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ABSTRACT

One-Shot Federated Learning (OSFL), a special decentralized machine learning
paradigm, has recently gained significant attention. OSFL requires only a sin-
gle round of client data or model upload, which reduces communication costs
and mitigates privacy threats compared to traditional FL. Despite these promising
prospects, existing methods face challenges due to client data heterogeneity and
limited data quantity when applied to real-world OSFL systems. Recently, Latent
Diffusion Models (LDM) have shown remarkable advancements in synthesizing
high-quality images through pretraining on large-scale datasets, thereby present-
ing a potential solution to overcome these issues. However, directly applying
pretrained LDM to heterogeneous OSFL results in significant distribution shifts
in synthetic data, leading to performance degradation in classification models
trained on such data. This issue is particularly pronounced in rare domains, such
as medical imaging, which are underrepresented in LDM’s pretraining data. To
address this challenge, we propose Federated Bi-Level Personalization (FedBiP),
which personalizes the pretrained LDM at both instance-level and concept-level.
Hereby, FedBiP synthesizes images following the client’s local data distribution
without compromising the privacy regulations. FedBiP is also the first approach
to simultaneously address feature space heterogeneity and client data scarcity in
OSFL. Our method is validated through extensive experiments on three OSFL
benchmarks with feature space heterogeneity, as well as on challenging medical
and satellite image datasets with label heterogeneity. The results demonstrate the
effectiveness of FedBiP, which substantially outperforms other OSFL methods.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al., 2017) is a decentralized machine learning paradigm,
in which multiple clients collaboratively train neural networks without centralizing their local data.
However, traditional FL frameworks require frequent communication between a server and clients to
transmit model weights, which would lead to significant communication overheads (Kairouz et al.,
2021). Additionally, such frequent communication increases system susceptibility to privacy threats,
as transmitted data can be intercepted by attackers who may then execute membership inference
attacks (Lyu et al., 2020). In contrast, a special variant of FL, One-Shot Federated Learning (OSFL)
(Guha et al., 2019), serves as a promising solution. OSFL requires only single-round server-client
communication, thereby enhancing communication efficiency and significantly reducing the risk of
interception by malicious attackers. Therefore, we focus on OSFL given its promising properties.

Despite these promising prospects, existing methods for OSFL face significant challenges when ap-
plied to real-world scenarios. Previous works (Guha et al., 2019; Li et al., 2020) require additional
public datasets, presenting challenges in privacy-critical domains such as medical data (Liu et al.,
2021), where acquiring data that conforms to client-specific distributions is often impractical. Al-
ternatively, they can involve the transmission of entire model weights (Zhang et al., 2022) or local
training data (Zhou et al., 2020), which are inefficient and increase the risk of privacy leakage. More-
over, these approaches overlook the issue of feature space heterogeneity, wherein the data features
across different clients exhibit non-identically distributed properties. This presents an important and
prevalent challenge as emphasized in (Li et al., 2021; Chen et al., 2023). Another vital challenge in
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(One-Shot) FL is the limited quantity of data available from clients (McMahan et al., 2017). This
problem is particularly notable in specialized domains, such as medical or satellite imaging (So
et al., 2022) where data collection is time-consuming and costly.

Data augmentation constitutes a
promising strategy to address these
challenges in traditional FL (Zhu
et al., 2021; Li et al., 2022) by
optimizing an auxiliary generative
model. However, its reliance on mul-
tiple communication rounds makes
it unsuitable for OSFL. Recently,
diffusion models (Ho et al., 2020),
particularly Latent Diffusion Model
(LDM) (Rombach et al., 2022), have
gained significant attention due to
their capability to synthesize high-
quality images after being pretrained
on large-scale datasets. They are pro-

(a) DomainNet, airplane, quickdraw (b) DermaMNIST, dermatofibroma class

FedBiP

real

pretrained

FedBiP

real

pretrained

Figure 1: Feature map visualization of original client im-
ages (real), synthetic images by prompted pretrained LDM
(pretrained), and our method (FedBiP) on two datasets.
FedBiP effectively mitigates the strong distribution shifts
between pretrained LDM and client local data.

ven effective in various tasks, including training data augmentation (Yuan et al., 2023; Azizi et al.,
2023) and addressing feature shift problems (Niemeijer et al., 2024; Gong et al., 2023) under cen-
tralized settings. However, directly applying a pretrained LDM for specialized domains presents
challenges. As demonstrated in Figure 1, there is a noticeable feature distributional shift and visual
discrepancy between real and synthetic data. This mismatch could lead to performance degradation
when incorporating such synthetic data into the training process, especially in heterogeneous OSFL
settings, where each client possesses data with varying distributions.

Therefore, in this paper, we propose Federated Bi-Level Personalization (FedBiP), a framework
designed to adapt pretrained LDM for synthesizing high-quality training data that adheres to client-
specific data distributions in OSFL. FedBiP incorporates personalization of the pretrained LDM
at both instance and concept levels. Specifically, instance-level personalization focuses on adapting
the pretrained LDM to generate high-fidelity samples that closely align with each client’s local data
while preserving data privacy. Concurrently, concept-level personalization integrates category and
domain-specific concepts from different clients to enhance data generation diversity at the central
server. This bi-level personalization approach improves the performance of classification models
trained on the synthesized data. Our contributions can be summarized as follows:

• We propose a novel method FedBiP to incorporate pretrained Latent Diffusion Model
(LDM) for heterogeneous OSFL, marking the first OSFL framework to tackle feature space
heterogeneity via personalizing LDM.

