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Abstract

We present a novel quasi-Monte Carlo mechanism to improve graph-based
sampling, coined repelling random walks. By inducing correlations between
the trajectories of an interacting ensemble such that their marginal transi-
tion probabilities are unmodified, we are able to explore the graph more effi-
ciently, improving the concentration of statistical estimators whilst leaving
them unbiased. The mechanism has a trivial drop-in implementation. We
showcase the effectiveness of repelling random walks in a range of settings
including estimation of graph kernels, the PageRank vector and graphlet
concentrations. We provide detailed experimental evaluation and robust
theoretical guarantees. To our knowledge, repelling random walks con-
stitute the first rigorously studied quasi-Monte Carlo scheme correlating
the directions of walkers on a graph, inviting new research in this exciting
nascent domain.1

1 Introduction and related work

Quasi-Monte Carlo (QMC) sampling is well-established as a universal tool to improve the
convergence of MC methods, improving the concentration properties of estimators by using
low-discrepancy samples to reduce integration error (Dick et al., 2013). They replace i.i.d.
samples with a correlated ensemble, carefully constructed to be more ‘diverse’ and hence
improve approximation quality.
Such methods have been widely adopted in the Euclidean setting. For example, when sam-
pling from isotropic distributions, one popular approach is to condition that samples are
orthogonal: a trick that has proved successful in applications including dimensionality re-
duction (Choromanski et al., 2017), evolution strategy methods in reinforcement learning
(Choromanski et al., 2018; Rowland et al., 2018) and estimating sliced Wasserstein dis-
tances (Rowland et al., 2019). ‘Orthogonal Monte Carlo’ has also been used to improve the
convergence of random feature maps for kernel approximation (Yu et al., 2016), including
recently in attention approximation for scalable Transformers (Choromanski et al., 2020).
Intuitively, conditioning that samples are orthogonal prevents them from clustering together
and ensures that they ‘explore’ Rd better. In specific applications it is sometimes possible
to derive rigorous theoretical guarantees (Reid et al., 2023b).
Less clear is how these powerful ideas generalise to discrete space. Of particular interest
are random walks on graphs, which sample a sequence of nodes connected by edges with
some stopping criterion. Random walks are ubiquitous in machine learning and statistics
(Xia et al., 2019), providing a simple mechanism for unbiased graph sampling that can be
implemented in a distributed way. However, slow diffusion times (especially for challenging
graph topologies) can lead to poor convergence and downstream performance.
Our key contribution is the first (to our knowledge) quasi-Monte Carlo scheme that corre-
lates the directions of an ensemble of graph random walkers to improve estimator accuracy.
By conditioning that walkers ‘repel’ in a particular way that leaves the marginal walk prob-
abilities unmodified, we are able to provably suppress the variance of various estimators
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1Code is available at https://github.com/isaac-reid/repelling_random_walks.
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whilst preserving their unbiasedness. We derive strong theoretical guarantees and observe
large performance gains for algorithms estimating three disparate quantities: graph ker-
nels (Choromanski, 2023), the PageRank vector (Avrachenkov et al., 2007) and graphlet
concentrations (Chen et al., 2016).
Related work: The poor mixing of random walkers on graphs is well-documented and
various schemes exist to try to improve estimator convergence. Most directly modify the
base Markov chain by changing the transition probabilities, but without altering the walker’s
stationary distribution and therefore leaving asymptotic estimators (e.g. based on empirical
node occupations) unmodified. The canonical example of such a scheme is non-backtracking
walks which do not permit walkers to return to their most recently visited node (Alon et al.,
2007; Diaconis et al., 2000; Lee et al., 2012). More involved schemes allow walkers to interact
with their entire history (Zhou et al., 2015; Doshi et al., 2023). Many of these strategies
provide theoretical guarantees that the asymptotic variance of estimators is reduced, but
crucially the marginal probabilities of sampling different walks are modified so they cannot
be applied to non-asymptotic estimators that rely on particular known marginal transition
probabilities. Conversely, our QMC scheme leaves marginal walk probabilities unmodifed.
Research has also predominantly been restricted to the behaviour of a single self-interacting
walker rather than an ensemble, and when multiple walkers are considered analytic results
are generally restricted to simple structures, e.g. complete graphs (Rosales et al., 2022; Chen,
2014). This research exists within the broader literature of reinforced random walks, where
nonlinear Markov kernels are used so that walkers are less (or more) likely to transition to
nodes that have been visited in the past (Pemantle, 2007). However, the analytic focus has
predominantly been on properties like recurrence times, escape times from sets, cover times
and localisation results for simple topologies (Amit et al., 1983; Tóth, 1995; Tarrès, 2004),
rather than the behaviour of associated statistical estimators on general graphs. The latter
is of more direct interest in machine learning.
The remainder of the manuscript is organised as follows. In Sec. 2 we introduce the
requisite mathematics and present our novel QMC repelling random walk mechanism. In
Secs 3-5 we use it to approximate three quantities of interest in machine learning: graph
node kernels (Sec. 3), the PageRank vector (Sec. 4), and graphlet statistics (Sec. 5).
Repelling random walks are empirically found to outperform the i.i.d. variant in every case
and we are often able to provide concrete theoretical guarantees.

2 Repelling random walks

Consider an undirected, connected graph G(N , E) where N := {1, ..., N} denotes the set
of nodes and E denotes the set of edges, with (i, j) ∈ E if there is an edge between nodes
i, j ∈ N . Write the graph’s (weighted) adjacency matrix A := [aij ]i,j∈N , where aij ̸= 0 if
(i, j) ∈ E and 0 otherwise. Let di :=

∑
j∈N I[(i, j) ∈ E ] denote the node degree, which is the

number of neighbours of a particular node, and let N (i) := {j ∈ N |(i, j) ∈ E} denote the
set of neighbours of node i. The transition matrix P = [Pij ]i,j∈N of a simple random walk
is given by

Pij =
{

1
di

if (i, j) ∈ E
0 otherwise

(1)

such that at every timestep the walker selects one of its neighbours with uniform probability.
This can be viewed as a finite and time-reversible Markov chain with state space N .
Supposing we have m such walkers on the graph simultaneously, we can define an augmented
Markov chain with state space N m, consisting of the possible node positions of all the
walkers. If the walkers are independent, the joint transition matrix Q ∈ RNm×Nm is given
a Kronecker product of the marginal transition matrices P(i):

Q = ⊗m
i=1P(i) (2)

where the index i = 1, ..., m enumerates the walkers present. Our key contribution is now
to induce correlations between the walkers’ paths such that the joint transition matrix Q is
modified but each marginal transition matrix (and hence the unbiasedness of any estimator
relying on it) is unchanged. The correlations are designed to improve estimator convergence.
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i.i.d.

repelling

Figure 1: Schematic for behaviour of repelling random walkers at a particular timestep. By
sampling from each ‘block’ (blue and green rectangles) without replacement we get a more
even distribution over neighbours, without changing the marginal probabilities.

