
1 Appendix1

1.1 Proofs2

Before going on to Theorem 2.3, we first prove the easier Corollary 2.4.3

We want to show that given a lower bound of the optimal value, ∀s, f(s) ≤ B∞(v)(s), under the new4

operator Bf , the value function converges to the same optimal value function given by the Bellman5

operator B.6

Proof. Let v∗ be the fixed point and optimal value of the original Bellman operator: v∗ := B∞(v), v7

be any value function, and s any state.8

First, for the simple case of ∀s,where f(s) ≤ B(v)(s), the new operator backs off to the Bellman9

operator, and follows the convergence of the Bellman operator:10

|Bf (v)(s)− v∗(s)|
=|max(B(v)(s), f(s))− v∗(s)|
=|B(v)(s)− v∗(s)|
=|B(v)(s)− B(v∗)(s)|
≤γ||v − v∗||∞

Second, ∀s,where f(s) > B(v)(s),11

|Bf (v)(s)− v∗(s)|
=|max(B(v)(s), f(s))− v∗(s)|
=|f(s)− v∗(s)|
=v∗(s)− f(s) (because f lower bounds v∗ : v∗(s) ≥ f(s))
<v∗(s)− B(v)(s) (because f(s) > B(v)(s))
=|B(v)(s)− v∗(s)|
≤|B(v)(s)− v∗(s)|
=|B(v)(s)− B(v∗)(s)|
≤γ||v − v∗||∞

Therefore, the distance to the optimal value shrinks by γ with every application of Bf :12

||Bf (v)− v∗||∞ = maxs |Bf (v)(s)− v∗(s)| ≤ γ||v − v∗||∞.13

According to the definition of convergence to v∗, we need to find an N , such that ∀ϵ > 0, ∀v ̸= v∗,14

∀n > N, ||Bn
f (v)− v∗||∞ < ϵ.15

We can easily calculate that any N ≥ logγ
ϵ

||v−v∗||∞ (note, γ < 1) satisfies the condition, which16

concludes the proof that any value function v will converge to v∗ under the lower bounded Bellman17

operator Bf .18

Note, from the proof above, we can see that Bf converges faster than γ (the speed of Bellman19

contraction), when the lower bound is strictly above the Bellman value target, i.e. f(s) > B(v)(s).20

Now for Theorem 2.3: given the maximum achievable value Ḡv(s) and given that f(s) ≤ Ḡv(s), we21

want to show convergence to the optimal value.22

Proof. First, ∀s,where f(s) < B(v)(s), the value target backs off to the original Bellman target, and23

the distance to the optimal value shrinks at rate γ.24

Second, ∀s,where f(s) < v∗(s), it follows from Corollary 2.4 that the distance to the optimal value25

shrinks at rate γ.26

Last, we only need to prove for any s,where f(s) ≥ v∗(s) and f(s) ≥ B(v)(s), the distance to the27

optimal value still shrinks:28

1

|Bf (v)(s)− v∗(s)|
=|max(B(v)(s), f(s))− v∗(s)|
=|f(s)− v∗(s)|
=f(s)− v∗(s)

≤Ḡv(s)− v∗(s)

According to the definition of Ḡv in Equation 3 of the main text:
= max

π∈Π,n∈[1,+∞)
Gπ,v

n (s)− v∗(s)

Now suppose π′ and n(s) achieves the maximum bootstrapped value Ḡv(s):

=Gπ′,v
n(s)(s)− v∗(s)

According to the definition of n-step bootstrapped value Gπ,v
n (s) in Equation 2 of the main text:

=Eπ′
{r1 + γr2 + ...+ γn(s)−1rn(s) + γn(s)v(sn(s))} − v∗(s)

(The expectation above is over all possible n(s)-step trajectories of the given policy π′ and MDP.)
Suppose π∗ is the optimal policy, which achieves maximum value v∗ for any number of steps n and state s:

=Eπ′
{r1 + γr2 + ...+ γn(s)−1rn(s) + γn(s)v(sn(s))} − Eπ∗

{r1 + γr2 + ...+ γn(s)−1rn(s) + γn(s)v∗(sn(s))}

≤Eπ′
{r1 + γr2 + ...+ γn(s)−1rn(s) + γn(s)v(sn(s))} − Eπ′

{r1 + γr2 + ...+ γn(s)−1rn(s) + γn(s)v∗(sn(s))}
(Inequality holds because π∗ maximizes the expected n-step value bootstrapped with the optimal value v∗.

Thus, the expected value of a different policy, e.g. π′, bootstrapped with v∗ will be smaller or equal.)

=γn(s)Eπ′
{v(sn(s))− v∗(sn(s))}

≤γn(s)Eπ′
|v(sn(s))− v∗(sn(s))|

=γn(s)
∑
sn(s)

{pπ
′
(sn(s)|s)× |v(sn(s))− v∗(sn(s))|}

≤γn(s) max
s

|v(s)− v∗(s)|

≤γmins n(s) max
s

|v(s)− v∗(s)|

=γmins n(s)||v − v∗||∞

This means in the case of overestimated bootstrap values, the new operator promises to shrink at a29

rate of γmins n(s), and overall, the new operator will at least shrink at a rate of γ.30

Note, from the proof above, we can see that when the lower bound overestimates, i.e. f(s) ≥ v∗(s),31

Bf converges at a speed of γmins n(s), which could be faster than γ, the speed of Bellman contraction.32

These proofs work for stochastic MDPs, because we treat trajectory rewards and states as random33

variables conditioned on the MDP and the policy. The proofs work for action values as well, by34

simply replacing the value function above v(s) with the action value q(s, a), and the value lower35

bound f(s) with the action value lower bound f(s, a).36

π′ in theory can be different for different state s, so that when unrolling from state s0 for a few steps37

into si, it still follows π′(s0), instead of π′(si). However, it’s easy to prove (by contradiction) that38

there exists a single policy π′ which achieves the maximum achievable value (as long as ties are split39

deterministically).40

1.2 Experiment Setups41

We experiment on three sets of tasks with different input characteristics and control difficulty. Some42

of the tasks are not goal conditioned, so only lower bounding with empirical discounted return is43

available. Some of them are goal conditioned, so both empirical discounted return and hindsight44

relabeling with discounted goal return as lower bound are available.45

2

1.2.1 Atari games46

We experiment on the classical Atari games with image input to test using discounted episodic return47

to lower bound value target. We picked the popular games Breakout, Seaquest, Space Invaders (these48

three were used for hyperparameter tuning by Mnih et al. (2013)), Atlantis, Frostbite and Q*bert49