• We conduct comprehensive experiments on three OSFL benchmarks with feature space
heterogeneity, in which FedBiP achieves state-of-the-art results.

• We validate the maturity and scalability of FedBiP on real-world medical and satellite
image datasets with label space heterogeneity, and further demonstrate its promising capa-
bility in preserving client privacy.

2 RELATED WORKS

2.1 ONE-SHOT FEDERATED LEARNING

A variety of efforts have been made to address One-Shot Federated Learning (OSFL), primarily
from two complementary perspectives: one focuses on model aggregation through techniques such
as model prediction averaging (Guha et al., 2019), majority voting (Li et al., 2020), conformal pre-
diction method (Humbert et al., 2023), loss surface adaptation (Su et al., 2023), or Bayesian methods
(Yurochkin et al., 2019; Chen & Chao, 2020; Hasan et al., 2024). These approaches may not fully
exploit the underlying knowledge across different client data distributions. Another aims to transmit
training data instead of model weights: data distribution (Kasturi et al., 2020; Beitollahi et al., 2024;
Shin et al., 2020), Generative Adversarial Networks (GANs) (Goodfellow et al., 2020; Zhang et al.,
2022; Kasturi & Hota, 2023; Kang et al., 2023; Dai et al., 2024), or distilled dataset (Zhou et al.,
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2020; Song et al., 2023) are optimized and transmitted to the central server for subsequent model
training. Given the success of diffusion models (Rombach et al., 2022), (Zhang et al., 2023; Yang
et al., 2024b) suggests transmitting image captions to reproduce training data at the server, while
(Yang et al., 2024a) focuses on one-shot semi-supervised FL. However, these approaches are either
inefficient or pose risks of client information leakage. In contrast, FedBiP functions as an OSFL
algorithm, offering enhanced efficiency and robust privacy-preserving capabilities.

2.2 DIFFUSION MODELS FOR IMAGE SYNTHESIS

Diffusion models (Ho et al., 2020), especially Latent Diffusion Model (LDM) (Rombach et al.,
2022), have attracted significant attention due to their capability to generate high-resolution natural
images. They have demonstrated effectiveness in various applications, including image stylization
(Guo et al., 2023; Meng et al., 2021; Kawar et al., 2023) and training data generation (Yuan et al.,
2023; Sarıyıldız et al., 2023; Azizi et al., 2023). We refer readers to (Croitoru et al., 2023; Yang
et al., 2023b) for a comprehensive overview of recent progress on diffusion models. Pretrained
LDM has been adopted to address client data scarcity in OSFL (Zhang et al., 2023; Yang et al.,
2024b). However, these methods often overlook the feature distribution shift between the LDM
pretraining dataset and the clients’ local data. This challenge is particularly pronounced in complex
domains such as medical and satellite imaging. To address this issue, we propose FedBiP, which
personalizes the pretrained LDM to synthesize data that is aligned with the clients’ data distributions.

3 PRELIMINARIES

3.1 HETEROGENEOUS ONE-SHOT FEDERATED LEARNING

In this section, we introduce our problem setting, i.e., heterogeneous One-Shot Federated Learning
(OSFL). Following (Zhang et al., 2023), we focus on image classification tasks with the goal of
optimizing a C-way classification model ϕ utilizing the client local data, where C ∈ N denotes the
number of categories. We assume there are K ∈ N clients joining the collaborative training. Each
client k owns its private dataset Dk containing Nk ∈ N (image, label) pairs: {xk

i , y
k
i }N

k

i=1. Only
one-shot data upload from the clients to the central server is allowed.

As described in (Kairouz et al., 2021), OSFL with data heterogeneity is characterized by distribution
shifts in local datasets: P k1

XY ̸= P k2

XY with k1 ̸= k2, where P k
XY defines the joint distribution of input

space X and label space Y on Dk. Data heterogeneity can be decomposed into two types: (1) label
space heterogeneity, where PY varies across clients, while PX|Y remains the same, and (2) feature
space heterogeneity, where PX or PX|Y varies across clients, while PY|X or PY remains the same.

3.2 LATENT DIFFUSION MODEL PIPELINE

In this section, we introduce the training and inference
pipelines for Latent Diffusion Model (LDM). We pro-
vide a schematic illustration in Figure 2. Given an image
x ∈ RH×W×3, the encoder E encodes x into a latent
representation z(0) = E(x), where z(0) ∈ Rh×w×c.
Besides, the decoder D reconstructs the image from the
latent, giving x̃ = D(z(0)) = D(E(x)). The forward
diffusion and denoising processes occur in the latent
representation space, as described below.

In the forward diffusion of LDM training, random noise
ϵ ∼ N (0, I) is added to z(0), producing

z(t) = δ(t, z(0)) =
√
αtz(0) +

√
1− αtϵ, (1)

𝑥

Latent space

𝑧(0)
Forward 

Diffusion

ǁ𝑧(0)
෤𝑥

A cartoon style

of a dog.