Definition 2.1 (Repelling random walks). A repelling ensemble has the following behaviour.
Let V(i)

t denote the set of walkers at node i at timestep t, and N
(i)
t := |V(i)

t | the size of this
set. Randomly divide these walkers into N

(i)
t //d subsets of size d and one ‘remainder’ subset

of size N
(i)
t %d < d (where // and % denote truncating integer division and the remainder,

respectively). Among each subset, assign the walkers to a neighbour from the set N (i)
uniformly without replacement.

This is in contrast to i.i.d. walkers where V(i)
t are assigned to the neighbours N (i) uniformly

with replacement. We provide a schematic in Fig. 1. In the repelling scheme, each walker
still has a marginal transition probability Pij = {1/di if (i, j) ∈ E , 0 otherwise}, but now
they are forced to take different edges and heuristically ‘explore’ the graph more effectively.
The sample of walks is more ‘diverse’. Since the marginal transition probabilities P(i) are
unmodified, any estimators that are unbiased with i.i.d. walkers are also automatically
unbiased with repelling walkers, including in the non-asymptotic regime. However, as we
shall see, their concentration properties are often substantially better.
Computational cost and implementation: Repelling random walks have a trivial drop-
in implementation. The only difference is whether walkers are assigned to neighbours with
or without replacement. Moreover, the transitions in the augmented state space N m remain
Markovian (memoryless); there are no extra space complexity costs because we only need
access to the current positions of all the walkers.
Physical interpretation and entanglement: Under repulsive interactions, the joint
transition matrix Q can no longer be written as a Kronecker product. Consider transitions
of 2 walkers in the same ‘block’ from (i1, i2) to (j1, j2). We have:

QNi1+i2,Nj1+j2 := Pr(j1, j2|i1, i2) = Pi1j1Pi2j2 ·

{
1 + δi1i2

(
di

di−1 (1 − δj1j2) − 1
)

if di ̸= 1
1 if di = 1

(3)
with δi1i2 the delta function. This does not generically factorise into (i1, j1)- and (i2, j2)-
dependent parts. In quantum mechanics (QM), an interacting Hamiltonian H which cannot
be written as a Kronecker sum gives rise to a time-evolution operator U := exp(− i

h̄
Ht) that

cannot be written as a Kronecker product, which in turn generically gives rise to quantum
entanglement between particles. Just as the von-Neumann entropy (a measure of bipartite
quantum entanglement (Amico et al., 2008)) increases under such interactions, in our QMC
scheme the Shannon mutual information initially increases from 0: during the first timestep,
∆I1,2 = δi1i2 log( di

di−1 ) ≥ 0. Note that the analogy is not exact because in QM the time-
evolution operator acts on (complex) wavefunctions whereas here the transition matrix acts
on the (real positive) probabilities of being in different states of a Markov chain encoding
the positions of walkers on a graph. It is just intended to help build intuition for the reader.
It will be convenient to define one further class of interacting random walk.
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Definition 2.2 (Transient repelling random walks). An ensemble of random walks is de-
scribed as transient repelling the walkers repel (according to Def. 2.1) at the first timestep,
and are independent thereafter.

Such an ensemble will capture the repelling behaviour at early times but eventually relax
to independence. Whilst less practical than the full repelling scheme, we will see that
sometimes it makes theoretical analysis tractable.
We now apply our repelling random walks mechanism to three disparate applications: ap-
proximation of graph kernels (Sec. 3), approximation of the PageRank vector (Sec. 4), and
approximation of graphlet concentrations (Sec. 5).

3 Application 1: approximating graph kernels

We begin by demonstrating the effectiveness of repelling random walks for estimating graph
kernels KG : N × N → R, defined on the nodes N of a graph G. Such kernels capture
the structure of G, letting practitioners repurpose theoretically grounded and empirically
successful algorithms like support vector machines, kernelised principal component analysis
and Gaussian processes to the discrete domain (Smola and Kondor, 2003). Applications
include in bioinformatics (Borgwardt et al., 2005), community detection (Kloster and Gle-
ich, 2014), generative modelling (Zhou et al., 2020) and solving shortest-path problems
(Crane et al., 2017). Chief examples of KG are the d-regularised Laplacian and diffusion
kernels, given by K(d)

lap := (I + σ2L̃)−d and Kdiff := exp(−σ2L̃/2) respectively. Here, σ2 is
a lengthscale parameter and L̃ is the normalised graph Laplacian, defined by L̃ := I − W
with W = [aij/(d̃id̃j)1/2]Ni,j=1 a normalised weighted adjacency matrix (d̃i =

∑
j aij is the

weighted node degree and aij is the weight of the original edge). L̃ is the analogue of the fa-
miliar Laplacian operator ∇2 = ∂2

∂x2
1

+ ∂2

∂x2
2

+ ... + ∂2

∂x2
n

in discrete space, describing diffusion
on G (Chung and Yau, 1999; Chung, 1997).
For large graphs, computing e.g. K(d)

lap exactly can be prohibitively expensive due to the
O(N3) time complexity of matrix inversion. This motivated the recently-introduced class of
Graph Random Features (GRFs) (Choromanski, 2023), which provide a discrete analogue to
Random Fourier Features (Rahimi and Recht, 2007). These N -dimensional vectors ϕ(i) ∈
RN are constructed for every node i ∈ N such that their Euclidean dot product is equal to
the kernel evaluation in expectation,

[K(2)
lap]ij = E

(
ϕ(i)⊤ϕ(j)

)
. (4)

