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4 PURE DP

In this section, we give a lower bound for ε-(pure) differentially private algorithms for minimizing
unconstrained convex Lipschitz loss function L(θ;D). In the construction of lower bounds for
constrained DP-ERM in the seminar paper Bassily et al. (2014), they chose linear function `(θ; d) =
〈θ, d〉 as the objective function, which isn’t applicable in the unconstrained setting because it could
decrease to negative infinity. Instead, we extend the linear loss in unit ball to the whole Rp while
preserving its Lipschitzness and convexity.

4.1 EXTENSION OF LINEAR LOSS

We begin with the following lemma from Cobzas and Mustata (1978) which gives a Lipschitz ex-
tension of any convex Lipschitz function over some convex set to the whole domain Rp.
Lemma 4.1 (Theorem 1 in Cobzas and Mustata (1978)). Let f by an η-Lipschitz, convex function
defined on a convex bounded set C ∈ Rp. Then there exists an efficiently computable, η-Lipschitz,
convex function f̃ defined on Rp such that it’s equal to f restricted on C. The explicit construction
is the following. Define auxiliary function gy(x):

gy(x) = f(y) + η||x− y||2, y ∈ C, x ∈ Rp (5)

then f̃ is defined as f̃(x) = miny∈C gy(x).

We use such extension to define our loss function in the unconstrained case. Namely, we define

`(θ; d) = min
||y||2≤1

−〈y, d〉+ ||θ − y||2 (6)

which is convex, 1-Lipschitz and equal to −〈θ, d〉 when ||θ||2 ≤ 1 according to Lemma 4.1. Specif-
ically, it’s easy to verify that `(θ; 0) = max{0, ||θ||2 − 1}, and when ||d||2 = 1

`(θ; d) ≥ min
||y||2≤1

−〈y, d〉 ≥ −1, (7)

where the equation holds if and only if θ = d.

For any dataset D = {d1, ..., dn}, we define L(θ;D) = 1
n

∑n
i=1 `(θ; di). The structure of the proof

is similar to that in Bassily et al. (2014), while technical details are quite different as we need to
handle a non-linear objective function.

4.2 LOWER BOUND

To prove the lower bound we need the following lemma from Bassily et al. (2014). The proof is
similar to that of Lemma 5.1 in Bassily et al. (2014), except that we change the construction by
adding 0 as our dummy points. For completeness we include it here.
Lemma 4.2 (Lemma 5.1 in Bassily et al. (2014)). Let n, p ≥ 2 and ε > 0. There is a number
n∗ = Ω(min(n, pε )) such that for any ε-differentially private algorithm A, there is a dataset D =

{d1, ..., dn} ⊂ { 1√
p ,− 1√

p}p ∪ {0} with ||∑n
i=1 di||2 = n∗ such that, with probability at least 1/2

(taken over the algorithm random coins), we have

||A(D)− q(D)||2 = Ω(min(1,
p

nε
)) (8)

where q(D) = 1
n

∑n
i=1 di

Proof. By using a standard packing argument we can construct K = 2
p
2 points d(1), ..., d(K) in

{ 1√
p ,− 1√

p}p ∪ {0} such that for every distinct pair d(i), d(j) of these points, we have

||d(i) − d(j)||2 ≥
1

8
(9)

It is easy to show the existence of such set of points using the probabilistic method (for example, the
Gilbert-Varshamov construction of a linear random binary code).
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Fix ε > 0 and define n? = p
20ε . Let’s first consider the case where n ≤ n?. We construct K datasets

D(1), ...,D(K) where for each i ∈ [K], D(i) contains n copies of d(i). Note that q(D(i)) = d(i), we
have that for all i 6= j,

||q(D(i))− q(D(j))||2 ≥
1

8
(10)

Let A be any ε-differentially private algorithm. Suppose that for every D(i), i ∈ [K], with probabil-
ity at least 1/2, ||A(D(i))− q(D(i))||2 < 1

16 ,i.e.,Pr[A(D(i)) ∈ B(D(i))] ≥ 1
2 where for any dataset

D, B(D) is defined as

B(D) = {x ∈ Rp : ||x− q(D)||2 <
1

16
} (11)

Note that for all i 6= j, D(i) and D(j) differs in all their n entries. SinceA is ε-differentially private,
for all i ∈ [K], we have Pr[A(D(1)) ∈ B(D(i))] ≥ 1

2e
−εn. Since all B(D(i)) are mutually disjoint,

then
K

2
e−εn ≤

K∑

i=1

Pr[A(D(1)) ∈ B(D(i))] ≤ 1 (12)

which implies that n > n? for sufficiently large p, contradicting the fact that n ≤ n?. Hence, there
must exist a dataset D(i) on which A makes an `2-error on estimating q(D) which is at least 1/16
with probability at least 1/2. Note also that the `2 norm of the sum of the entries of such D(i) is n.

Next, we consider the case where n > n?. As before, we constructK = 2
p
2 datasets D̃(1), · · · , D̃(K)

of size n where for every i ∈ [K], the first n? elements of each dataset D̃(i) are the same as dataset
D(i) from before whereas the remaining n− n? elements are 0.

Note that any two distinct datasets D̃(i), D̃(j) in this collection differ in exactly n? entries. Let A
be any ε-differentially private algorithm for answering q. Suppose that for every i ∈ [K], with
probability at least 1/2, we have that

||A(D̃(i))− q(D̃(i))||2 <
n?