Prompt

U-Net 𝝐𝜽

𝑧(𝑇)

𝓓

𝓔

𝝉𝜽

Figure 2: Schematic illustration of the La-
tent Diffusion Model pipeline with textual
prompt conditioning.

where t ∼ Uniform({1, ..., T}) is the timestep controlling the noise scheduler αt. A larger t cor-
responds to greater noise intensity. In the denoising process, a UNet ϵθ is applied to denoise z(t),
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Figure 3: Schematic illustration of Federated Bi-Level Personalization (FedBiP). (①) Each client
executes bi-level personalization and obtains latent vectors zk(T ) and concept vectors Sk, V k. (②)
The central server integrates the vectors into the generation process of the pretrained Latent Diffu-
sion Model θ. (③) The classification model ϕ is optimized using synthetic images.

yielding z̃(0) for image reconstruction. To further condition LDM generation on textual inputs P ,
a feature extractor τθ is used to encode the prompts into intermediate representations for ϵθ. By
sampling different values of ϵ and t, ϵθ can be optimized via the following loss function:

LLDM = Ez(0),P,ϵ,t

[
||ϵ− ϵθ(δ(t, z(0)), t, τθ(P ))||22

]
(2)

In the inference stage, latent representation z(T ) will be sampled directly fromN (0, I), and multiple
denoising steps are executed to obtain z̃(0). The image is then decoded via x̃ = D(z̃(0)).

4 METHODOLOGY

4.1 MOTIVATIONAL CASE STUDY

To substantiate the necessity of the proposed method, we present an empirical analysis to address the
following research question: Can pretrained Latent Diffusion Model (LDM) generate images that
are infrequently represented in the pretraining dataset using solely textual conditioning? Specifi-
cally, we adopt two datasets, namely DomainNet (Peng et al., 2019) and DermaMNIST (Yang et al.,
2023a), which contain images indicating different styles and images from challenging medical do-
mains, respectively. We prompt LDM with ”A quickdraw style of an airplane.” to generate airplane
images in quickdraw style for DomainNet dataset, and ”A dermatoscopic image of a dermatofi-
broma, a type of pigmented skin lesions.” for DermaMNIST. We synthesize 100 images for each
setting and adopt a pretrained ResNet-18 (He et al., 2016) to acquire the feature embeddings of real
and synthetic images. Finally, we visualize them using UMAP (McInnes et al., 2018).

As shown in Figure 1, we observe markedly different visual characteristics between synthetic and
real images. Specifically, for DomainNet, there exist significant discrepancies between the ”quick-
draw” concept demonstration in the original dataset and the pretrained LDM. For DermaMNIST, the
pretrained LDM is only able to perceive the general concepts of ”dermatoscopic” and ”skin lesion”,
failing to capture category-specific information. This further highlights the difficulties in reproduc-
ing medical domain data via LDM. Additionally, there is a substantial gap in the extracted feature
embeddings between real and synthetic images. Most importantly, despite the high visual quality of
the synthetic images, they may not contribute to the final performance of the classification model.
As demonstrated by our experimental results (Table 5.3), directly applying such prompts to generate
images for server-side training sometimes yields worse results than baseline methods. Therefore,
it is essential to design a more sophisticated method to effectively personalize the pretrained LDM
to the specific domains of client local datasets. These observations motivate our proposed method
FedBiP, which mitigates the distribution shifts between pretrained LDM and the client local data.
We introduce FedBiP in the following.

4.2 PROPOSED METHOD

A schematic overview of the proposed method is provided in Figure 3. Additionally, the pseudo-
code of the proposed method is presented in Algorithm 1. We begin by introducing the bi-level
personalization in the local update of kth client, omitting the subscript k for simplicity in the fol-
lowing description.
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Algorithm 1 Training process of FedBiP
ServerUpdate
1: Initialize Latent Diffusion Model with pretrained weights θ, classification model ϕ, synthetic dataset

Dsyn ← ∅
2: for client k = 1 to K do {in parallel}
3: kth client execute ClientUpdate(k) and upload {zki (T ), yk

i }
Nk
i=1, {V

k
j }Cj=1, S

k

4: for i = 1 to Nk do
5: e← τθ(”A [Sk] style of a [V k

yk
i
]”)

6: z̃(0)← ϵθ(z
k
i (T ), t, e), x̃← D(z̃(0))

7: Dsyn.append([x̃, y
k
i ])

8: Optimize ϕ using Dsyn (Equation 6)

ClientUpdate(k)
1: Initialize Latent Diffusion Model with pretrained weights θ, randomly initialize {V k

j }Cj=1, S
k.

2: for i = 1 to Nk do
3: Randomly sample an image xk

i′ with i ̸= i′, yi = yi′

4: z(0)← γE(xk
i ) + (1− γ)E(xk

i′)
5: zki (T )← δ(T, z(0))
6: for local step st = 1 to Nstep do
7: Sample one mini-batch {xk

b , y
k
b } from Dk, timestep t

8: e← τ ({”A [Sk] style of a [V k
yk
b
]”})

9: Optimize Sk, {V k
j }Cj=1 (Equation 4)

4.2.1 INSTANCE-LEVEL PERSONALIZATION

While the traditional Latent Diffusion Model (LDM) employs a Gaussian distribution to initialize
the latent vector z(T ) ∼ N (0, I), we directly compute z(T ) from the local training set Dk of each
client. Specifically, we leverage the VAE encoder E from pretrained LDM to obtain zi(T ) for each
specific real sample xi. We first extract the low-dimensional latent representation by feeding the
training image into VAE encoder: zi(0) ← E(xi). We implement additional measures to enhance
client privacy. First, we interpolate zi(0) with another latent representation, zi′(0), from the same
class, thereby reducing the risk of exact sample reconstruction. Second, we add T -steps of random
noise to obtain zi(T ), which corresponds to the maximum noise intensity in LDM. A comprehensive
privacy analysis is provided in Section 5.5 and 5.6. The overall process can be formalized as

zi(T )← δ(T, γzi(0) + (1− γ)zi′(0)), s.t., i ̸= i′, yi = yi′ , (3)

where γ ∼ N (0.5, 0.12) and clipped to [0, 1]. After the computation, we store zi(T ) and its corre-
sponding ground truth label yi for all training images in the kth client as the instance-level personal-
ization. We emphasize that this level of personalization does not require any additional optimization,
making the process computationally efficient.