In their paper, Choromanski (2023) provides an elegant algorithm for constructing ϕ(i): one
simulates m ∈ N random walks out of each node i that terminate with probability p at every
timestep, depositing a ‘load’ at every node they visit to build up a randomised projection
of the local environment in G. They show that this gives an unbiased estimate of K(2)

lap,
which can be used to construct K(d)

lap for d ∈ N or an asymptotically unbiased approximation
of Kdiff. Since the unbiasedness of the estimator depends on the marginal probabilities
of sampling different finite-length random walks being unmodified (c.f. just its stationary
distribution), it is a natural setting to test our new quasi-Monte Carlo scheme.
Remarkably, under mild conditions, we are able to derive an analytic closed form for the
difference in kernel estimator mean squared error (MSE) between the i.i.d. and transient-
repelling mechanisms for general graphs (deferred to Eq. 32 in App. A.1 for brevity). This
enables us to make the following statement for some specific graphs, proved in App. A.1.
Theorem 3.1 (Superiority of repelling random walks for kernel estimation). Consider graph
nodes indexed (i, j) separated by at least 2 edges. In the limit σ → 0, provided the number
of walkers in the transient repelling ensemble is smaller than or equal to the node degrees
d{i,j} and the edge-weights of W are equal,

Var([K̂(2)
lapij ]repelling) ≤ Var([K̂(2)

lapij ]i.i.d.) (5)
for both i) trees and ii) 2-dimensional grids.

Though we have made some restrictions for analytic tractability, we will empirically observe
that the full repelling QMC scheme is effective in much broader settings. In particular,
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Figure 2: Relative Frobenius norm of estimates of the 2-regularised Laplace kernel (lower
is better) vs. number of random walks for: i) vanilla GRFs; ii) GRFs with antithetic
termination (Reid et al., 2023a) (‘q-a-GRFs’); iii) GRFs with repelling walks (‘q-r-GRFs’);
iv) GRFs with both antithetic termination and repelling walks (‘q-ar-GRFs’). Using both
QMC schemes together gives the best results for all graphs considered and the gains are
large (sometimes a factor of > 2). N gives the number of nodes, p is the edge-generation
probability for the Erdös-Rényi graphs, and d is the d-regular node degree. One standard
deviation on the mean error is shaded but is too small to easily see.

it substantially suppresses kernel estimator variance with many walkers, arbitrary σ and
arbitrary graphs. Extending the proof to these general cases is an exciting open problem.
We also note that our scheme is fully compatible with the recently-introduced QMC scheme
known as antithetic termination (Reid et al., 2023a), which anticorrelates the lengths of
random walkers (by coupling their terminations) but does not modify their trajectories.
Both schemes can be applied simultaneously, inducing negative correlations between both
the walk directions and lengths.

3.1 Pointwise kernel estimation

We now empirically test Eq. 5 for general graphs by comparing the variance of [K̂(2)
lap]ij

under different schemes. In what follows, ‘GRFs’ refers to graph random features constructed
using i.i.d. walkers, whilst ‘q-{a,r,ar}-GRFs’ denotes the efficient quasi-Monte Carlo variants
where walkers exhibit antithetic termination (‘a’) (Reid et al., 2023a), repel (‘r’), or both
(‘ar’). We use these different flavours of (q-)GRFs to generate unbiased estimates K̂(2)

lap,
then compute the relative Frobenius norm ∥K(2)

lap − K̂(2)
lap∥F/∥K(2)

lap∥F between the true and
approximated Gram matrices. Fig. 2 presents the results for various graphs: small Erdős-
Rényi, larger Erdős-Rényi, a binary tree, a d-regular graph, and four standard real-world
examples from (Ivashkin, 2023) (karate, dolphins, football and eurosis). These differ
substantially in both size and structure. We take 100 repeats to compute the variance of
the kernel approximation error, using a regulariser σ = 0.1 and a termination probability
p = 0.5. The gains provided by the repelling QMC scheme (green) are much greater than
those from antithetic termination (orange), but the lowest variance is achieved when both
are used together (red). Note that the gains provided by repelling random walks continue
to accrue as the size of the ensemble grows; with m = 16 walkers the error is often halved.

3.2 Downstream applications: kernel regression for node attribute
prediction

We have both proved (Theorem 3.1) and empirically confirmed (Fig. 2) that using repelling
random walks substantially improves the quality of estimation of the 2-regularised Laplacian
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kernel using GRFs. Naturally, this permits better performance in downstream applications
that depend on the approximation. As an example, we follow Reid et al. (2023a) and
consider kernel regression on triangular mesh graphs (Dawson-Haggerty, 2023).

Consider a graph G where each node is associated with a normal vector v(i). The task is to
predict the directions of a random set of missing ‘test’ vectors (a 5% split) from the remaining
‘train’ vectors. We compute our (unnormalised) predictions v̂(i) as v̂(i) :=

∑
j K̂(2)

lap(i, j)v(j),
where j sums over the training vertices and K̂(2)

lap(i, j) is constructed using the GRF and
q-{a,r,ar}-GRF mechanisms described in Sec. 3.1. We compute the average angular error
1−cos θ between the prediction v̂(i) and groundtruth v(i) across the test set. We use m = 16
random walks with a termination probability p = 0.5 and a regulariser σ = 0.1, taking 1000
repeats for statistics. Table 1 reports the results. Higher-quality kernel approximations
with repelling random walks give more accurate downstream predictions for all graphs, with
the biggest gains appearing when our repelling scheme is introduced (‘r’ and ‘ar’). The
difference is remarkably big when the number of nodes N is big: on torus, the error is
reduced by a factor of almost 3. Accurate approximation is especially helpful for these large
graphs as exact methods become increasingly expensive.

Table 1: Angular error 1− cos θ between true and predicted node vectors when approx-
imating the Gram matrix with GRFs and q-{a,r,ar}-GRFs (lower is better). Brackets
give one standard deviation. Both schemes in combination works best.