(these three were highlighted in (He et al., 2017)), and randomly sampled another 11 games from the50

total 56. As with prior work (Mnih et al., 2013; Oh et al., 2018), we evaluate on the deterministic51

versions of the games (NoFrameskip-v4) with actions repeated for a fixed four frames and each game52

started with up to 30 random noop steps before handing to the agent. Each episode of the games53

is capped at 10,000 time steps, with the last time step having discount 0.99 when the time limit is54

reached, i.e. resetting the game without ending the episode. For a regular game end after losing all55

lives, the episode ends, i.e. last step discount is 0. Because the games are episodic, both lb-DR and56

lb-b-nstep methods can be applied.57

1.2.2 Fetch Push, Slide and PickAndPlace58

The FetchEnv tasks (Plappert et al., 2018) are goal conditioned tasks with a robotic arm moving59

objects on a table. Robot states and object position serve as input. The agent outputs continuous60

actions taking the form of relative positions to move to. A PID controller translates the relative61

position actions into the exact torque applied at each joint. Rewards are sparse and goal-conditioned,62

with -1 for non-goal states and 0 for goal states.63

By default the FetchEnv tasks are non-episodic. They reset every 50 steps, but all steps including the64

step right before task reset have the same positive discount (Andrychowicz et al., 2017). As explained65

in Section 3.1, to use episodic discounted return as lower bound, we can make them episodic by66

adding a gym wrapper around the environment to end an episode after its goal is achieved, and67

reset the task. When a goal is not reached within 50 steps, we just reset the task without ending the68

episode, as is done in the original FetchEnv, and such experience is not used in value target lower69

bounding.1 This also changes the nature of the tasks, so the agent does not have to stay at the goal70

state indefinitely, but instead only needs to reach the goal position as fast as possible. This makes the71

episodic FetchEnv tasks slightly easier to train than the original tasks, because the agent only needs72

to reach the goal state quickly, instead of having to reach and stay at the goal position indefinitely.73

(There are ways to avoid changing the desired behavior by e.g. including agent’s speed into the goal74

state or requiring the agent to stay at the goal position for several time steps before ending the episode.75

This seems orthogonal to the main idea here, and is not included in this work.)76

We experiment on both the original/non-episodic FetchEnv tasks (with lb-b-nstep methods) and the77

episodic FetchEnv tasks (with lb-DR and lb-GD methods).78

Compared with the Atari games, the inputs are simpler, no longer image based, but the control task is79

continuous, under realistic physical simulation and harder.80

1.2.3 Pioneer Push and Reach tasks81

This is a set of challenging goal reaching and object pushing tasks for the physically simulated car82

Pioneer 2dx. The car is 0.4 meter long. Objects and goal positions are randomly initialized between83

0.5 meter to 1 meter of each other inside a 10 meter by 10 meter flat space. Inputs are the car and84

object states and the goal positions, and actions are the forces applied on the two driving wheels.85

For the Pioneer Push task, the car has to push a block to within 0.5 meter of the 2 dimensional goal86

position indicated by a small red dot on the ground. For the Pioneer Push and Reach task, the car has87

to first push the object to the goal location (red dot) and then drive to a separate goal position (red ball88

in the air); the goal is achieved when the concatenation of the two goal locations (for Push and for89

Reach) is within 0.5 of the concatenated achieved positions (of the block and the car) in L2-distance.90

These tasks are episodic with sparse goal reward, and we only test the lb-GD and lb-DR+GD methods91

on them with HER as baseline. (TD3 without HER takes too long to train.)92

1Fujita et al. (2020) chose to end episodes when either a maximum of T time steps is reached or the goal is
reached, and provided the agent with the number of timesteps since episode start as input to the agent, so that the
agent is aware of the approaching episode end.

3

Figure 1: The Pioneer Push task and the Push and Reach task.

These tasks take longer time to accomplish, and also take longer time to train than the FetchEnv tasks.93

Some of the reasons are the force based wheel control instead of the higher level position control,94

and the arena space being much larger than just a tabletop.95

1.3 Hyperparameters96

Table 1 lists the hyperparameters of the baseline algorithms. For FetchEnv, they follow published97

work (Plappert et al., 2018). For Atari and Pioneer tasks, they are tuned using one set of random98

seeds and after keeping the hyperparameters fixed, trained with a different set of random seeds and99

evaluated. Value target lower bounding has no parameter, and we did not re-tune any parameters of100

the baseline RL algorithms for value target lower bounding. When comparing lb-b-nstep methods101

with other n-step methods, we simply use the same n as the other baselines.102

For the Atari games, the original DQN setup with only one training environment takes too long to103

train so we decided to tune SAC as baseline and found it to outperform published Actor-Critic results104

(Oh et al., 2018) and our tuned DDQN (results in Appendix 1.6).105

For Pioneer Push and PushReach tasks, TD3 is used, (we simply equip DDPG with two critics for106

clipped double Q learning (Fujimoto et al., 2018)), which works better than DDPG with one critic.107

4

Table 1: Hyperparameters for all the tasks
Hyperparameters\Tasks Atari (SAC) FetchEnv (DDPG) Pioneer (TD3)
Parallel environments 30 38 30
Unrolls per train iteration 8 50 100
Updates per train iteration 4 40 40
Mini-batch size 500 5,000 5,000
Training updates per target
network update

20 40 40

Target update weight 0.95 0.95 0.95
Discount per time step 0.99 0.98 0.99
Initial collect steps 100,000 10,000 10,000
Total training time steps 12 million (x4 envi-

ronment frames)
2 million Push: 5 million,

PushReach: 14 mil
Max steps before task reset 10,000 50 Push: 100,

PushReach: 200
Replay buffer size 1 million 2 million 6 million
Adam optimizer learn ratea 5e−4 1e−3 1e−3

Network structure conv((32, 8, 4), (64,
4, 2), (64, 3, 1)) +
fc(512)b

fc(256, 256, 256) fc(256, 256, 256)

Number of critics 2 1 2
ϵ-greedy for evaluation 0.05 0.3 0.3
Evaluation interval in train
iters

1000 40 200

Evaluation episodes 100 200 100
Life loss as terminalc Yes n/a n/a
Action repeat 4 n/a n/a
Image scaling [-1, 1] n/a n/a
Frame stacking 4 n/a n/a
Reward clipping [-1, 1] n/a n/a
SAC target entropy calculatedd n/a n/a
Hindsight percentage n/a 80% 50%
Observation normalizatione No Yes No
TD-lambda: λ 0.95 0.95 n/a
n-step bootstrap: n 3 2 n/a

a Adam ϵ̂ = 1e−7 for all tasks.
b Netowrk structure for Atari follows DDQN (van Hasselt et al., 2015).
c Life loss in Atari games is treated as a terminal state in training, following EfficientZero (Ye et al., 2021).
d The SAC target entropy is set to the entropy of uniformly distributing 0.1 probability mass across all but one
actions.
e Observations are normalized to have zero mean and unit variance based on the statistics of the training
observations, and we found the normalization to be critical in reproducing HER results on FetchEnv.