4.2.2 CONCEPT-LEVEL PERSONALIZATION

Solely applying instance-level personalization results in reduced diversity in image generation. To
mitigate this limitation, we enhance personalization by incorporating domain and category concepts
into the LDM generation process. Specifically, ”domain” denotes the feature distribution within a
client’s local dataset, such as an image style in the DomainNet dataset. To avoid the costly finetuning
of the LDM weights θ, we finetune only the textual guidance. Specifically, we randomly initialize
the domain concept vector S ∈ Rns×dw and category concept vector V ∈ RC×nv×dw , where ns

and nv are the number of tokens for domain concept and category concept, respectively, and dw is
the token embedding dimension of the textual conditioning model τθ. Subsequently, specific tokens
in the textual template P are substituted with the concept vectors S and Vy corresponding to a
specific category y. For instance, this could result in textual prompts like ”A [S] style of a [Vy]” for
DomainNet dataset. Following this, τθ encodes these modified prompts, transforming the textual
embeddings into intermediate representation for the denoising UNet ϵθ.

To jointly optimize both concept vectors S and Vy , we adopt the following objective function:
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Table 1: Evaluation results of different methods on three OSFL benchmarks with feature space
heterogeneity. We report the mean±std classification accuracy from 3 runs with different seeds. The
best and second-best results are marked with bold and underline, respectively.

Dataset FedAvg Central (oracle) FedD3 DENSE FedDEO FGL FedBiP-S FedBiP-M FedBiP-L

Domain
Net

C 73.12 ±1.54 73.63 ±0.91 61.21 ±1.46 63.84 ±2.51 72.33 ±1.26 67.71 ±3.15 68.07 ±0.96 74.01 ±1.67 77.52 ±0.67

I 59.85 ±1.51 61.76 ±0.94 50.39 ±1.64 52.87 ±0.38 57.39 ±0.84 59.83 ±1.55 54.06 ±2.56 58.42 ±2.05 60.94 ±2.08

P 63.77 ±1.12 69.18 ±1.74 60.50 ±1.09 62.07 ±0.97 63.17 ±1.05 68.56 ±2.51 58.24 ±0.22 63.01 ±2.25 65.20 ±0.78

Q 16.26 ±2.60 72.83 ±0.82 28.25 ±3.11 29.92 ±1.62 37.86 ±2.47 19.83 ±2.99 51.09 ±2.05 49.64 ±5.05 51.85 ±3.24

R 87.90 ±0.09 87.86 ±0.24 79.15 ±1.44 81.69 ±1.14 81.51 ±1.03 87.09 ±0.88 80.44 ±1.38 82.20 ±0.67 83.16 ±0.60

S 68.07 ±4.67 75.28 ±0.96 58.07 ±1.35 59.20 ±2.12 62.86 ±1.61 67.15 ±3.97 57.17 ±1.59 61.92 ±1.35 68.24 ±0.78

Avg 61.49 ±0.58 73.42 ±0.53 56.26 ±0.74 58.26 ±1.33 62.52 ±1.56 61.69 ±1.56 61.51 ±0.62 64.86 ±0.49 67.82 ±0.56

PACS

A 52.68 ±3.22 53.06 ±0.53 42.42 ±1.81 44.64 ±0.14 49.89 ±0.91 55.04 ±1.79 43.01 ±1.80 50.15 ±1.86 53.26 ±2.54

C 68.27 ±4.22 71.43 ±1.61 60.47 ±2.46 63.10 ±1.47 68.31 ±1.41 69.94 ±1.43 64.58 ±3.23 67.71 ±0.93 70.90 ±2.97

P 86.31 ±1.03 81.55 ±6.16 72.08 ±2.25 74.70 ±0.81 71.96 ±0.56 76.47 ±0.68 70.24 ±2.73 73.07 ±1.80 74.85 ±1.36

S 31.25 ±9.94 63.24 ±3.35 30.40 ±1.99 31.40 ±2.06 48.95 ±1.34 41.82 ±6.26 48.66 ±4.26 50.30 ±2.20 51.70 ±1.69

Avg 59.63 ±3.13 67.32 ±2.36 51.34 ±2.51 53.46 ±1.62 59.78 ±1.07 60.82 ±1.90 56.62 ±1.23 60.30 ±0.42 62.67 ±0.45