Graph N Pred error, 1 − cos θ
GRFs q-a-GRFs q-r-GRFs q-ar-GRFs

cylinder 210 0.0650(7) 0.0644(7) 0.0466(3) 0.0459(2)
teapot 480 0.0331(2) 0.0322(2) 0.0224(1) 0.0215(1)
idler-riser 782 0.0528(3) 0.0521(3) 0.0408(2) 0.0408(2)
busted 1941 0.00463(2) 0.00456(2) 0.003833(6) 0.003817(6)
torus 4350 0.000506(1) 0.000482(1) 0.000180(1) 0.000181(1)

Though for concreteness we have considered one particular downstream application, we
stress that improving the kernel estimate can be expected to boost performance in any
algorithm that uses it, e.g. for graph node clustering (Dhillon et al., 2004), shortest-path
prediction (Crane et al., 2017) or simulation of graph diffusion (Reid et al., 2023a).

4 Application 2: approximating PageRank

As a second application, we use repelling random walks to improve numerical estimates of
the PageRank vector: a popular measure of node importance in a graph originally proposed
by Page et al. (1998) to rank websites in search engine results. The PageRank vector is
defined as the stationary distribution of Markov chain whose state space is the set of all
graph nodes N , with a transition matrix

P̃ := (1 − p)P + p

N
E. (6)

Here, p ∈ (0, 1) is a scalar, N is the number of nodes, P is defined in Eq. 1 and E = [1]i,j∈N
is a matrix whose entries are all ones. This encodes the behaviour of a ‘surfer’ who at
every timestep either teleports to a random node with probability p or moves to one of its
neighbours chosen uniformly at random. Since P̃ is stochastic, aperiodic and irreducible,
we can define the unique PageRank vector π ∈ RN :

π⊤P̃ = π⊤, π⊤1 = 1, (7)
where we normalised the sum of vector entries to 1. Physically, πj is the stationary prob-
ability that a surfer is at node j. π is very expensive to compute for large graphs and the
form of P̃ invites MC estimation with random walkers. Fogaras et al. (2005) suggest the
following algorithm.
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Algorithm 4.1 (Random walks for PageRank estimation). (Fogaras et al., 2005) Simulate
m ∈ N runs of a simple random walk with transition probability matrix P out of every node
i ∈ N , terminating with probability p at each timestep. Evaluate the estimator π̂j as the
fraction of walks terminating at node j, π̂j := 1

Nm

∑
N
∑m

j=1 I(walker terminates at j).

It is straightforward to show that π̂ is an unbiased estimator of π (see App. A.2). This is
a natural setting to test an ensemble of repelling random walks. We are able to make the
following surprisingly strong statement.
Theorem 4.2 (Superiority of repelling random walks for PageRank estimation). For a
transient repelling ensemble,

Var(π̂j)repelling ≤ Var(π̂j)i.i.d. (8)
for any graph.

We defer a full proof to App. A.2 but provide a brief sketch below.
Proof sketch: Supposing that the number of walkers is smaller than the minimum node
degree, the behaviours of a transient repelling and i.i.d. ensemble only differ at the first
timestep. In the former scheme walkers are forced to diverge whereas in the latter they
are independent. The expectation values of the estimators associated with each walker are
conditionally independent given their node positions at t = 1 and are identical in both
schemes by definition; denote it by f(vt=1). With the i.i.d. ensemble the variance depends
on Ev(1)⊥v(2) [f(v(1)

t=1)f(v(2)
t=1)] where the node positions of a pair of walkers v(1,2) are inde-

pendent. Meanwhile, for repelling walkers it depends on Ev(1) ̸=v(2) [f(v(1)
t=1)f(v(2)

t=1)] where we
condition that v(1,2) cannot be equal. Simple algebra reveals that the latter is smaller. It
is straightforward to then generalise to when the number of walkers exceeds the minimum
node degree.
It is remarkable that Theorem 4.2 holds for arbitrary G. Table 2 shows the PageRank
estimator error with 2 walkers that are either i) i.i.d. or ii) repelling out of every node.
The quality of approximation is already excellent with just a single pair. The termination
probability is p = 0.3 and we take 1000 trials to compute the standard deviations (10000
for eurosis since it is larger). As per the theoretical guarantees, repelling random walks
consistently perform better.

Table 2: Mean L2-norm of the difference between the true and approximated PageRank
vectors πerr := ∥π − π̂∥2, using i.i.d. and repelling pairs of random walkers. Lower is
better. Repelling random walks consistently outperform i.i.d. random walks. Paren-
theses give one standard deviation on the mean error.

Graph N PageRank error, πerr
i.i.d. repelling

Small ER 20 0.0208(2) 0.0196(2)
Larger ER 100 0.00420(2) 0.00406(2)
Binary tree 127 0.00290(1) 0.00270(1)
d-regular 100 0.00434(2) 0.00422(2)
karate 34 0.0124(1) 0.0115(1)
dolphins 62 0.00686(4) 0.00651(4)
football 115 0.00385(2) 0.00376(2)
eurosis 1272 0.000342(2) 0.000335(2)

In the PageRank setting, RRWs are closely related to the algorithm presented by Luo (2019),
which was introduced to reduce edge bandwidth. The scheme takes di walks out of every
node i and permutes them randomly among the neighbours at every timestep. Note that
sampling without replacement is identical to permutation if the number of walkers is equal
to the number of neighbours to which they must be assigned.
As a brief addendum for the interested reader: π̂j is actually a member of a broader class
of functions coined step-by-step linear, defined as follows.
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Definition 4.3 (Step-by-step linear functions). Let Ωr denote the set of all infinite-length
walks starting at node r, Ωr := {(vi)∞

i=0 | v0 = r, vi ∈ N , (vi, vi+1) ∈ E}. We refer to a func-
tion y : Ωr → R as step-by-step linear if it takes the form:

y(ω) =
∞∑

i=0
f(vi, i)

i∏
j=1

g(vj−1, vj , j, j − 1), (9)

where f : N × (N ∪ {0}) → R and g : N × N × (N ∪ {0}) × (N ∪ {0}) → R.