5

1.4 Results108

Applying lower bounding (e.g. lb-DR) on different baseline algorithms e.g. DDPG or SAC results in109

different treatment methods. Since we always compare treatment with its corresponding baseline,110

throughout the paper, we simply call the treatment lb-DR etc. without mentioning the baseline111

algorithm.112

1.4.1 lb-DR (episodic return) vs baseline SAC/DDPG113

Figure 2 compares lower bounding with discounted return (lb-DR) against SAC or DDPG baseline114

on 17 sampled Atari games and the episodic FetchEnv tasks.115

For 16 out of the 17 Atari games, lower bounding with episodic discounted return (lb-DR) performs116

at least as well as the baseline, often much better. On more than half of the Atari games and on the117

Fetch PickAndPlace task, there are large gains in both sample efficiency and final performance. On118

FetchPush and a few of the Atari games (Alien, Bank Heist and Fishing Derby), there is about 70%119

sample efficiency gain with similar converged performance. Among all the 20 tasks, only 1 task120

(Atari Breakout) shows lb-DR underperforming the baseline.121

1.4.1.1 Value learning plots122

This section presents plots of learned value and how often value is improved by the proposed methods,123

in order to show the effect of lower bounding on value improvement.124

Figure 3 shows the fraction of training experience where lb-DR value target is greater than the125

Bellman target from SAC/DDPG on the 17 Atari games and the episodic FetchEnv tasks (without126

hindsight). They correlate well with actual performance (Figure 2) and with how value is learning127

(Figure 4).128

6

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps 1e7

0

500

1000

1500

2000

2500
A

ve
ra

ge
 E

pi
so

di
c

R
et

ur
n

lbDR (ours)
sac

(a) Atari Alien

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps 1e7

0

50000

100000

150000

200000

250000

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbDR (ours)
sac

(b) Atari Atlantis

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps 1e7

0

200

400

600

800

1000

1200

1400

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbDR (ours)
sac

(c) Atari Bank Heist

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps 1e7

0

50

100

150

200

250

300

350

400

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbDR (ours)
sac

(d) Atari Breakout

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps 1e7

4000

2000

0

2000

4000

6000

8000

10000

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbDR (ours)
sac

(e) Atari Centipede

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps 1e7

0

200

400

600

800

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbDR (ours)
sac

(f) Atari Enduro

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps 1e7

100

80

60

40

20

0

20

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbDR (ours)
sac

(g) Fishing Derby

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps 1e7

0

1000

2000

3000

4000

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbDR (ours)
sac

(h) Atari Frostbite

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps 1e7

22.5

20.0

17.5

15.0

12.5

10.0

7.5

5.0

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbDR (ours)
sac

(i) Atari Ice Hockey

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps 1e7

0

500

1000

1500

2000

2500

3000

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbDR (ours)
sac

(j) Atari Ms Pacman

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps 1e7

0

2000

4000

6000

8000

10000

12000

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbDR (ours)
sac

(k) Atari Q*bert

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps 1e7

0

1000

2000

3000

4000

5000

6000

7000

8000

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbDR (ours)
sac

(l) Atari River raid

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps 1e7

0

10000

20000

30000

40000

50000

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbDR (ours)
sac

(m) Road Runner

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps 1e7

0

1000

2000

3000

4000

5000

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbDR (ours)
sac

(n) Atari Seaquest

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps 1e7

200

0

200

400

600

800

1000

1200

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbDR (ours)
sac

(o) Space Invaders

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps 1e7

0

1000

2000

3000

4000

5000

6000

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbDR (ours)
sac

(p) Atari Time Pilot

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps 1e7

0

2000

4000

6000

8000

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbDR (ours)
sac

(q) Atari Zaxxon

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

45

40

35

30

25

20

15

10

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbDR (ours)
ddpg

(r) FetchPush

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

50

45

40

35

30

25

20

15

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbDR (ours)
ddpg

(s) FetchSlide

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

50

45

40

35

30

25

20

15

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbDR (ours)
ddpg

(t) PickAndPlace

Figure 2: Evaluated average return of value target lower bounding with discounted return (lb-DR) vs
SAC or DDPG on Atari games and episodic FetchEnv tasks. Solid curves are the mean across five
(for Atari) or three (others) seeds, and shaded areas are +/- one standard deviation.

7

0 1 2 3 4 5
Training Iterations 1e4

0.00

0.02

0.04

0.06

0.08

0.10

0.12

lb
D

R
 R

et
ur

n
G

re
at

er
 R

at
e

lbDR (ours)

(a) Atari Alien

0 1 2 3 4 5
Training Iterations 1e4

0.00

0.02

0.04

0.06

0.08

0.10

lb
D

R
 R

et
ur

n
G

re
at

er
 R

at
e

lbDR (ours)

(b) Atari Atlantis

0 1 2 3 4 5
Training Iterations 1e4

0.00

0.02

0.04

0.06

0.08

0.10

0.12

lb
D

R
 R

et
ur

n
G

re
at

er
 R

at
e

lbDR (ours)

(c) Atari Bank Heist

0 1 2 3 4 5
Training Iterations 1e4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

lb
D

R
 R

et
ur

n
G

re
at

er
 R

at
e

lbDR (ours)

(d) Atari Breakout

0 1 2 3 4 5
Training Iterations 1e4

0.00

0.02

0.04

0.06

0.08

0.10

0.12

lb
D

R
 R

et
ur

n
G

re
at

er
 R

at
e

lbDR (ours)

(e) Atari Centipede

0 1 2 3 4 5
Training Iterations 1e4

0.00

0.02

0.04

0.06

0.08

0.10
lb

D
R

 R
et

ur
n

G
re

at
er

 R
at

e
lbDR (ours)

(f) Atari Enduro

0 1 2 3 4 5
Training Iterations 1e4

0.00

0.02

0.04

0.06

0.08

lb
D

R
 R

et
ur

n
G

re
at

er
 R

at
e

lbDR (ours)

(g) Atari Fishing Derby

0 1 2 3 4 5
Training Iterations 1e4

0.00

0.02

0.04

0.06

0.08

0.10

0.12

lb
D

R
 R

et
ur

n
G

re
at

er
 R

at
e

lbDR (ours)

(h) Atari Frostbite

0 1 2 3 4 5
Training Iterations 1e4

0.00

0.02

0.04

0.06

0.08

lb
D

R
 R

et
ur

n
G

re
at

er
 R

at
e

lbDR (ours)

(i) Atari Ice Hockey

0 1 2 3 4 5
Training Iterations 1e4

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

lb
D

R
 R

et
ur

n
G

re
at

er
 R

at
e

lbDR (ours)

(j) Atari Ms Pacman

0 1 2 3 4 5
Training Iterations 1e4

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

lb
D

R
 R

et
ur

n
G

re
at

er
 R

at
e

lbDR (ours)

(k) Atari Q*bert

0 1 2 3 4 5
Training Iterations 1e4

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

lb
D

R
 R

et
ur

n
G

re
at

er
 R

at
e

lbDR (ours)

(l) Atari River raid

0 1 2 3 4 5
Training Iterations 1e4

0.00

0.02

0.04

0.06

0.08

0.10

lb
D

R
 R

et
ur

n
G

re
at

er
 R

at
e

lbDR (ours)

(m) Atari Road Runner

0 1 2 3 4 5
Training Iterations 1e4

0.00

0.02

0.04

0.06

0.08

0.10

lb
D

R
 R

et
ur

n
G

re
at

er
 R

at
e

lbDR (ours)