Office
Home

A 54.48 ±1.60 58.68 ±1.72 50.71 ±1.30 52.37 ±0.96 49.37 ±2.06 48.48 ±3.18 39.80 ±0.88 45.06 ±0.75 55.41 ±0.55

C 47.63 ±1.08 51.09 ±1.17 44.06 ±0.86 46.24 ±1.74 42.92 ±0.81 36.58 ±2.36 36.79 ±1.15 40.86 ±0.80 48.62 ±0.42

P 73.94 ±1.27 77.79 ±0.83 71.09 ±1.69 73.76 ±2.07 73.81 ±0.46 59.38 ±0.66 69.20 ±1.17 73.23 ±0.69 76.63 ±0.20

R 63.94 ±0.56 69.97 ±0.63 60.25 ±0.88 61.86 ±1.45 61.77 ±0.51 62.08 ±2.37 56.57 ±1.01 61.94 ±1.32 65.43 ±0.96

Avg 60.00 ±0.88 64.38 ±1.06 56.52 ±1.07 58.55 ±1.35 56.96 ±1.71 51.63 ±1.71 50.59 ±0.70 55.27 ±0.73 61.52 ±0.39

Lg = EE(x(0)),y,ϵ∼N (0,1),t

[
||ϵ− ϵθ(z(t), t, τθ(S, Vy))||22

]
, (4)

where timestep t is sampled from Uniform({1, ..., T}).

After the local optimization of each client, the latent vectors {zi(T ), yi}N
k

i=1, along with the opti-
mized concept vectors S, V , are uploaded to the central server. To further increase the generation
diversity, we introduce a small perturbation to the domain concept vector S. Specifically, we define
Ŝ = S+ η with η ∼ N (0, ση), where ση controls the perturbation intensity. The central server then
integrates these vectors into the same pretrained LDM and generates synthetic images with

x̃i = D(ϵθ(zi(T ), T, τθ(Ŝ, Vyi
))). (5)

The data sample (x̃i, yi) is appended to the synthetic set Dsyn. It is crucial to note that FedBiP
performs image generation asynchronously, eliminating the need to wait for all clients to complete
their local processes. Once the server receives the vectors uploaded from all clients and completes
the image generation, we proceed to optimize the target classification model ϕ with the objective:

Lcls = LCE(ϕ(x̃), y). (6)

5 EXPERIMENTS AND ANALYSES

We conduct extensive empirical analyses to investigate the proposed method. Firstly, we compare
FedBiP with other baseline methods on three One-Shot Federated Learning (OSFL) benchmarks
with feature space heterogeneity. Next, we evaluate FedBiP using a medical dataset and a satellite
image dataset adapted for OSFL setting with label space heterogeneity, illustrating its effectiveness
under challenging real-world scenarios. Finally, we perform an ablation study on FedBiP and
further analyze its promising privacy-preserving capability.

5.1 BENCHMARK EXPERIMENTS

Datasets Description: We adapt three common image classification benchmarks with feature dis-
tribution shift for our OSFL setting: (1) DomainNet (Peng et al., 2019), which contains six domains:
Clipart (C), Infograph (I), Painting (P), Quickdraw (Q), Real (R), and Sketch (S). We select 10 cate-
gories following (Zhang et al., 2023). (2) PACS (Li et al., 2017), which includes images that belong
to 7 classes from four domains: Art (A), Cartoon (C), Photo (P), and Sketch (S). (3) OfficeHome
(Venkateswara et al., 2017) comprises images of daily objects from four domains: Art (A), Clipart
(C), Product (P), and Real (R). Each client is assigned a specific domain. To simulate local data
scarcity described in previous sections, we adopt 16-shot per class (8-shot for OfficeHome) for each
client, following previous works (Li et al., 2021; Chen et al., 2023).
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Baseline Methods: We compare FedBiP with several baseline methods, including FedAvg and
Central, i.e., aggregating the training data from all clients. We note that Central is an oracle method
as it infringes on privacy requirements, while FedAvg requires multi-round communication and is
not applicable to OSFL. Besides, we validate concurrent generation-based methods for OSFL: (1)
FedD3 (Song et al., 2023), where distilled instances from the clients are uploaded. (2) DENSE
(Zhang et al., 2022), where client local models are uploaded and distilled into one model using
synthetic images. (3) FedDEO (Yang et al., 2024b), where the optimized category descriptions are
uploaded and guide pretrained diffusion models. (4) FGL (Zhang et al., 2023), where captions of
client local images, extracted by BLIP-2 (Li et al., 2023), are uploaded and guide pretrained LDM.

Implementation Details: We adopt the HuggingFace open-sourced ”CompVis/stable-diffusion-v1-
4” as the pretrained Latent Diffusion Model, and use ResNet-18 pretrained on ImageNet (Deng et al.,
2009) as the initialization for the classification model. We investigate three variants of FedBiP,
namely ”S”, ”M”, and ”L”, which corresponds to generating 2×, 5×, 10× the number of images
in the original client local dataset, respectively. Note that synthesizing more images does not affect
the client’s local optimization costs. We optimize the concept vectors for 50 epochs at each client.
For FGL, 3500 samples per class per domain are generated. For FedDEO, the total number of
synthetic images is identical to FedBiP-L for a fair comparison. Further details about training
hyperparameters are provided in the Appendix.

