈Hpsd,g

W,P \{P}
cos(∠QPX).

By convention, sin(∠XPQ) = 0 for any X,Q ∈ Hpsd,gW,P .

H COMPUTATION OF CANONICAL REPRESENTATIONS

Let Vn,p be the space of n × p matrices with orthonormal columns. For any P ∈ S+
n,p, let UP ∈

G̃rn,p, SP ∈ Sym+
p such that P = UPSPU

T
P . Denote by W the common subspace used for

computing a canonical representation of P. We first compute two bases of span(UP) and span(W),
denoted respectively by U and W, such that

dVn,p(U,W) = d
G̃rn,p

(span(UP), span(W)),

24

Published as a conference paper at ICLR 2024

where dVn,p
(., .) and d

G̃rn,p
(., .) are the distances between two points in Vn,p and G̃rn,p, respec-

tively. These two bases can be computed as U = UPY, W = WV, where Y and V are obtained
from a SVD of (UP)TW, i.e.,

(UP)TW = Y(cosΣΣΣ)VT .

The SPD matrix SP in the canonical representation of P is then computed as

SP = VU
T
PUVT .

I PROOF OF PROPOSITION 3.2

Proof. We first recall the definition of the binary operation ⊕g in Nguyen (2022b).

Definition I.1 (The Binary Operation (Nguyen, 2022b)). Let P,Q ∈ Sym+
n . Then the binary

operation ⊕g is defined as

P⊕g Q = ExpgP(T gIn→P(LoggIn(Q))).

We have

〈LoggP(Q),W〉gP
(1)
= 〈T gP→In

(
LoggP(Q)

)
, T gP→In

(W)〉gIn
(2)
= 〈ExpgIn

(
T gP→In

(
LoggP(Q)

))
,ExpgIn

(
T gP→In

(W)
)
〉g,

(5)

where (1) follows from the invariance of the inner product under parallel transport, and (2) follows
from Definition G.4.

Let R = ExpgIn

(
T gP→In

(
LoggP(Q)

))
. Then

LoggIn(R) = T gP→In

(
LoggP(Q)

)
,

which results in
T gIn→P

(
LoggIn(R)

)
= LoggP(Q).

Hence
ExpgP

(
T gIn→P

(
LoggIn(R)

))
= Q.

By the Left Cancellation Law,
Q = P⊕g (gP⊕g Q).

Therefore

ExpgP

(
T gIn→P

(
LoggIn(R)

))
= P⊕g (gP⊕g Q)

= ExpgP

(
T gIn→P

(
LoggIn(gP⊕g Q)

))
,

where the last equality follows from Definition I.1.

We thus have

	gP⊕g Q = R

= ExpgIn

(
T gP→In

(
LoggP(Q)

))
.

(6)

Combining Eqs. (5) and (6), we get

〈LoggP(Q),W〉gP = 〈	gP⊕g Q,ExpgIn
(
T gP→In

(W)
)
〉g,

which concludes the proof of Proposition 3.2.

25

Published as a conference paper at ICLR 2024

J PROOF OF PROPOSITION 3.4

Proof. The first part of Proposition 3.4 can be easily verified using the definition of the SPD inner
product (see Definition G.4) and that of Affine-Invariant metrics (Pennec et al., 2020) (see Chapter
3).

To prove the second part of Proposition 3.4, we will use the notion of SPD pseudo-
gyrodistance (Nguyen & Yang, 2023) in our interpretation of FC layers on SPD manifolds, i.e.,
the signed distance is replaced with the signed SPD pseudo-gyrodistance in the interpretation given
in Section 3.2.1. First, we need the following result from Nguyen & Yang (2023).

Theorem J.1 (The SPD Pseudo-gyrodistance from an SPD Matrix to an SPD Hypergyroplane
in an AI Gyrovector Space (Nguyen & Yang, 2023)). Let HW,P be an SPD hypergyroplane in a
gyrovector space (Sym+

n ,⊕ai,⊗ai), and X ∈ Sym+
n . Then the SPD pseudo-gyrodistance from X

toHW,P is given by

d̄(X,HW,P) =
|〈log(P−

1
2XP−

1
2),P−

1
2WP−

1
2 〉F |

‖P− 1
2WP−

1
2 ‖F

.