(n) Atari Seaquest

0 1 2 3 4 5
Training Iterations 1e4

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

lb
D

R
 R

et
ur

n
G

re
at

er
 R

at
e

lbDR (ours)

(o) Atari Space Invaders

0 1 2 3 4 5
Training Iterations 1e4

0.00

0.02

0.04

0.06

0.08

0.10

0.12

lb
D

R
 R

et
ur

n
G

re
at

er
 R

at
e

lbDR (ours)

(p) Atari Time Pilot

0 1 2 3 4 5
Training Iterations 1e4

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

lb
D

R
 R

et
ur

n
G

re
at

er
 R

at
e

lbDR (ours)

(q) Atari Zaxxon

0.0 0.2 0.4 0.6 0.8 1.0
Training Iterations 1e3

0.00

0.01

0.02

0.03

0.04

lb
D

R
 R

et
ur

n
G

re
at

er
 R

at
e

lbDR (ours)

(r) FetchPush

0.0 0.2 0.4 0.6 0.8 1.0
Training Iterations 1e3

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

lb
D

R
 R

et
ur

n
G

re
at

er
 R

at
e

lbDR (ours)

(s) FetchSlide

0.0 0.2 0.4 0.6 0.8 1.0
Training Iterations 1e3

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

lb
D

R
 R

et
ur

n
G

re
at

er
 R

at
e

lbDR (ours)

(t) FetchPickAndPlace

Figure 3: Fraction of training experience where lb-DR value target is greater than the Bellman target,
on Atari games and episodic FetchEnv tasks, plotted against the number of training iterations. Solid
curves are the mean across five (for Atari) or three (others) seeds, and shaded areas are +/- one
standard deviation.

8

0 1 2 3 4 5
Training Iterations 1e4

3

4

5

6

7

8

9

10

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbDR (ours)
sac

(a) Atari Alien

0 1 2 3 4 5
Training Iterations 1e4

1

2

3

4

5

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbDR (ours)
sac

(b) Atari Atlantis

0 1 2 3 4 5
Training Iterations 1e4

2

3

4

5

6

7

8

9

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbDR (ours)
sac

(c) Atari Bank Heist

0 1 2 3 4 5
Training Iterations 1e4

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbDR (ours)
sac

(d) Atari Breakout

0 1 2 3 4 5
Training Iterations 1e4

7

8

9

10

11

12

13

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbDR (ours)
sac

(e) Atari Centipede

0 1 2 3 4 5
Training Iterations 1e4

2

4

6

8

10

12

14
M

ea
n

Tr
ai

ni
ng

 V
al

ue
lbDR (ours)
sac

(f) Atari Enduro

0 1 2 3 4 5
Training Iterations 1e4

6

4

2

0

2

4

6

8

10

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbDR (ours)
sac

(g) Atari Fishing Derby

0 1 2 3 4 5
Training Iterations 1e4

2.5

5.0

7.5

10.0

12.5

15.0

17.5

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbDR (ours)
sac

(h) Atari Frostbite

0 1 2 3 4 5
Training Iterations 1e4

0

2

4

6

8

10

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbDR (ours)
sac

(i) Atari Ice Hockey

0 1 2 3 4 5
Training Iterations 1e4

4

6

8

10

12

14

16

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbDR (ours)
sac

(j) Atari Ms Pacman

0 1 2 3 4 5
Training Iterations 1e4

2.5

5.0

7.5

10.0

12.5

15.0

17.5

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbDR (ours)
sac

(k) Atari Q*bert

0 1 2 3 4 5
Training Iterations 1e4

2

4

6

8

10

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbDR (ours)
sac

(l) Atari River raid

0 1 2 3 4 5
Training Iterations 1e4

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbDR (ours)
sac

(m) Atari Road Runner

0 1 2 3 4 5
Training Iterations 1e4

3

4

5

6

7

8

9

10

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbDR (ours)
sac

(n) Atari Seaquest

0 1 2 3 4 5
Training Iterations 1e4

2

3

4

5

6

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbDR (ours)
sac

(o) Atari Space Invaders

0 1 2 3 4 5
Training Iterations 1e4

0

1

2

3

4

5

6

7

8

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbDR (ours)
sac

(p) Atari Time Pilot

0 1 2 3 4 5
Training Iterations 1e4

0

2

4

6

8

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbDR (ours)
sac

(q) Atari Zaxxon

0.0 0.2 0.4 0.6 0.8 1.0
Training Iterations 1e3

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbDR (ours)
ddpg

(r) FetchPush

0.0 0.2 0.4 0.6 0.8 1.0
Training Iterations 1e3

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbDR (ours)
ddpg

(s) FetchSlide

0.0 0.2 0.4 0.6 0.8 1.0
Training Iterations 1e3

25

20

15

10

5

0

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbDR (ours)
ddpg

(t) FetchPickAndPlace

Figure 4: Learned values of lb-DR and SAC (for Atari games) and DDPG (for FetchEnv tasks),
evaluated on the training experience and plotted against the number of training iterations. Solid curves
are the mean across five (for Atari) or three (others) seeds, and shaded areas are +/- one standard
deviation.

9

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

45

40

35

30

25

20

15

10

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbDR+GD (ours)
lbGD (ours)
her

(a) FetchPush

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

50

45

40

35

30

25

20

15

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbDR+GD (ours)
lbGD (ours)
her

(b) FetchSlide

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

50

45

40

35

30

25

20

15

10

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbDR+GD (ours)
lbGD (ours)
her

(c) PickAndPlace

0 1 2 3 4 5
Environment Steps 1e6

100

90

80

70

60

50

40

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbDR+GD (ours)
lbGD (ours)
her

(d) PioneerPush

0.00 0.25 0.50 0.75 1.00 1.25
Environment Steps 1e7

200

180

160

140

120

100

80

60

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbDR+GD (ours)
lbGD (ours)
her

(e) PushReach

Figure 5: Value target lower bounding with goal distance return (lb-GD) and lb-DR+GD vs HER on
episodic FetchEnv and Pioneer tasks. Solid curves are the mean across three seeds, and shaded areas
are +/- one standard deviation.