Results and Analyses: We report the validation results in Table 1, where we observe FedBiP-L
outperforms all baseline methods in average performance, indicating an average performance im-
provement of up to 5.96%. Notably, FedBiP-S achieves comparable performance to FGL by
generating only 16 images for DomainNet per class and domain, while FGL requires 3500 images.
This further highlights the efficiency of our proposed method. Additionally, FedBiP excels in
challenging domains, such as Quickdraw (Q) of DomainNet and Sketch (S) of PACS, showcasing
its effectiveness in generating images that are rare in the Latent Diffusion Model (LDM) pretraining
dataset. However, FedBiP slightly underperforms in certain domains, e.g., Real (R) in Domain-
Net. We attribute this to the overlap between these domains and the LDM pretraining dataset, where
adapting LDM with the client local datasets reduces its generation diversity. Nevertheless, FedBiP
narrows the gap between the generation-based methods and oracle Central method.

5.2 VALIDATION ON MEDICAL AND SATELLITE IMAGE DATASETS

To illustrate the effectiveness of FedBiP on challenging real-world applications, we adopt a medical
dataset, DermaMNIST (Yang et al., 2023a), comprising dermatoscopic images of 7 types of skin
lesion, and a satellite image dataset, UC Merced Land Use Dataset (UCM) (Yang & Newsam, 2010),
which includes satellite images representing 21 different land use categories. We assume there
are 5 research institutions (clients) participating in the collaborative training. To construct local
datasets for each client in OSFL, we employ the Dirichlet distribution Dirβ to model label space
heterogeneity, in which a smaller β indicates higher data heterogeneity. Following (Zhou et al.,
2022), we use the textual template ”A dermatoscopic image of a [CLS], a type of pigmented skin
lesions.” and ”A centered satellite photo of [CLS].” for DermaMNIST and UCM, respectively.

In Table 2, we report the validation results of different methods on real-world OSFL benchmarks
with varying levels of label space heterogeneity. We observe that FedBiP-L consistently outper-
forms all baseline methods across all settings, with an average performance increase of up to 4.16%
over FedAvg. Furthermore, we notice that the most lightweight version, FedBiP-S, surpasses the
method with pretrained LDM, FGL, by a substantial margin. This demonstrates the importance of

Table 2: Evaluation results of different methods on real-world medical and satellite OSFL bench-
marks with varying levels of label space heterogeneity. The best results are marked with bold.

Dataset Split FedAvg Central (oracle) FedD3 DENSE FedDEO FGL FedBiP-S FedBiP-M FedBiP-L

UCM
IID 63.82 ±0.67 68.44 ±0.52 59.37 ±1.24 64.08 ±0.95 63.15 ±0.86 52.65 ±1.74 61.58 ±0.76 63.74 ±0.47 65.59 ±1.01

Dir0.5 62.96 ±1.41 68.44 ±0.52 56.86 ±0.81 61.41 ±1.51 61.04 ±0.34 52.65 ±1.74 61.02 ±1.03 62.37 ±0.84 64.41 ±0.88

Dir0.01 57.47 ±1.76 68.44 ±0.52 50.24 ±0.49 54.16 ±0.77 55.81 ±1.05 52.65 ±1.74 54.48 ±1.24 56.19 ±0.65 59.84 ±0.47

Derma
MNIST

IID 53.47 ±1.49 60.08 ±0.98 50.26 ±0.67 52.91 ±0.34 54.29 ±1.12 40.82 ±2.56 53.84 ±1.52 54.91 ±0.71 56.10 ±1.34

Dir0.5 51.98 ±0.52 60.08 ±0.98 49.52 ±1.46 50.83 ±0.61 52.61 ±0.84 40.82 ±2.56 51.47 ±1.32 53.26 ±0.84 55.03 ±1.02

Dir0.01 43.99 ±2.07 60.08 ±0.98 40.25 ±1.91 41.08 ±2.30 42.14 ±0.96 40.82 ±2.56 45.32 ±0.91 46.71 ±1.31 48.15 ±1.67
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our LDM personalization schema, particularly in scenarios involving significant feature distribution
shifts compared to the pretraining dataset of LDM.

5.3 ABLATION STUDY

To illustrate the importance of different
FedBiP components, we conduct an ablation
study on three OSFL benchmark datasets. The
results are shown in Table 5.3. First, we ob-
serve that simply prompting LDM with ”A
[STY] style of a [CLS]” and synthesizing im-
ages at central server is ineffective. Next, we
notice that optimizing only the category con-
cept vector Vc leads to only minimal perfor-
mance improvements. We hypothesize that
this is because the categories in these bench-
marks are general objects, such as ”person” or
”clock”, which are already well-captured by
LDM during pretraining. In contrast, optimiz-

Table 3: Ablation study for different components
of FedBiP on three benchmarks.

Instance Concept Domain
Net PACS Office

Homez(T ) Ŝ Vc

FedAvg (multi-round) 61.49 59.63 60.00

60.22 58.90 53.23

✓ 61.71 59.15 55.81

✓ 63.96 60.08 56.32

✓ 66.08 61.83 59.35

✓
✓

(no perturb.) ✓ 67.09 62.78 60.84

✓ ✓ ✓ 67.82 62.67 61.52

ing the domain concept vector S produces visible performance gain. This can be attributed to the
mismatch between the textual representation of domain concepts and LDM’s pretraining. For exam-
ple, as described in Motivation section (Figure 1), ”Quickdraw” in DomainNet encompasses images
characterized by very simple lines, while LDM tends to generate images with finer details. Further-
more, applying instance-level personalization with z(T ) yields a performance boost, highlighting
the importance of fine-grained personalization in improving LDM. Finally, combining both levels
of personalization further improves the results, which demonstrates their complementarity.