These functions have the property that the variance of the corresponding Monte Carlo
estimator is guaranteed to be suppressed by conditioning that the ensemble of random
walks {ω}m

i=1 is transient repelling. Concretely, the following is true.
Theorem 4.4 (Variance of step-by-step linear functions is reduced by transient repulsion).
Consider the estimator Y :=

∑m
i=1 y(ωi) where {ωi}m

i=1 enumerates m (infinite) walks on G
and y : Ωr → R is a step-by-step linear function. Suppose that the sets of walks {ωi}m

i=1 are
either i) i.i.d. or ii) transient repelling (Def. 2.2). We have that:

Var(Yrepelling) ≤ Var(Yi.i.d.). (10)

We provide a proof and further discussion in Sec. A.3. Interestingly, the step-by-step linear
family also includes ϕ(i)k, the kth component of the GRF corresponding to the ith node
of G, though of course this alone is insufficient to guarantee suppression of variance of the
kernel estimator ϕ(i)⊤ϕ(j).

5 Application 3: approximating graphlet concentrations

triangle wedge

Figure 3: Graphlets for k = 3

Finally, we use repelling random walks to esti-
mate the relative frequencies of graphlets: in-
duced subgraph patterns within a graph G. For-
mally, a k-node induced subgraph Gk = (Vk, Ek)
satisfies Vk ⊂ V, |Vk| = k and Ek = {(u, v) :
u, v ∈ Vk ∧ (u, v) ∈ E}: that is, a subset of k
connnected nodes together with any edges be-
tween them. For example, for k = 3 the possible
graphlets are a triangle and a wedge (see Fig. 3).
Computing a graph’s graphlet concentrations –
the proportions of different k-node graphlets – is
a task of broad interest in biology (Pržulj, 2007; Milenković and Pržulj, 2008) and network
science (Becchetti et al., 2008; Ugander et al., 2013) since it characterises the local structure
of G (Milo et al., 2002). Such concentrations even permit construction of graphlet kernels
K : G × G → R to compare different graphs (Shervashidze et al., 2009).
For large graphs, exact computation by exhaustive counting is unfeasible because of the
combinatorial explosion in the number of graphlets with N . This motivates random walk
Markov Chain Monte Carlo approaches. Such crawling-based algorithms also benefit from
not requiring access to the entire graph simultaneously: a typical restriction for online
social networks where the graph is only available via API calls to retrieve a particular
node’s neighbours (e.g. user’s friends). These algorithms are also easily distributed across
machines.
Chen et al. (2016) propose a general algorithm for asymptotically unbiased, efficient es-
timation of graphlet concentrations using random walks. We summarise one particular
instantiation of it for k = 3 below.
Algorithm 5.1 (Graphlet concentration estimation using random walks). (Chen et al.,
2016) Simulate a simple random walk of length L ∈ N (the sampling budget) out of a
randomly selected node. Consider X

(3)
i = (Xi, Xi+1, Xi+2) with 1 ≤ i ≤ L − 2, the states of

an augmented Markov Chain whose state space is the ordered 3-tuples of consecutively-visited
nodes. Discard all such states where Xi = Xi+2 (where the walker backtracks), and for the
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Figure 4: Mean square error on estimates of k = 3 graphlet concentrations with different
numbers of random walks on different graphs. Lower is better. Using the repelling scheme
consistently improves the quality of the estimate compared to independent walks.

remaining n classify the graphlets g
(3)
i to get the weighted counts Cwed :=

∑n−2
i=1 I(g(3)

i =
wedge) di+1

2 and Ctri :=
∑n−2

i=1 I(g(3)
i = triangle) di+1

6 (where di+1 is the degree of the i +
1th node). In the limit of large L, ĉ

(3)
tri := Ctri

Ctri+Cwed
gives an unbiased estimator of the

concentration of triangle graphlets.

The weightings in the computation of C{wed,tri} are included to correct for two sources of
bias: di+1 accounts for the fact that the stationary distribution of the expanded Markov
chain is inversely proportional to the degree of the middle node, π(X(3)

i ) = (2|V|di+1)−1,
and the combinatorial factors adjust for the fact that 6 states X

(3)
i correspond to the triangle

graphlet (twice the number of Hamiltonian paths) but only 2 correspond to the wedge.
We implement Alg. 5.1 with both i) i.i.d. walkers and ii) a repelling ensemble. A rigorous
theoretical analysis of concentration properties is very challenging and is deferred as impor-
tant future work; for now, our study is empirical. Fig. 4 plots the fractional error of the
estimator of triangle graphlet concentration ĉ

(3)
tri against the number of walkers. We use the

same graphs as in Sec. 3, but replace the binary tree with polbooks since for the former
ĉtri = 0 trivially. We impose a restricted sampling budget with walks of length L = 16
to highlight the benefits of repelling random walks in the transient regime, and take 2500
repeats over all starting nodes for statistics. Repelling random walks consistently perform
better, providing more accurate estimates of the triangle graphlet concentration, and for
some graphs the improvement is large. Alg. 5.1 can be generalised to estimate the concen-
trations larger graphlets with k > 3; we anticipate that repelling random walks will still
prove effective.

6 Conclusion

We have presented a new quasi-Monte Carlo scheme called repelling random walks that
induces correlations between the directions of random walkers on a graph. Estimators con-
structed using this interacting ensemble are guaranteed to remain unbiased but their concen-
tration properties are often substantially improved. We test our algorithm on applications
as diverse as estimating graph kernels, the PageRank vector and graphlet concentrations.
In every case the experimental performance is very strong and often we are able to pro-
vide concrete theoretical guarantees. We hope this work will motivate further research on
developing quasi-Monte Carlo methods to improve sampling on graphs.
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A Appendices

A.1 Proof of Theorem 3.1 (superiority of repelling random walks for
kernel estimation

In this appendix, we prove Theorem 3.1: namely, that using transient repelling random
walks reduces the mean square error of graph random feature (GRF) estimates of the 2-
regularised Laplacian kernel, defined by:[

K̂(2)
lap

]
ij

:=
(

I − L̃
)−2

ij
= (1 + σ2)−2

(
I − σ2

1 + σ2 W
)−2

(11)

where L̃ is the Laplacian, σ is a regulariser and W is a normalised weighted adjacency matrix
with elements W =

[
aij/(d̃id̃j)1/2]N

i,j=1 (with d̃i =
∑

j aij the degree of the ith node and aij

the weight of the edge before normalisation). Ignoring the overall normalisation constant
and absorbing the factor of σ2/(1 + σ2) into W, wlg we will now consider estimation of

K̂ij = (I − W)−2 (12)

where W = [wij ]Ni,j=1.