1.4.2 lb-GD (goal distance return) and lb-DR+GD vs HER129

Figure 5 compares lower bounding with goal distance return (lb-GD) and lower bounding with both130

goal distance and discounted return combined (lb-DR+GD) against the much stronger HER baseline,131

on the goal conditioned episodic FetchEnv and Pioneer tasks.132

On the easier FetchEnv tasks, lower bounding is similar as HER, but on the more challenging Pioneer133

Push and Reach tasks, lower bounding is able to achieve over 70% more sample efficiency. It seems134

the harder the task, the wider the margin of gain.135

1.4.2.1 Value learning plots136

This section presents plots of learned value and how often value is improved by the proposed methods,137

in order to show the effect of lower bounding on value improvement.138

Figure 6 shows the fraction of training experience where the lb-GD is higher than the Bellman value139

target from HER, in the goal conditioned (episodic FetchEnv and Pioneer) tasks, and the learned value.140

It seems, for FetchEnv tasks, where lb-GD only performs slightly better than HER, the fraction of141

experience with improved value target is quite small (less than 1%). Hindsight relabeling is probably142

already producing fairly high value targets. For Pioneer Push and Reach tasks, lb-GD performs much143

better in average return, and the fraction of experience with higher value target is also much larger144

(peaking around 2-8%).145

10

0.0 0.2 0.4 0.6 0.8 1.0
Training Iterations 1e3

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

lb
G

D
 R

et
ur

n
G

re
at

er
 R

at
e

lbDR+GD (ours)
lbGD (ours)

(a) FetchPush

0.0 0.2 0.4 0.6 0.8 1.0
Training Iterations 1e3

0.000

0.002

0.004

0.006

0.008

0.010

0.012

lb
G

D
 R

et
ur

n
G

re
at

er
 R

at
e

lbDR+GD (ours)
lbGD (ours)

(b) FetchSlide

0.0 0.2 0.4 0.6 0.8 1.0
Training Iterations 1e3

0.000

0.001

0.002

0.003

0.004

lb
G

D
 R

et
ur

n
G

re
at

er
 R

at
e

lbDR+GD (ours)
lbGD (ours)

(c) FetchPickAndPlace

0.0 0.5 1.0 1.5
Training Iterations 1e3

0.000

0.005

0.010

0.015

0.020

0.025

lb
G

D
 R

et
ur

n
G

re
at

er
 R

at
e

lbDR+GD (ours)
lbGD (ours)

(d) PioneerPush

0 1 2 3 4 5
Training Iterations 1e3

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

lb
G

D
 R

et
ur

n
G

re
at

er
 R

at
e

lbDR+GD (ours)
lbGD (ours)

(e) PioneerPushReach

0.0 0.2 0.4 0.6 0.8 1.0
Training Iterations 1e3

7

6

5

4

3

2

1

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbDR+GD (ours)
lbGD (ours)
her

(f) FetchPush

0.0 0.2 0.4 0.6 0.8 1.0
Training Iterations 1e3

12

10

8

6

4

2

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbDR+GD (ours)
lbGD (ours)
her

(g) FetchSlide

0.0 0.2 0.4 0.6 0.8 1.0
Training Iterations 1e3

8

7

6

5

4

3

2

1
M

ea
n

Tr
ai

ni
ng

 V
al

ue
lbDR+GD (ours)
lbGD (ours)
her

(h) FetchPickAndPlace

0.0 0.5 1.0 1.5
Training Iterations 1e3

70

60

50

40

30

20

10

0

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbDR+GD (ours)
lbGD (ours)
her

(i) PioneerPush

0 1 2 3 4 5
Training Iterations 1e3

80

60

40

20

0

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbDR+GD (ours)
lbGD (ours)
her

(j) PioneerReach

Figure 6: Fraction of training experience where lb-GD or lb-DR+GD value target is greater than the
Bellman target (a-e) and learned values (f-j), on episodic FetchEnv and Pioneer tasks, plotted against
the number of training iterations. Solid curves are the mean across three seeds, and shaded areas are
+/- one standard deviation.

11

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps 1e7

0

50

100

150

200

250

300

350

400

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbb3step (ours)
opttighten3step
tdlambda
retrace
sac

(a) Atari Breakout

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps 1e7

0

1000

2000

3000

4000

5000

6000

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbb3step (ours)
opttighten3step
tdlambda
retrace
sac

(b) Atari Seaquest

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps 1e7

0

500

1000

1500

2000

2500

3000

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbb3step (ours)
opttighten3step
tdlambda
retrace
sac

(c) Atari Frostbite

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps 1e7

0

2000

4000

6000

8000

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbb3step (ours)
opttighten3step
tdlambda
retrace
sac

(d) Atari Q*bert

0 1 2 3 4 5
Environment Steps 1e6

50

40

30

20

10

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbb2step (ours)
opttighten2step
tdlambda
ddpg

(e) FetchPush

0 1 2 3 4 5
Environment Steps 1e6

50

45

40

35

30

25

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbb2step (ours)
opttighten2step
tdlambda
ddpg

(f) PickAndPlace

Figure 7: Evaluated average return of value target lower bounding with n-step bootstrapped return
(lb-b-nstep) vs SAC or DDPG, td-lambda, Retrace and optimality-tightening on Atari games and the
original/non-episodic FetchEnv tasks. n = 3 for Atari and 2 for FetchEnv tasks. Solid curves are the
mean across five (for Atari) or three (others) seeds; shaded areas are +/- one standard deviation.

1.4.3 n-step bootstrapped methods146

Figure 7 shows performance of lb-b-nstep methods on a subset of the Atari games (episodic) and the147

original (non-episodic) FetchEnv tasks. Besides SAC/DDPG, baselines also include n-step methods148

such as td-lambda, Retrace (Munos et al., 2016) and optimality tightening (He et al., 2017). lb-b-nstep149

methods are at least as good as the best baseline method, and clearly outperforms the baselines in two150

of the six tasks.151

1.4.3.1 Value learning plots152

Figure 8 shows the fraction of experience where lb-b-nstep lower bounds are above one step Bellman153

value targets. There seems to be a correlation between improving the value target over more experience154

and actually improving the policy, at least for FetchEnv tasks. The correlation does not seem as clear155

as that of lb-DR. With bootstrapping, the fractions are generally higher than those of lb-DR in Figure156

3, potentially due to overestimated bootstrap values.157

12

0 1 2 3 4 5
Training Iterations 1e4

0.3

0.4

0.5

0.6

0.7

0.8

0.9

lb
D

R
 R

et
ur

n
G

re
at

er
 R

at
e

lbb3step (ours)
opttighten3step

(a) Atari Breakout

0 1 2 3 4 5
Training Iterations 1e4

0.1

0.2

0.3

0.4

0.5

0.6

0.7
lb

D
R

 R
et

ur
n

G
re

at
er

 R
at

e

lbb3step (ours)
opttighten3step

(b) Atari Seaquest

0 1 2 3 4 5
Training Iterations 1e4

0.2

0.3

0.4

0.5

0.6

0.7

lb
D

R
 R

et
ur

n
G

re
at

er
 R

at
e

lbb3step (ours)
opttighten3step

(c) Atari Frostbite

0 1 2 3 4 5
Training Iterations 1e4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

lb
D

R
 R

et
ur

n
G

re
at

er
 R

at
e

lbb3step (ours)
opttighten3step

(d) Atari Q*bert

0.0 0.5 1.0 1.5 2.0 2.5
Training Iterations 1e3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

lb
D

R
 R

et
ur

n
G

re
at

er
 R

at
e

lbb2step (ours)
opttighten2step

(e) FetchPush

0.0 0.5 1.0 1.5 2.0 2.5
Training Iterations 1e3

0.00

0.05

0.10

0.15

0.20

0.25

0.30
lb

D
R

 R
et

ur
n

G
re

at
er

 R
at

e

lbb2step (ours)
opttighten2step

(f) FetchPickAndPlace

Figure 8: Fraction of training experience where lb-b-nstep value target or optimality-tightening lower
bound is greater than the value target of baselines SAC (for Atari games) and DDPG (for FetchEnv
tasks), plotted against the number of training iterations. Solid curves are the mean across five (for
Atari) or three (others) seeds, and shaded areas are +/- one standard deviation.