By Theorem J.1, the signed SPD pseudo-gyrodistance from Y to an SPD hypergyroplane that con-
tains the origin and is orthogonal to the Eai(i,j) axis is given by

d̄(Y,HLogai
Im

(Eai
(i,j)

),Im) =
〈log(Y),LogaiIm(Eai(i,j))〉F
‖LogaiIm(Eai(i,j))‖F

.

According to our interpretation of FC layers,

v(i,j)(X) =
〈log(Y),LogaiIm(Eai(i,j))〉F
‖LogaiIm(Eai(i,j))‖F

.

We consider two cases:

Case 1: i < j.

v(i,j)(X) =
〈log(Y), 1√

2
(eie

T
j + eje

T
i)〉F

‖ 1√
2
(eieTj + ejeTi)‖F

= 〈log(Y),
1√
2

(eie
T
j + eje

T
i)〉F

=
1√
2

(
log(Y)(i,j) + log(Y)(j,i)

)
=
√

2 log(Y)(i,j).

We thus deduce that

log(Y)(i,j) =
1√
2
v(i,j)(X).

Case 2: i = j.

v(i,i)(X) =
〈log(Y), eie

T
i − 1

m

(
1− 1√

1+mβ

)
Im〉F

‖eieTi − 1
m

(
1− 1√

1+mβ

)
Im‖F

= 〈log(Y), eie
T
i −

1

m

(
1− 1√

1 +mβ

)
Im〉F .

26

Published as a conference paper at ICLR 2024

This leads to

v(i,i)(X) = log(Y)(i,i) −
1

m

(
1− 1√

1 +mβ

) m∑
j=1

log(Y)(j,j), (7)

for i = 1, . . . ,m. By summing up v(i,i)(X), i = 1, . . . ,m, we get

m∑
i=1

v(i,i)(X) =
1√

1 +mβ

m∑
i=1

log(Y)(i,i),

or equivalently,
m∑
i=1

log(Y)(i,i) =
√

1 +mβ
(m∑
i=1

v(i,i)(X)
)
. (8)

Replacing the term
∑m
j=1 log(Y)(j,j) in Eq. (7) with the expression on the right-hand side of Eq. (8)

results in

log(Y)(i,i) = v(i,i)(X) +
1

m
(
√

1 +mβ − 1)

m∑
j=1

v(j,j)(X).

Note that Y = exp([log(Y)(i,j)]
m
i,j=1). This concludes the proof of Proposition 3.4.

K PROOF OF PROPOSITION 3.5

Proof. This proposition is a direct consequence of Proposition 3.4 for β = 0.

L PROOF OF PROPOSITION 3.6

Proof. The first part of Proposition 3.6 can be easily verified using the definition of the SPD inner
product (see Definition G.4) and that of Log-Cholesky metrics (Lin, 2019).

To prove the second part of Proposition 3.6, we first recall the following result from Nguyen & Yang
(2023).

Theorem L.1 (The SPD Gyrodistance from an SPD Matrix to an SPD Hypergyroplane in a LC
Gyrovector Space (Nguyen & Yang, 2023)). LetHW,P be an SPD hypergyroplane in a gyrovector
space (Sym+

n ,⊕lc,⊗lc), and X ∈ Sym+
n . Then the SPD pseudo-gyrodistance from X to HW,P is

equal to the SPD gyrodistance from X toHW,P and is given by

d(X,HW,P) =
|〈A,B〉F |
‖B‖F

,

where
A = −bϕ(P)c+ bϕ(X)c+ log(D(ϕ(P))−1D(ϕ(X))),

B = bW̃c+ D(ϕ(P))−1D(W̃),

W̃ = ϕ(P)
(
ϕ(P)−1W(ϕ(P)−1)T

)
1
2

,

where bYc and D(Y),Y ∈ Mn,n are defined in Section G.4, and ϕ(P) = L (P).