Directly from the definition of the GRF vector (see e.g. (Choromanski, 2023) or (Reid et al.,
2023a)), we have that

K̂ij = ϕ(i)⊤ϕ(j) = 1
m2

∑
x∈N

∑
ωix∈Ωix

∑
ωjx∈Ωjx

ω̃(ωix)
p(ωix)

ω̃(ωjx)
p(ωjx) N(ωix)N(ωjx) (13)

where

N(ωix) :=
m∑

l=1
I
(
ωix ∈ Ω̄l

)
. (14)

Here: m ∈ N is the number of random walkers simulated out of each node; Ωix is the set of
all walks on the graph between the nodes indexed i and x; ωix is a member of this set; ω̃(ω)
is a function that returns the product of weights of edges traversed by a graph random walk
ω; and p(ω) is a function that returns the marginal probability of a random walk (equal to
((1 − p)/d)len(ω) – with 0 < p < 1 a finite termination probability, d the node degree and
len(ω) the walk length – in the case of a d-regular graph). Ω̄l denotes the lth walk out of node
i such that N(ωix) counts the empirical number of walkers completing a particular prefix
subwalk ωix, a discrete random variable between 0 and m. Since E(N(ωix)) = mp(ωix), it
is straightforward to see that

E(ϕ(i)⊤ϕ(j)) =
∑
x∈N

∑
ωix∈Ωix

∑
ωjx∈Ωjx

ω̃(ωix)ω̃(ωjx)

=
∑

ωij∈Ωij

(len(ωij) + 1)ω̃(ωij) = (I − W)−2
(15)

which confirms that the estimator is unbiased. Our task is now to determine how the variance
of K̂ij depends on whether the ensemble of m walkers from each node is i) independent or
ii) repelling. We will see that, under some conditions, it is guaranteed to be smaller in the
latter case.
The following is true:

E
(

K̂2
ij

)
= 1

m4

∑
x,y∈N

 ∑
ωix,ωiy

ω̃(ωix)
p(ωix)

ω̃(ωiy)
p(ωiy) E(N(ωix)N(ωiy))


·

 ∑
ωjx,ωjy

ω̃(ωjx)
p(ωjx)

ω̃(ωjy)
p(ωjy) E(N(ωjx)N(ωjy))

 .

(16)
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This makes clear that the object of central importance will be

E (N(ωix)N(ωiy)) (17)

where x, y ∈ N . We will now consider how this depends on i) the pair of subwalks (ωix, ωiy)
and ii) the presence or absence of repulsion.
To avoid notational clutter, we will write expressions as if the graph is d-regular with the
understanding that it is trivial to relax this without changing any conclusions, making the
replacement: dlen(ωix) →

∏len(ωix)−1
i=0 di.

i.i.d. walkers: Begin with the simpler i.i.d. case. First consider the case that ωix ̸= ωiy,
ωix /∈ ωiy and ωiy /∈ ωix: namely, that the walks are distinct and neither is a (strict) subwalk
of the other. It follows that a single walker cannot take both subwalks simultaneously. We
also assume that both walks are of length len(ωi(x,y)) ≥ 1. Then we have that

E [N(ωix)N(ωiy)] = E

[
m∑

l1=1

m∑
l2=1

I(ωix ∈ Ω̄l1)I(ωiy ∈ Ω̄l2))
]

= m(m − 1)
(

1 − p

d

)len(ωix)+len(ωiy)
.

(18)

What about if ωix ∈ ωiy? It is straightforward to convince oneself that

E [N(ωix)N(ωiy)] = m(m − 1)
(

1 − p

d

)len(ωix)+len(ωiy)
+ m

(
1 − p

d

)len(ωiy)
(19)

where the extra second correlation term comes from a single walker completing both sub-
walks. Lastly, suppose that len(ωix) = 0 (i.e. one of the subwalks has zero length). Then
we have that

E [N(ωix)N(ωiy)] = m2
(

1 − p

d

)len(ωiy)
. (20)

Now we move onto the repelling case, which is substantially more difficult.

Repelling walkers: For tractability, we will consider the transient repulsion scheme de-
scribed in Def. 2.2. Suppose that we have N ′

α walkers at some node indexed α ̸= i, with
the set of neighbouring nodes including nodes labelled β and γ (i.e. β, γ ∈ N (α)). An
important quantity is

E(NβNγ |N ′
α). (21)

From Def. 2.1, we have that

Nβ = Nα//d + ϵ1, Nγ = Nα//d + ϵ2, (22)

where // denotes truncating integer division ϵ1,2 are anticorrelated binary random vari-
ables. The reason they are anticorrelated is that a walker that transitions to β cannot also
transition to γ. With a little work, one can convince oneself that

E(NβNγ |N ′
α) =

(
N ′

α

d

)2
+ R

d

(
R − 1
d − 1 − R

d

)
, (23)

where R := N ′
α%d, the remainder after the the walkers have been partitioned into blocks of

size d. From this form, we can see that we will be concerned with the statistics of N ′
α: in

particular how E(Nα
′2) behaves. Understanding this is our next task.

Let Nα be a random variable denoting the number of walkers at node α of some particular
walk on the graph. Then let N ′

α denote the number of walkers surviving the ‘p-step’, where
each walker terminates independently with probability p. Let Nβ denote the number of
walkers that subsequently hop to node β on the walk. It is clear that Nβ = N//d+ ϵ, with ϵ
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a random variable that takes a value of 1 with probability R
d and 0 with probability 1 − R

d .
It is simple to show that

E(N2
β) = E(N ′

α
2)

d2 + E
(

R

d
(1 − R

d
)
)

. (24)

It is also trivially the case that E(N ′
α

2) = E(Nα
2)(1 − p)2 + E(Nα)p(1 − p) (law of iterated

expectations). The second term in Eq. 24 is generically difficult to describe analytically,
but it is simple in the special case that N ′