5.4 SCALABILITY ANALYSIS OF FEDBIP

To show the scalability of FedBiP under various application scenarios, we validate FedBiP in
systems with varying client numbers and analyze the effects of synthetic image quantity.

Varying Number of Clients: We split each domain of the DomainNet dataset into 5 subsets, ensur-
ing that each subset contains 16 samples per category to simulate the local data scarcity described in
previous sections. Each subset is then assigned to a specific client. In our experiments, we select 1 to
5 clients from each domain, resulting in a total of 6 to 30 clients participating in federated learning.

The validation results are presented in Figure 4. We observe that the performance of the baseline
method FedAvg remains unchanged with the addition of more clients to FL. In contrast, the vali-
dation performance of FedBiP consistently increases, narrowing the gap between distributed opti-
mization and Central optimization. Furthermore, FedBiP outperforms FedAvg by 9.51% when the
largest number of clients join FL, further indicating its scalability for real-world complex federated
systems with more clients.

Varying Number of Synthetic Images: We synthesize varying quantities of images for each cate-
gory and domain, scaling from 1× to 20× the size of the original client local dataset. The results
for the DomainNet and OfficeHome benchmarks are presented in Figure 5. Our analysis reveals
that increasing the number of synthetic images enhances the performance of the target classification
model, significantly outperforming the baseline method (FedAvg) by up to 6.47%. Furthermore, we

Figure 4: Validation results of
FedBiP with varying number of
clients on DomainNet.

(a) DomainNet (b) OfficeHome

Figure 5: Validation results of FedBiP with synthesizing dif-
ferent numbers of images at central server.
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෥𝒙𝒊 Top-3 Retrieved

(b) DomainNet 

airplane class

clipart domain

𝒙𝒊′𝒙𝒊

(a) PACS 

dog class

photo domain

(c) DermaMNIST 

dermatofibroma class

MIA Analysis

MIA Analysis

MIA Analysis

Figure 6: FedBiP privacy analysis: (1) Visual: The reproduced images are notably dissimilar to
the original images xi and xi′ . Besides, the retrieved images exhibit visual discrepancies compared
to synthetic x̃i. (2) Statistical: The pixel value histogram of z(T ) resembles a standard Gaussian
distribution more closely compared to z(0), making it hard to extract private information from z(T ).

observe that synthesizing images at 10× the original dataset size emerges as the most effective
approach, when considering the trade-off between generation time and final performance. This
finding is consistent with the design principles of FedMLA-L.

5.5 PRIVACY ANALYSIS

In this section, we present a comprehensive privacy analysis of FedBiP, encompassing both quali-
tative and quantitative evaluations, as illustrated in Figure 6.

Visual discrepancy between synthetic and real images: We visualize both synthetic image x̃i,
and its corresponding real images, i.e., xi, xi′ . Besides, we use the pretrained ResNet-18 to extract
the feature map of x̃i and retrieve the top-3 real images which indicate the largest cosine similarities
in the feature space. We observe differences in both background (e.g., textual and color) and fore-
ground (e.g., the exact object shape, position, and pose) between real and synthetic images. These
visual discrepancies indicate that the synthetic images do not closely resemble any individual real
images, thereby reducing the risk of revealing sensitive information about the original client data.

Pixel Value Histogram Analysis: To further analyze FedBiP from a statistical perspective, we
provide histograms of both z(0) (the interpolated latent vectors of input images) and the corre-
sponding z(T ) (z(0) with T -steps of random noise added). We observe that z(T ) closely resembles
a standard Gaussian distribution, which contains less information about the original input images
compared to z(0). This indicates that transmitting the noised z(T ) is more private than z(0), and
would not significantly compromise privacy regulations. Additionally, we notice that z(0) could be
further replaced with the average latent vectors of all samples from a specific class, i.e., categorical
prototypes (Tan et al., 2022). This substitution might further protect client privacy and is appropriate
for applications with stringent privacy requirements. We leave this for future work.

Membership Inference Attack (MIA)
Analysis: Finally, we analyze the re-
silience of FedBiP against MIA. Follow-
ing (Yeom et al., 2018; Salem et al., 2018),
we compute the average loss and entropy
of the final model on both training mem-
ber and non-member data, and report the
difference between the two averages. A
smaller difference corresponds to better
membership privacy preservation. From
the MIA Analysis in Table 4, we can ob-
serve that FedBiP demonstrates superior
resilience against MIA.

Table 4: Membership Inference Attack (MIA) analysis
on different benchmarks. A lower metric corresponds
to better MIA privacy.

Dataset MIA Metric FedAvg FedBiP

DomainNet Entropy ↓ 0.1311 0.0186 ↓85.8%
Loss ↓ 0.5976 0.1611 ↓73.0%

DermaMNIST Entropy ↓ 0.0897 0.0551 ↓38.6%
Loss ↓ 0.5860 0.4127 ↓29.6%

PACS Entropy ↓ 0.1635 0.0338 ↓79.3%
Loss ↓ 0.4459 0.1244 ↓72.1%
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5.6 VISUALIZATION WITH VARYING γ

In this section, we visualize the synthetic image x̃i using different interpolation coefficients γ for
DomainNet benchmark. Specifically, we compute the interpolated latent vector zi(0) using γzi(0)+
(1 − γ)zi′(0). As shown in Figure 7, we observe that the synthetic images exhibit distinct visual
characteristics compared to the real images, even when γ is set to 0.0 or 1.0, corresponding to the
direct use of latent vectors from the original images. We attribute these differences to the sampling
process involved in the denoising phase of Latent Diffusion Model. Additionally, applying γ values
near 0.5 offers the most effective privacy protection. Most importantly, varying γ produces diverse
images, which enhances generation diversity and is beneficial for training the classification model.
Therefore, we use a Gaussian distribution N (0.5, 0.12) to sample γ in FedBiP.