By Theorem L.1, the signed SPD pseudo-gyrodistance from Y to an SPD hypergyroplane that con-
tains the origin and is orthogonal to the Elc(i,j) axis is given by

d(Y,HLoglc
Im

(Elc
(i,j)

),Im) =
〈bϕ(Y)c+ log(D(ϕ(Y))),

(
LoglcIm(Elc(i,j))

)
1
2

〉F
‖
(

LoglcIm(Elc(i,j))
)

1
2

‖F
.

27

Published as a conference paper at ICLR 2024

According to our interpretation of FC layers,

v(i,j)(X) =
〈bϕ(Y)c+ log(D(ϕ(Y))),

(
LoglcIm(Elc(i,j))

)
1
2

〉F
‖
(

LoglcIm(Elc(i,j))
)

1
2

‖F
.

We consider two cases:

Case 1: i < j.

v(i,j)(X) =
〈bϕ(Y)c+ log(D(ϕ(Y))), eje

T
i 〉F

‖ejeTi ‖F
= 〈bϕ(Y)c+ log(D(ϕ(Y))), eje

T
i 〉F

= ϕ(Y)(j,i).

We thus have
ϕ(Y)(j,i) = v(i,j)(X).

Case 2: i = j.

v(i,j)(X) =
〈bϕ(Y)c+ log(D(ϕ(Y))), eie

T
i 〉F

‖eieTi ‖F
= 〈bϕ(Y)c+ log(D(ϕ(Y))), eie

T
i 〉F

= log(ϕ(Y)(i,i)).

Hence
ϕ(Y)(i,i) = exp(v(i,i)(X)).

Setting ϕ(Y) = [y(i,j)]
m
i,j=1, then y(i,j) are given by

y(j,i) =


exp(v(i,j)(X)), if i = j

v(i,j)(X), if i < j

0, if i > j

Since ϕ(Y) is the Cholesky factor of Y, we have

Y = ϕ(Y)ϕ(Y)T ,

which concludes the proof of Proposition 3.6.

M PROOF OF THEOREM 3.11

Proof. LetHpsd,gW,P be a hypergyroplane in structure space G̃rn,p × Sym+
p and X ∈ G̃rn,p × Sym+

p .
By the definition of the pseudo-gyrodistance function,

d̄(X,Hpsd,gW,P) = sin(∠XPQ)d(X,P),

where Q is given by

Q = arg max
Q∈Hpsd,g

W,P \{P}
cos(∠QPX)

= arg max
Q∈Hpsd,g

W,P \{P}

〈	psd,gP⊕psd,g Q,	psd,gP⊕psd,g X〉psd,g

‖ 	psd,g P⊕psd,g Q‖psd,g.‖ 	psd,g P⊕psd,g X‖psd,g
.

28

Published as a conference paper at ICLR 2024

By the definitions of the binary and inverse operations in structure spaces,

	psd,gP⊕psd,g X = (̃grUP ⊕̃grUX ,	gSP ⊕g SX),

	psd,gP⊕psd,g Q = (̃grUP ⊕̃grUQ,	gSP ⊕g SQ).

Hence

〈	psd,gP⊕psd,g X,	psd,gP⊕psd,g Q〉psd,g =λ〈(̃grUP ⊕̃grUX)(̃grUP ⊕̃grUX)T ,

(̃grUP ⊕̃grUQ)(̃grUP ⊕̃grUQ)T 〉gr

+ 〈	gSP ⊕g SX ,	gSP ⊕g SQ〉g.

Let A1 = LoggrIn,p

(
(̃grUP ⊕̃grUX)(̃grUP ⊕̃grUX)T

)
, B1 =

LoggrIn,p

(
(̃grUP ⊕̃grUQ)(̃grUP ⊕̃grUQ)T

)
, A2 = LoggIn(gSP ⊕g SX), and

B2 = LoggIn(gSP ⊕g SQ). Then we have

Q = arg max
Q∈Hpsd,g

W,P \{P}

λ〈A1,B1〉F + 〈A2,B2〉F√
λ‖A1‖2F + ‖A2‖2F .

√
λ‖B1‖2F + ‖B2‖2F

= arg max
Q∈Hpsd,g

W,P \{P}

〈[
√
λA1‖A2], [

√
λB1‖B2]〉F

‖[
√
λA1‖A2]‖F .‖[

√
λB1‖B2]‖F

,

(9)

where ‖ is the concatenation operation similar to operation concatspd(.).