13

0 1 2 3 4 5
Environment Steps 1e6

50

45

40

35

30

25

20

15

10

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbb2step (ours)
lbb7step (ours)
lbb11step (ours)
ddpg

(a) FetchPush

0 1 2 3 4 5
Environment Steps 1e6

50

45

40

35

30

25

20

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbb2step (ours)
lbb7step (ours)
lbb11step (ours)
ddpg

(b) PickAndPlace

Figure 9: Evaluated average return of value target lower bounding with n-step bootstrapped return
(lb-b-nstep) with different n on the original/non-episodic FetchEnv tasks. Solid curves are the mean
across three seeds, and shaded areas are +/- one standard deviation.

1.4.4 n-step method ablations158

The following three sections include ablations which show the lower bounding methods to be robust159

to variations in the hyperparameters.160

1.4.4.1 lb-b-nstep with different n (number of steps)161

Figure 9 shows the effect of how the number of steps n in n-step bootstrapped return impacts lower162

bounding performance. The lb-b-nstep method is not very sensitive to the value n, typically, the163

higher the value n the better the performance, while n-step methods like td-lambda or Retrace would164

degrade a lot as n increases above 3 or 4. We also observe lower value overestimation as n increases165

(Figure 13).166

1.4.4.2 lb-b-nstep vs lb-b-nstep-only (only n-th step)167

Figure 10 shows the effect of taking a maximum of all 2- to n-step bootstrapped returns versus only168

using the n-step bootstrapped return. It seems using the maximum bootstrapped return of all 2- to169

n-steps, hence a tighter lower bound, works better than only using the n-step return.170

1.4.4.3 lb-b-nstep (bootstrap) or lb-DR (episodic return)171

In continuing tasks (with negative rewards), we have to use the bootstrapped lb-b-nstep method.172

But for episodic tasks, should we use bootstrapped return or episodic return as value target lower173

bound? In theory, lb-b-nstep-only becomes lb-DR when n is large enough. In practice, in terms of174

effectiveness, we can compare lb-b-nstep with lb-DR on the Atari games (Figure 7 and 2 respectively).175

lb-b-nstep is better than lb-DR on Atari Breakout. On Seaquest, the two are similar. On the other176

two games: Frostbite and Q*bert, episodic return is better. It seems lb-DR is better on tasks where177

rewards are more sparse and longer term planning is needed. In terms of efficiency, as n becomes178

larger, the memory and compute efficient lb-DR method will become more attractive. Overall, both179

methods show a clear advantage over the baselines.180

1.4.4.4 Value learning plots181

Figure 11 shows the fraction of experience where lb-b-nstep lower bounds are above one step Bellman182

value targets.183

Figures 12 and 13 show the learned value of the lb-b-nstep and lb-b-nstep-only methods. It’s184

convenient to look at the FetchEnv tasks which should always have non-positive value. From Figure185

13(a,b), it seems as n increases, value decreases, maybe due to more accurate estimates of value.186

From Figure 13(c,d), it seems the tighter lower bounds of lb-b-nstep method do lead to slightly more187

overestimation in value.188

14

0 1 2 3 4 5
Environment Steps 1e6

50

45

40

35

30

25

20

15

10

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbb7step (ours)
lbb11step (ours)
lbb7steponly (ours)
lbb11steponly (ours)
ddpg

(a) FetchPush

0 1 2 3 4 5
Environment Steps 1e6

50

45

40

35

30

25

20

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbb7step (ours)
lbb11step (ours)
lbb7steponly (ours)
lbb11steponly (ours)
ddpg

(b) PickAndPlace

Figure 10: Evaluated average return of value target lower bounding with all n-step bootstrap (lb-b-
nstep) and nth-step only (lb-b-nstep-only) on the original/non-episodic FetchEnv tasks. Solid curves
are the mean across three seeds, and shaded areas are +/- one standard deviation.

0.0 0.5 1.0 1.5 2.0 2.5
Training Iterations 1e3

0.0

0.1

0.2

0.3

0.4

lb
D

R
 R

et
ur

n
G

re
at

er
 R

at
e

lbb2step (ours)
lbb7step (ours)
lbb11step (ours)

(a) FetchPush

0.0 0.5 1.0 1.5 2.0 2.5
Training Iterations 1e3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

lb
D

R
 R

et
ur

n
G

re
at

er
 R

at
e

lbb2step (ours)
lbb7step (ours)
lbb11step (ours)

(b) FetchPickAndPlace

0.0 0.5 1.0 1.5 2.0 2.5
Training Iterations 1e3

0.0

0.1

0.2

0.3

0.4

lb
D

R
 R

et
ur

n
G

re
at

er
 R

at
e

lbb7step (ours)
lbb11step (ours)

(c) FetchPush

0.0 0.5 1.0 1.5 2.0 2.5
Training Iterations 1e3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

lb
D

R
 R

et
ur

n
G

re
at

er
 R

at
e

lbb7step (ours)
lbb11step (ours)

(d) FetchPickAndPlace

Figure 11: Fraction of training experience where lb-b-nstep or lb-b-nstep-only improves over the
baseline Bellman value target, evaluated on the training experience and plotted against the number
of training iterations. Solid curves are the mean across three seeds, and shaded areas are +/- one
standard deviation.

0 1 2 3 4 5
Training Iterations 1e4

0

10

20

30

40

50

60

70

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbb3step (ours)
opttighten3step
tdlambda
retrace
sac

(a) Atari Breakout

0 1 2 3 4 5
Training Iterations 1e4

0

20

40

60

80

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbb3step (ours)
opttighten3step
tdlambda
retrace
sac

(b) Atari Seaquest

0 1 2 3 4 5
Training Iterations 1e4

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbb3step (ours)
opttighten3step
tdlambda
retrace
sac

(c) Atari Frostbite

0 1 2 3 4 5
Training Iterations 1e4

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Tr

ai
ni

ng
 V

al
ue

1e6

lbb3step (ours)
opttighten3step
tdlambda
retrace
sac

(d) Atari Q*bert

0.0 0.5 1.0 1.5 2.0 2.5
Training Iterations 1e3

40

20

0

20

40

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbb2step (ours)
opttighten2step
tdlambda
ddpg

(e) FetchPush

0.0 0.5 1.0 1.5 2.0 2.5
Training Iterations 1e3

50

40

30

20

10

0

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbb2step (ours)
opttighten2step
tdlambda
ddpg

(f) FetchPickAndPlace

Figure 12: Learned values of lb-b-nstep and SAC (for Atari games), DDPG (for FetchEnv tasks),
optimality-tightening, td-lambda and Retrace, evaluated on the training experience and plotted against
the number of training iterations. Solid curves are the mean across five (for Atari) or three (others)
seeds, and shaded areas are +/- one standard deviation.