α < d so R = N ′
α. In particular, here we have that

E(N2
α) = E(Nα) = m

(
1 − p

d

)len(ωiα)
(25)

whereupon, referring back to Eq. 23,
E(NβNγ |N ′

α) = 0. (26)
It is trivial to see why this must be the case: supposing we begin with fewer than d walkers
at node i, in the transient repelling scheme they all diverge at the first timestep. Any
subsequent node α on some walk is occupied by at most 1 walker which chooses one of
its dα neighbours at random, so value of NβNγ (product of occupations of its child nodes)
always vanishes. It is encouraging that our algebraic approach reproduces this intuitive
result. It follows immediately that, for walks diverging at some node not equal to the
starting node i, E [N(ωix)N(ωiy)] = 0.
What about if the walkers instead diverge at i? Here the result is different because E(Ni) =
m, the initial number of particles, and Var(m) = 0 since the total number of walkers is a
fixed hyperparameter. After just a little work,

E(NβNγ) = (1 − p)2

d(d − 1)m(m − 1) (27)

and therefore

E [N(ωix)N(ωiy)] = d

d − 1m(m − 1)
(

1 − p

d

)len(ωix)+len(ωiy)
. (28)

This is also intuitive: the repelling scheme shifts probability mass onto walks that diverge
at i, enhancing this correlation term.
The subwalk case is also straightforward. Supposing ωix ∈ ωiy, we can use Eq. 25 to show
that

E [N(ωix)N(ωiy)] = m

(
1 − p

d

)len(ωiy)
(29)

because if the walkers immediately diverge then we can only sample both ωiy and ωix ∈ ωiy

if a single walk traverses both. Lastly, if len(ωix) = 0, we still have that

E [N(ωix)N(ωiy)] = m2
(

1 − p

d

)len(ωiy)
(30)

which is natural because if one (or both) of the walks is of zero length then the repulsion
scheme cannot modify the correlation term.
We summarise these observations in Table 3, denoting c := 1−p

d and ωix as shorthand for
len(ωix) for compactness.

Table 3

Class E(N(ωix)N(ωiy))
i.i.d. transient repelling

Same walk, ωix = ωiy mcωix + m(m − 1)c2ωix mcωix

Subwalk, ωix ∈ ωiy mcωiy + m(m − 1)cωix+ωiy mcωiy

Different walks, diverge at i m(m − 1)cωix+ωiy d
d−1 m(m − 1)cωix+ωiy

Different walks, diverge at d ̸= i m(m − 1)cωix+ωiy 0
len(ωix) = 0 m2cωiy m2cωiy
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More explicitly, we can write

E(N(ωix)N(ωiy)) =



m(m − 1)cωix+ωiy I(both > 0)
+mcωlongerI(subwalks, both > 0)

+m2cωlongerI(len 0)
if i.i.d.

di

di − 1m(m − 1)cωix+ωiy I(both > 0, div at i)

+mcωlongerI(subwalks, both > 0)
+m2cωlongerI(len 0)

if repelling

(31)

where only the first term differs. Here, I(both > 0) means both walks traverse at least
one edge, I(len 0) means one of the walks is of length 0, I(subwalks) means ωix ∈ ωiy (or
vice versa), and ωlonger denotes the length of the longer walk. We will now insert these
expressions into Eq. 16 to compute the difference in variance of K̂ij with the two possible
coupling schemes.
After tedious but straightforward algebra, we arrive at the following closed form:

Var
([

K̂ij

]
i.i.d.

)
− Var

([
K̂ij

]
repelling

)
=

(m − 1)2

m2

([
W2

(1 − W)2

]
ij

)2

− didj

(di − 1)(dj − 1)
(m − 1)2

m2

∑
i′∈N (i)

i′′∈N (i)\i′

∑
j′∈N (j)

j′′∈N (j)\j′

wii′ wjj′ wii′′ wjj′′

[
1

(1 − W)2

]
i′j′

[
1

(1 − W)2

]
i′′j′′


(a)

+ di

di − 1
m − 1

m2

∑
x

∑
ωix>0

ω̃(ωix)2

p(ωix) [B(x, j) − C(x, j)]

+ dj

dj − 1
m − 1

m2

∑
x

∑
ωjx>0

ω̃(ωjx)2

p(ωjx) [B(x, i) − C(x, i)]

+m − 1
m

[
di

di − 1 (B(i, j) − C(i, j)) + dj

dj − 1 (B(j, i) − C(j, i))
]


(b)

(32)
where

B(x, i) :=
∑

i′∈N (i)

w2
ii′

[
1

(1 − W)2

]2

xi′
− 1

di

 ∑
i′∈N (i)

wii′

[
1

(1 − W)2

]
xi′

2

(33)

and

C(x, i) :=
∑

i′∈N (i)

w2
ii′

[
W

(1 − W)2

]2

xi′
− 1

di

 ∑
i′∈N (i)

wii′

[
W

(1 − W)2

]
xi′

2

. (34)

Note that both B and C are always positive by Jensen’s inequality. It is remarkable that
such a simple expression exists for the difference in kernel estimator variance between the
i.i.d. and transient repelling schemes.
Showing the class of graphs for which this is guaranteed to be positive is a challenging open
problem, but we are able to make progress in some tractable special cases.
For instance, consider the limit w → 0 with all the graph weights equal, W = wA. In
this case, when computing matrix elements we can just retain terms corresponding to the
shortest path. For example,[

1
(1 − wA)2

]
ij

=
[
1 + 2wA + 3w2A2 + ...

]
ij

= M(lij)(lij + 1)wlij + O(wlij+1) (35)
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where lij denotes the length of the shortest path between nodes i and j and M(lij) denotes
its multiplicity: the number of such unique paths that exist in G. To give examples, for a tree
M(lij) = 1 and for a square grid M(lij) =

(
a+b

a

)
, where a is the difference in x-coordinates

of nodes i and j and b is the difference in y coordinates.

When will (a) be positive? Provided that nodes i and j are separated by at least 2 edges,
the following is true:

(m − 1)2

m2

([
w2A2

(1 − wA)2

]
ij

)2

= (m − 1)2

m2 M(lij)2(lij − 1)2w2lij + O(w2lij +1), (36)

and
didj

(di − 1)(dj − 1)
(m − 1)2

m2 w4
∑

i′∈N (i)
i′′∈N (i)\i′

∑
j′∈N (j)

j′′N (j)\j′

[
1

(1 − wA)2

]
i′j′

[
1

(1 − wA)2

]
i′′j′′

= didj

(di − 1)(dj − 1)
(m − 1)2

m2

∑
i′∈N (i)

i′′∈N (i)\i′

∑
j′∈N (j)

j′′N (j)\j′

M(li′j′ )M(li′′j′′ )wli′j′ +li′′j′′ +4(li′j′ + 1)(li′′j′′ + 1)

+ O(wli′j′ +li′′j′′ +5).