From the equation of hypergyroplanes in structure space G̃rn,p × Sym+
p ,

〈	psd,gP⊕psd,g Q,W〉psd,g = 0.

Let W = (UW ,SW). Then we have

λ〈(̃grUP ⊕̃grUQ)(̃grUP ⊕̃grUQ)T ,UW (UW)T 〉gr + 〈	gSP ⊕g SQ,SW 〉g = 0. (10)

Let W1 = LoggrIn,p

(
UW (UW)T

)
, W2 = LoggIn,p

(SW). Then Eq. (10) can be rewritten as

λ〈B1,W1〉F + 〈B2,W2〉F = 0,

which is equivalent to
〈[
√
λB1‖B2], [

√
λW1‖W2]〉F = 0. (11)

Now, the problem in (9) is to find the minimum angle between the vector [
√
λA1‖A2] and the

Euclidean hyperplane described by Eq. (11). The pseudo-gyrodistance from X to Hpsd,gW,P thus can
be obtained as

d̄(X,Hpsd,gW,P) =
〈[
√
λA1‖A2], [

√
λW1‖W2]〉F

‖[
√
λW1‖W2]‖F

=
λ〈A1,W1〉F + 〈A2,W2〉F√

λ‖W1‖2F + ‖W2‖2F
.

Some simple manipulations lead to

d̄(X,Hpsd,gW,P) =
|λ〈(̃grUP ⊕̃grUX)(̃grUP ⊕̃grUX)T ,UWUT

W 〉gr + 〈	gSP ⊕g SX ,SW 〉g|√
λ(‖UWUT

W ‖gr)2 + (‖SW ‖g)2
,

which concludes the proof of Theorem 3.11.

29

Published as a conference paper at ICLR 2024

N PROOF OF PROPOSITION 3.12

Proof. We need the following result from Nguyen & Yang (2023).

Proposition N.1. Let M and N be two Riemannian manifolds. Let φ : M → N be an isometry.
Then

LogP(Q) = (Dφ−1φ(P))(L̃ogφ(P)(φ(Q))),

where P,Q ∈ M , DτR(W) denotes the directional derivative of a mapping τ at point R ∈ N

along direction W ∈ TRN , Log(.) and L̃og(.) are the logarithmic maps in manifolds M and N,
respectively.

We adopt the notations in Bendokat et al. (2020). The Riemannian metric gOQ(., .) on On is the
standard inner product given (Edelman et al., 1998; Bendokat et al., 2020) as

gOQ(Ω1,Ω2) = Tr(ΩT1 Ω2),

where Q ∈ On, Ω1,Ω2 ∈ TQ On.

Let U ∈ G̃rn,p, D1,D2 ∈ TUG̃rn,p. The canonical metric gG̃r
U (D1,D2) on G̃rn,p is the restric-

tion of the Riemannian metric gOQ(., .) to the horizontal space of TQ On (multiplied by 1/2) and is
given (Edelman et al., 1998; Bendokat et al., 2020) by

gG̃r
U (D1,D2) = Tr

(
DT

1 (In −
1

2
UUT)D2

)
. (12)

Let P ∈ Grn,p, ∆1,∆2 ∈ TP Grn,p. The canonical metric gGrP (∆1,∆2) on Grn,p is the restric-
tion of the Riemannian metric gOQ(., .) to the horizontal space of TQ On (multiplied by 1/2) and is
given (Edelman et al., 1998; Bendokat et al., 2020) by

gGrP (∆1,∆2) =
1

2
Tr
(
(∆hor

1,Q)T∆hor
2,Q

)
,

where ∆hor
1,Q and ∆hor

2,Q are the horizontal lifts of ∆1 and ∆2 to Q, respectively. Here, Q is related

to P by Q = (U U⊥) and P = UUT , where U ∈ G̃rn,p and U⊥ is the orthogonal completion of
U.

Denote by HorU G̃rn,p the horizontal space of TUG̃rn,p. Then this subspace is characterized by

HorU G̃rn,p = {U⊥B|B ∈ Mn−p,p}.