15

0.0 0.5 1.0 1.5 2.0 2.5
Training Iterations 1e3

30

20

10

0

10

20

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbb2step (ours)
lbb7step (ours)
lbb11step (ours)
ddpg

(a) FetchPush

0.0 0.5 1.0 1.5 2.0 2.5
Training Iterations 1e3

30

25

20

15

10

5

0

5

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbb2step (ours)
lbb7step (ours)
lbb11step (ours)
ddpg

(b) FetchPickAndPlace

0.0 0.5 1.0 1.5 2.0 2.5
Training Iterations 1e3

30

25

20

15

10

5

0

5

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbb7step (ours)
lbb11step (ours)
lbb7steponly (ours)
lbb11steponly (ours)
ddpg

(c) FetchPush

0.0 0.5 1.0 1.5 2.0 2.5
Training Iterations 1e3

30

25

20

15

10

5

0

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbb7step (ours)
lbb11step (ours)
lbb7steponly (ours)
lbb11steponly (ours)
ddpg

(d) FetchPickAndPlace

Figure 13: Learned values of lb-b-nstep, lb-b-nstep-only, DDPG (for FetchEnv tasks), optimality-
tightening, td-lambda and Retrace, evaluated on the training experience and plotted against the
number of training iterations. Solid curves are the mean across three seeds, and shaded areas are +/-
one standard deviation.

16

1.5 N-step return based methods189

1.5.1 N-step return methods190

lb-b-nstep methods and n-step return methods are similar in their data and computation requirements,191

and we already compare their performance in Figure 7.192

Here, we additionally compare lb-DR directly with n-step methods in Figure 14.193

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps 1e7

0

50

100

150

200

250

300

350

400

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbDR (ours)
tdlambda
retrace
sac

(a) Atari Breakout

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps 1e7

0

1000

2000

3000

4000

5000

6000

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbDR (ours)
tdlambda
retrace
sac

(b) Atari Seaquest

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps 1e7

0

1000

2000

3000

4000

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbDR (ours)
tdlambda
retrace
sac

(c) Atari Frostbite

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps 1e7

0

2000

4000

6000

8000

10000

12000

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbDR (ours)
tdlambda
retrace
sac

(d) Atari Q*bert

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

45

40

35

30

25

20

15

10

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbDR (ours)
tdlambda
ddpg

(e) FetchPush

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

50

45

40

35

30

25

20

15

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbDR (ours)
tdlambda
ddpg

(f) FetchPickAndPlace

Figure 14: Evaluated average return of value target lower bounding with discounted return (lb-DR)
vs SAC or DDPG, td-lambda and Retrace on four Atari games and the episodic FetchEnv tasks.
Solid curves are the mean across five (for Atari) or three (others) seeds, and shaded areas are +/- one
standard deviation.

During experimentation, we found that n-step methods are typically harder to tune and more expensive194

to compute.195

1) Tuning n: A small n for n-step methods works similarly as the baseline one-step method, and a196

larger n hurts performance. This is likely due to the off-policy bias in n-step return causing the n-step197

estimate to be potentially worse than the one-step estimate. Introducing importance sampling weights198

(Retrace) would help reduce the bias, but at the same time significantly downweight the off-policy199

high return experiences, making an ineffective use of such experiences.200

None of these issues exist in value target lower bounding: (a) It does not incur any off-policy bias,201

and (b) as long as an experience renders high reward, being off-policy does not affect its ability to202

improve the value target.203

2) Tuning involves other hyperparameters like the td-lambda parameter, replay buffer size, prioritized204

replay (to potentially expire old experiences and sample recent ones more frequently), target network205

update parameters (to reduce potential overestimation), and parameters for importance sampling.206

But still, after all the tuning, it only slightly outperforms one-step DDPG on FetchEnv or SAC on207

Atari games, and is often below the lower bounding methods. For td-lambda and Retrace, the best208

performance comes from 2-step (for FetchEnv) or 3-step (for Atari) td with λ = 0.95, all other209

parameters the same as the baseline DDPG or SAC. Retrace underperforming the baseline in Breakout210

and Frostbite is similarly observed in the original paper (Munos et al., 2016).211

17

0 1 2 3 4 5
Training Iterations 1e4

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbDR (ours)
tdlambda
retrace
sac

(a) Atari Breakout

0 1 2 3 4 5
Training Iterations 1e4

4

6

8

10

12

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbDR (ours)
tdlambda
retrace
sac

(b) Atari Seaquest

0 1 2 3 4 5
Training Iterations 1e4

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbDR (ours)
tdlambda
retrace
sac

(c) Atari Frostbite

0 1 2 3 4 5
Training Iterations 1e4

2.5

5.0

7.5

10.0

12.5

15.0

17.5

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbDR (ours)
tdlambda
retrace
sac

(d) Atari Q*bert

0.0 0.2 0.4 0.6 0.8 1.0
Training Iterations 1e3

20

15

10

5

0

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbDR (ours)
tdlambda
ddpg

(e) FetchPush

0.0 0.2 0.4 0.6 0.8 1.0
Training Iterations 1e3

30

25

20

15

10

5

0

M
ea

n
Tr

ai
ni

ng
 V

al
ue

lbDR (ours)
tdlambda
ddpg

(f) FetchPickAndPlace

Figure 15: Learned values of lb-DR and SAC (for Atari games), DDPG (for FetchEnv tasks), td-
lambda and Retrace, evaluated on the training experience and plotted against the number of training
iterations. Solid curves are the mean across five (for Atari) or three (others) seeds, and shaded areas
are +/- one standard deviation.

On the other hand, value target lower bounding with episodic return requires no hyperparameter212

tuning, (lb-b-nstep with bootstrapping is not very sensitive to the choice of n), and learns faster on213

most tasks and converges higher on many tasks.214

3) Computing n-step td-lambda return requires more computation due to evaluating value networks215

on all n-steps of the experience. It limits how large n can be due to GPU memory limits, and slows216

down training time significantly with a large n.217

On the other hand, value target lower bounding precomputes and stores episodic discounted return in218

the replay buffer, and incurs very little additional computation.219

Overall, n-step methods are much more expensive and difficult to use, and the much simpler and220

effective lower bounding methods maintain an advantage in both effectiveness and efficiency. We221

show the performance comparison in Figure 14 with learned values in Figure 15.222

1.5.2 Optimality tightening with n-step returns223

He et al. (2017) use bootstrapped n-step return to lower and upper bound the value during training.224

They frame the problem as a constrained optimization problem where the distance between the value225

and the Bellman value target is minimized subject to the constraints that the value function must226

be within the lower (and upper) bounds. This is similar to our lb-b-nstep method, except instead227

of applying a constraint on the value, we use the bootstrapped return to directly lower bound and228

improve the value target, which is likely more optimal and more efficient. In their experiments, the229

Lagrangian multiplier was fixed, which would likely lead to suboptimal solutions, and no theoretical230

guarantee was given. For episodic tasks, even more efficient and effective methods like lb-DR exist.231

Some detailed differences:232

1) The prior work bounds the value function itself (similar to lower bound q learning (Oh et al., 2018;233