𝒙𝒊 𝒙𝒊‘1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

Interpolation Coefficient 𝛾

Figure 7: Synthetic images generated with varying γ for latent embedding interpolation.

5.7 VISUALIZATION FOR CHALLENGING DOMAINS

In this section, we present the synthetic images generated for the challenging domains, i.e., Quick-
draw (DomainNet) and Sketch (PACS), as shown in Figure 8. Our observations indicate that
FedBiP achieves superior generation quality by more accurately adhering to the original distri-
bution of clients’ local data compared to the diffusion-based method FGL (Zhang et al., 2023). This
visualization further highlights the effectiveness of our bi-level personalization approach.

(b) PACS, Sketch domain(a) DomainNet, Quickdraw domain

Real

FGL

FedBiP

Figure 8: Comparison of synthetic images for challenging domains.

6 CONCLUSION

In this work, we propose the first framework to address feature space heterogeneity in One-Shot Fed-
erated Learning (OSFL) using generative foundation models, specifically Latent Diffusion Model
(LDM). The proposed method, named FedBiP, personalizes the pretrained LDM at both instance-
level and concept-level. This design enables LDM to synthesize images that adhere to the local data
distribution of each client, exhibiting significant deviations compared to its pretraining dataset. The
experimental results indicate its effectiveness under OSFL systems with both feature and label space
heterogeneity, surpassing the baseline and multiple concurrent methods. Additional experiments
with medical or satellite images demonstrate its maturity for challenging real-world applications.
Moreover, additional analysis highlights its promising scalability and privacy-preserving capability.
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Table 5: Detailed hyperparameters for each dataset. The highlighted words ([STY]) in the textual
prompt will be replaced by the domain concept vectors. The [CLS] will be replaced by the class
concept vectors.

Dataset prompt ns nc C Class Names

Derma
MNIST

A dermatoscopic image
of a [CLS], a type of

pigmented skin lesions.
2 4 10

intraepithelial carcinoma,
basal cell carcinoma,

benign keratosis,
dermatofibroma,

melanoma,
melanocytic nevi,

vascular skin

UCM A centered satellite photo
of [CLS]. 3 3 21

agricultural, dense residential,
medium residential,
sparse residential,

parking lot, buildings, harbor,
mobile homepark, storage tanks,
freeway, intersection, overpass,
golf course, baseball diamond,

runway, tenniscourt, beach,
forest, river, chaparral,

airplane

Domain
Net A [STY] of [CLS]. 1 1 10

airplane, clock, axe,
basketball, bicycle, bird,
strawberry, flower, pizza,

bracelet

Office
Home A [STY] of [CLS]. 1 1 20

Marker, Spoon, Pencil,
Speaker, Toys, Fan, Hammer,
Notebook, Telephone, Sink,
Chair, Fork, Kettle, Bucket,

Knives, Monitor, Mop, Oven,
Pen, Couch

PACS A [STY] of [CLS]. 1 1 7
dog, elephant, giraffe,
guitar, horse, house,

person

A EXPERIMENTAL DETAILS

We use 1 NVIDIA RTX A5000 with 24GB RAM to run the experiments. We use PyTorch (Paszke
et al., 2019) to implement our algorithm. For the baseline FedAvg, the total communication round
is set to 50. For FGL (Zhang et al., 2023), we generate 3500 images per class per domain. For
the optimization of the classification model, we use SGD with momentum as the optimizer, where
the learning rate is set to 0.01 and the momentum is 0.9. The optimization epoch is set to 50. The
training image resolution is set to 512× 512 for all datasets.

For FedD3 (Song et al., 2023), we adopt Kernel Inducing Points (KIP) to distill the original dataset
into 1 image per class per domain and transmit them to the central server. For DENSE (Zhang
et al., 2022), we first finetune the pretrained ResNet-18 (He et al., 2016) at each client and then
optimize a Generator to conduct model distillation at central server. The hyperparameters used in
these methods are following their original papers. For FedMLA, we use Adam optimizer to optimize
the concept vectors. The learning rate is set to 0.1 and beta is set to (0.9, 0.999). The total training
epochs is set to 30. We adopt the Pseudo Numerical Diffusion Model (PNDM) (Liu et al., 2022) in
the Latent Diffusion Model. The perturbation intensity for domain concept vector σµ is set to 0.1
for all dataset. More dataset specific hyperparameters are provided in Table 5.
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B SYNTHETIC IMAGE VISUALIZATION

We provide synthetic images for all benchmarks in the following figures, where we observe that the
synthetic images generally follow the distribution and characteristics of the original training datasets
at each client. Besides, the visual quality of the generated images, e.g., the detailed features of the
objects, is also promising.

Figure 9: Synthetic Images for DomainNet benchmark.
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Figure 10: Synthetic Images for PACS benchmark.
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Figure 11: Synthetic Images for OfficeHome benchmark.
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Figure 12: Synthetic Images for UCM benchmark.
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Figure 13: Synthetic Images for DermaMNIST benchmark.
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