From Eq. (3.2) in Bendokat et al. (2020),

gGrP (∆1,∆2) = Tr
(
(∆hor

1,U)T∆hor
2,U

)
, (13)

where ∆hor
1,U and ∆hor

2,U are the horizontal lifts of ∆1 and ∆2 to U, respectively.

Therefore, by Eq. (12),

g
G̃rn,p

U (∆hor
1,U,∆

hor
2,U) = Tr

(
(∆hor

1,U)T (In −
1

2
UUT)∆hor

2,U

)
= Tr

(
(∆hor

1,U)T∆hor
2,U

)
− 1

2
Tr
(
(∆hor

1,U)TUUT∆hor
2,U

)
= Tr

(
(∆hor

1,U)T∆hor
2,U

)
− 1

2
Tr
(
(U⊥B1)TUUTU⊥B2

)
= Tr

(
(∆hor

1,U)T∆hor
2,U

)
− 1

2
Tr
(
BT

1 U
T
⊥UUTU⊥B2

)
= Tr

(
(∆hor

1,U)T∆hor
2,U

)
,

(14)

where the last equality follows from the fact that UTU⊥ = 0.

Combining Eqs. (13) and (14), we get

gGrP (∆1,∆2) = g
G̃rn,p

U (∆hor
1,U,∆

hor
2,U).

30

Published as a conference paper at ICLR 2024

By Proposition N.1,
LoggrP (F) = (Dττ−1(P))(L̃og

gr

τ−1(P)(τ
−1(F))),

where P,F ∈ Grn,p.

From Eq. (3.15) in Bendokat et al. (2020),

DτR(W) = RWT + WRT .

Therefore

LoggrP (F) = τ−1(P)
(
L̃og

gr

τ−1(P)(τ
−1(F))

)T
+ L̃og

gr

τ−1(P)(τ
−1(F))τ−1(P)T ,

which concludes the proof of Proposition 3.12.

31

	Introduction
	Preliminaries
	SPD Manifolds
	Grassmann Manifolds
	Neural Networks on SPD and Grassmann Manifolds
	Neural Networks on SPD Manifolds
	Neural Networks on Grassmann Manifolds

	Proposed Approach
	Notation
	Neural Networks on SPD Manifolds
	FC Layers in SPD Neural Networks
	Convolutional Layers in SPD Neural Networks

	MLR in Structure Spaces
	Neural Networks on Grassmann Manifolds
	Grassmann Logarithmic Map in The Projector Perspective
	Graph Convolutional Networks on Grassmann Manifolds

	Experiments
	Human Action Recognition
	Ablation Study

	Node Classification

	Conclusion
	Notations
	MLR in Structure Spaces
	Formulation of MLR from the Perspective of Distances to Hyperplanes
	Human Action Recognition
	Datasets
	Implementation Details
	Setup
	Input data
	Convolutional layers
	Optimization

	Time complexity analysis
	More Experimental Results
	Ablation Study
	Comparison of GyroSpd++ against State-of-the-Art Methods

	Node Classification
	Datasets
	Implementation Details
	Setup
	Grassmann logarithmic map in the ONB perspective
	Gr-GCN++
	Gr-GCN-ONB
	Optimization

	More Experimental Results
	Ablation Study
	Comparison of Gr-GCN++ against State-of-the-Art Methods

	Limitations of Our Work
	Some Related Definitions
	Gyrogroups and Gyrovector Spaces
	AI Gyrovector Spaces
	LE Gyrovector Spaces
	LC Gyrovector Spaces
	Grassmann Manifolds in The Projector Perspective
	Grassmann Manifolds in The ONB Perspective
	The SPD and Grassmann Inner Products
	The Gyrocosine Function and Gyroangles in Structure Spaces
	The Gyrodistance Function in Structure Spaces
	The Pseudo-gyrodistance Function in Structure Spaces

	Computation of Canonical Representations
	Proof of Proposition 3.2
	Proof of Proposition 3.4
	Proof of Proposition 3.5
	Proof of Proposition 3.6
	Proof of Theorem 3.11
	Proof of Proposition 3.12