Tang, 2020)), instead of bounding the Bellman value target. This could cause suboptimal training234

because the Bellman target itself could be outside the bounds, causing contradictory training targets235

18

and losses. Imagine the current value for a state is 1, its Bellman value target may be a low 0, and the236

lower bound may be a high 2, then it’s unclear which way the value function should go. It will depend237

largely on the mixing weight between the two losses λ and whether initial values overestimate, which238

can be hard to tune in practice. In their experiments, a fixed Lagrangian multiplier λ was used, which239

makes the method likely non-optimal.240

2) In order to compute the bootstrapped values, the value network needs to be evaluated on all n future241

time steps, severely increasing GPU memory consumption and compute. Because of this increase in242

compute, in experiments, it could only look at a limited (4) timesteps into the future, while lb-DR243

and lb-b-nstep-only can look ahead much further with very little extra computation and storage.244

We implemented the method (He et al., 2017) (only using the lower bounds, no upper bounds) and245

integrated into our baselines. We ran on FetchPush and FetchPickAndPlace with hyperparameters246

number of time steps n = 2, and the penalty coefficient λ = 4 following the original paper. Results247

in Figure 7 show optimality tightening to be either not as stable or not as optimal as our lb-b-nstep.248

We also ran it on Atari games, and found that optimality tightening overestimates value a lot, leading249

to much worse behavior than even the SAC baseline. The constrained optimization formulation250

might have an adverse interaction with RL training, and the upper bounds in the original optimality251

tightening work may be necessary to bring training back on track. As future work, it will be interesting252

to see whether value target upper bounding with bootstrapped values (as proposed in (He et al., 2017)253

as value upper bound constraints) can lead to optimal converged value in theory, and whether the254

upper bounds would help optimality tightening in experiments.255

1.6 Value target lower bounding on DDQN256

Because DQN is a more popular baseline for the Atari games, we’ve also applied value target lower257

bounding (lb-DR) on DDQN, and ran on a subset of the Atari games. Different from (van Hasselt258

et al., 2015), our implementation of DDQN finds the maximal action using the target critic network259

and evaluates the target value on the target network. It also uses two critic replicas like in (Fujimoto260

et al., 2018). Figure 16 shows the results. Compared to SAC (Figure 2), DDQN either lowers the261

baseline performance or the treatment (lb-DR) performance, and does not seem as strong as SAC.262

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps 1e7

0

50

100

150

200

250

300

350

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbDR (ours)
dqn

(a) Atari Breakout

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps 1e7

0

1000

2000

3000

4000

5000

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbDR (ours)
dqn

(b) Atari Seaquest

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps 1e7

0

500

1000

1500

2000

2500

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbDR (ours)
dqn

(c) Atari Frostbite

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps 1e7

0

2000

4000

6000

8000

A
ve

ra
ge

 E
pi

so
di

c
R

et
ur

n

lbDR (ours)
dqn

(d) Atari Q*bert

Figure 16: Evaluated average return of value target lower bounding with discounted return (lb-DR)
implemented on DDQN vs DDQN baseline on four of the Atari games. Solid curves are the mean
across five seeds, and shaded areas are +/- one standard deviation.

1.7 A stochastic example263

Using empirical return directly as value lower bound can lead to value overestimation under stochastic264

MDPs, as shown in the example below.265

Assume state S0 always goes to S1, and S1 gets reward ±2 50% of the times when transitioning to266

the terminal state. Then v(S0) = v(S1) = 0. However, with value target lower bounding, for the267

lucky case with reward 2, the value target for S0 is γmax(2, v(S1)) = 2γ, and for the unlucky case268

with reward -2, the value target for S0 is γmax(−2, v(S1)) = γv(S1) = 0. On average, v(S0) will269

be overestimated to be γ.270

It is worth noting that lower bounding the action value directly as done in SIL (Oh et al., 2018) will271

overestimate not just v(S0) but v(S1) as well, whereas lower bounding the value target will produce272

19

the correct v(S1). This is because the same trajectory is used to both produce the Bellman value target273

(±2 for S1) and the lower bound (±2 for S1) which will be exactly the same for a given trajectory.274

The more advanced MuZero algorithm (Schrittwieser et al., 2019) also has the limitation to deter-275

ministic environments. For this particular stochastic example, MuZero can still produce unbiased276

estimates of v(S0) due to averaging across two step rollouts from S0.277

Despite this theoretical limitation, value target lower bounding in practice still performs quite well278

over baselines when using function approximation, which does not perfectly represent the states and279

adds randomness to the tasks.280

1.8 Potential improvement281

Note that the goal distance based return (lb-GD) of Section 3.1.1 is a very simple way of arriving282

at a reasonable lower bound with near zero additional computation. The bound could be made283

tighter. Typically, an L2 distance threshold is used to judge goal achievement, which will likely be284

satisfied a few time steps before exactly arriving at the hindsight goal. To compute such a tighter285

bound would require evaluating the reward function across the trajectories of experience using all286

possible hindsight goal states, and storing them in the replay buffer, i.e. episode length squared more287

computation and more storage space. It may be worth doing when episodes are short, or doing it only288

for a small number of time steps into the future when e.g. rewards are non-negative.289

1.9 Societal Impact290

This research belongs to basic reinforcement learning, accelerating the training of reinforcement291

learning algorithms. Helpful agents trained on benevolent tasks will learn faster, so will malicious292

agents trained to do damage. All the usual societal impact of reinforcement learning algorithms apply.293

The reader and user has to use caution and their own judgments when applying these automation294

algorithms to the real world: careful testing and scaling is needed, starting from virtual simulations,295

to testing in a lab environment, to small scale real world tests, and eventually to full scale deployment296

with careful monitoring in place.297

Reproducibility Statement298

Our code change is based on a publicly available RL library, with strong baselines already imple-299

mented. Our relatively small code change is committed to a private github repository, which we300

plan to open source upon publication. Experiment parameters are configured and controlled by an301

automation script, with each experiment label corresponding to the set of configurations used for that302

experiment, so there is little room for manual error when running many experiments across different303

tasks, methods and hyperparameters. When running experiments, the snapshot of the code used to304

run each experiment is stored together with the results for verification.305

Experiments are done in simulation with pseudo randomness. We’ve run our code on different306

machines with different GPU hardware using the same docker image, and the results are reproducible307

up to every float number using the same random seed. In a few cases, we’ve also run our code on308

different versions of hardware and software (CUDA and pytorch), and the results are similar, though309

not the same at the float number level.310

20

	Appendix
	Proofs
	Experiment Setups
	Atari games
	Fetch Push, Slide and PickAndPlace
	Pioneer Push and Reach tasks

	Hyperparameters
	Results
	lb-DR (episodic return) vs baseline SAC/DDPG
	lb-GD (goal distance return) and lb-DR+GD vs HER
	n-step bootstrapped methods
	n-step method ablations

	N-step return based methods
	N-step return methods
	Optimality tightening with n-step returns

	Value target lower bounding on DDQN
	A stochastic example
	Potential improvement
	Societal Impact