16n
(13)

Note that for all i ∈ [K], we have that q(D̃(i)) = n∗

n q(D(i)). Now, we define an algorithm Ã for
answering q on datasets D of size n? as follows. First, Ã appends 0 as above to get a dataset D̃
of size n. Then, it runs A on D̃ and outputs n∗A(D̃)

n . Hence, by the post-processing propertry of
differential privacy, Ã is ε-differentially private since A is ε-differentially private. Thus for every
i ∈ [K], with probability at least 1/2, we have that ||Ã(D(i)) − q(D(i))||2 < 1

16 . However, this
contradicts our result in the first part of the proof. Therefore, there must exist a dataset D̃(i) in the
above collection such that, with probability at least 1/2,

||A(D̃(i))− q(D̃(i))||2 ≥
n?

16n
≥ p

320εn
(14)

Note that the `2 norm of the sum of entries of such D̃(i) is always n?.

Lemma 4.2 basicly says that it’s impossible to estimate the average of d1, ..., dn with accuracy
o(min(1, pnε )) with an ε-DP algorithm. We are ready to prove our main theorem of this section.

Theorem 4.3 (Lower bound for ε-differentially private algorithms). Let n, p ≥ 2 and ε > 0. For ev-
ery ε-differentially private algorithm with output θpriv ∈ Rp, there is a dataset D = {d1, ..., dn} ⊂
{ 1√

p ,− 1√
p}p ∪ {0} such that, with probability at least 1/2 (over the algorithm random coins), we

must have that
L(θpriv;D)−min

θ
L(θ;D) = Ω(min(1,

p

nε
)) (15)

Proof. Let A be an ε-differentially private algorithm for minimizing L and let θpriv denote its out-
put, define r := θpriv − θ∗. First, observe that for any θ ∈ Rp and dataset D as constructed in
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Lemma 4.2 (recall that D consists of n∗ copies of a vector d ∈ { 1√
p ,− 1√

p}p and n − n∗ copies of
0).

L(θ∗;D) =
n− n∗
n

max{0, ||θ∗||2 − 1}+
n∗

n
min
||y||2≤1

(−〈y, d〉+ ||θ∗ − y||2) = −n
∗

n
(16)

when θ∗ = d, and also

L(θpriv;D) =
n− n∗
n

max{0, ||θpriv||2 − 1}+
n∗

n
min
||y||2≤1

(−〈y, d〉+ ||θpriv − y||2)

≥ n∗

n
min
||y||2≤1

(−〈y, d〉+ ||θpriv − y||2)

=
n∗

n
min
||y||2≤1

(−〈y, d〉+ ||r + d− y||2)

(because θ∗ = d)

≥ n∗min{1, ||r||22}
8n

− n∗

n

the last inequality follows by discussing the norm of y − d. If ||y − d||2 ≤ ||r||2/2, then

||r + d− y||2 ≥ ||r||2/2 ≥ min{1, ||r||22}/2 (17)

combining with the fact that |〈y, d〉| ≤ 1 proves the last inequality.

If ||y − d||2 ≥ ||r||2/2, then we have min||y||2≤1−〈y, d〉 ≥ −1 +
||r||22

8 . To prove this, we assume
d = e1 without loss of generality and y − d = (x1, ..., xp) where

∑p
i=1 x

2
i ≥ ||r||22/4. Since

‖y‖2 = ||y − d+ d||2 ≤ 1, we must have

1 +

p∑

i=1

x2
i + 2x1 ≤ 1 (18)

Thus−〈y, d〉 = −1−〈y−d, d〉 = −1−x1 ≥ −1+||r||22/8 as desired, which finishes the discussion
on the second case.

From the above result we have that

L(θpriv;D)− L(θ∗;D) ≥ n∗min{1, ||r||22}
8n

(19)

To proceed, suppose for the sake of a contradiction, that for every dataset D = {d1, ..., dn} ⊂
{ 1√

p ,− 1√
p}p ∪ {0} with ||∑n

i=1 di||2 = n∗, with probability more than 1/2, we have that

||θpriv − θ∗||2 = ||r||2 6= Ω(1). Let Ã be an ε-differentially private algorithm that first runs A
on the data and then outputs n∗

n θ
priv . Recall that q(D) = n∗

n θ
∗, this implies that for every dataset

D = {d1, ..., dn} ⊂ { 1√
p ,− 1√

p}p ∪ {0} with ||∑n
i=1 di||2 = n∗, with probability more than 1/2,

||Ã(D)− q(D)||2 6= Ω(min(1, pnε )) which contradicts Lemma 4.2. Thus, there must exists a dataset
D = {d1, ..., dn} ⊂ { 1√

p ,− 1√
p}p ∪ {0} with ||∑n

i=1 di||2 = n∗, such that with pr obability more
than 1/2, we have ‖r‖2 = ||θpriv − θ∗||2 = Ω(1), and as a result

L(θpriv;D)− L(θ∗;D) = Ω(min(1,
p

nε
)) (20)
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5 CONCLUSION

In this paper, we study differentially private convex ERM in the unconstrained case and give the first
tight lower bounds for approximate-DP ERM for general loss functions. Our results also directly
imply a same lower bound for the constrained case, improving the classic lower bound in Bassily
et al. (2014) by log(1/δ). We also give an Ω( pnε ) lower bound for unconstrained pure-DP ERM
which recovers the result in the constrained case. Our techniques enrich the quite limited tools in
constructing lower bounds in the private setting and we hope they can find future use, especially
for those problems which are not (easily) reducible from one-way marginals. Designing better
algorithms for general (un)constrained DP-ERM based on our insights would also be an interesting
and meaningful direction, which we leave as future work.
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