(37)
Note that, since i′ ∈ N (i) and j′ ∈ N (j), it is trivially the case that lij − 2 ≤ li′j′ ≤ lij + 2.
In Eq. 37, only terms where li′j′ = li′′j′′ = lij − 2 will give contributions of the same order
as the leading term O(w2lij ) in Eq. 36. The condition that Eq. 36 is greater at the leading
order is then:

M(lij)2 ≥ didj

(di − 1)(dj − 1)
∑

i′∈N (i),i′′∈N (i)\i′,j′∈N (j),j′′∈N (j)\j′
l
i′j′ =l

i′′j′′ =lij −2

M(li′j′)M(li′′j′′) (38)

where we remind the reader that M(lij) denotes the degeneracy (number) of shortest paths
(of length lij) between nodes i and j. This encodes the topological constraint that is
sufficient for variance reduction with repelling random walkers on an equal-weights graph
as w → 0. Heuristically, the set of nodes N (i) cannot be too connected to the nodes N (j).
A cursory numerical check suggests that Eq. 38 is not generically satisfied for every pair of
nodes (i, j) on arbitrary graphs, but it does seem to very often be true. We can, however,
identify some particular examples where it is guaranteed to hold. For example, it is trivially
true for trees for which M(lij) = 1 but the RHS is 0. To wit: for trees there is a unique
shortest path between nodes i and j and it is only the case that li′j′ = lij − 2 if both i′ and
j′ lie on this path. Then conditioning that i′′ ̸= i′ and j′′ ̸= j′ means that we cannot fulfil
li′′j′′ = lij − 2, whereupon the sum is over the empty set so evaluates to 0. It is also true
for the two dimensional square grid. Without loss of generality, locate node i at coordinates
(0, 0) and node j at (a, b). If a = 0 or b = 0 there is a unique shortest path so the inequality
follows trivially. If a = 1 then M(lij) = b + 1 whereas the RHS evaluates to 2 (d/(d − 1))2

which is smaller for b ≥ 1 and d = 4. Finally, if a, b > 1, then M(lij) =
(

a+b
a

)
(a walker on

a shortest path between nodes i and j must take a steps in one direction and b steps in the
other, but we are free to permute their order). Meanwhile, the sum on the RHS of Eq. 38
evaluates to: (

d

d − 1

)2
· 2 ·

((
a + b − 2

a − 2

)(
a + b − 2

b − 2

)
+
(

a + b − 2
a − 1

)2
)

(39)

whereupon the ratio RHS/LHS is:(
d

d − 1

)2
· 2 · a(a − 1)b(b − 1) + a2b2

[(a + b)(a + b − 1)]2

=
(

d

d − 1

)2
· 2ab

(a + b)2

[
1 + a(a − 1) + b(b − 1)

(a − 1)(b − 1) + ab

]−1 ?
≤ 1

(40)
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The expression in square brackets is greater than 1 so its inverse is smaller than 1. Hence,
it is sufficient that

(a + b)2

2ab
= (a − b)2

2ab
+ 2 ≥

(
d

d − 1

)2
(41)

which is trivially always true for d = 4. The inequality in Eq. 38 then holds in all cases
where nodes i and j are separated by at least 2 edges, so terms (a) will indeed be positive
on a two-dimensional square grid.
Having asserted that the terms labelled (a) in Eq. 32 will sum to a positive value under
certain conditions (namely: graphs characterised by Eq. 38 with equal edge weights w → 0,
considering nodes i and j separated by at least 2 edges), we now proceed to consider the
terms labelled (b).

When will (b) be positive? Now we consider the remaining terms involving e.g. B(x, i)−
C(x, i) where x, i ∈ N . These demand a little more care because the sum over x ∈ N means
that we need to account for terms where x = i even when considering off-diagonal terms of
the kernel estimate i ̸= j. Note that

B(x, i) = diw
2Vari′∈N (i)

[
(1 − wA)−2]

xi′ , (42)
the empirical variance of the matrix elements Kxi′ among the set of vertices i′ that neighbour
i.
Denote by l̃xi the smallest walk length for which the variance of the number of walks from
x to the set of nodes N (i) is nonzero,

l̃xi = min
l∈N

(
{l | Vari′∈N (i)(Al

xi′) ̸= 0}
)

. (43)

This might well correspond to the shortest path between x and i′ ∈ N (i), but this is not
necessarily the case (i.e. if all the neighbours i′ have an equal number of equally short paths
to x so the variance on this quantity vanishes). Then we have that

B(x, i) = dw2
i Vari′∈N (i)

[
(1 − wA)−2]

xi′ = d(l̃xi + 1)2w2l̃xi Vari′∈N (i)

[
Al̃xi

xi′

]
+ O(w2l̃xi+1) (44)

and
C(x, i) = diw

2Vari′∈N (i)
[
wA(1 − wA)−2]

xi′ = d(l̃xi)2w2l̃xi Vari′∈N (i)

[
Al̃xi

xi′

]
+ O(w2l̃xi+1) (45)

where Vari′∈N (i)

[
Al̃xi

xi′

]
denotes this first nonvanishing variance. For trees with x ̸= i,

l̃xi = lxi − 1 and Vari′∈N (i)

[
Al̃xi

xi′

]
= d−1

d2 .

To leading order in w, it is trivial to see that B(x, i) > C(x, i). Inserting back into Eq. 32
and noting the positivity of the prefactor ω̃(ωix)2

p(ωix) , the positivity of (2) follows. Note that in
this section we have not assumed anything about the structure of G beyond equal weights
and w → 0. The topological constraints originate solely from the terms in (a).

Combining the above arguments, we conclude that the using the transient repelling scheme
is indeed guaranteed to suppress the variance of kernel estimators K̂ij for nodes i and j
separated by at least 2 edges under certain conditions: namely, that we have an equally-
weighted graph with w → 0, and that the topological condition in Eq. 38 is true (which is
the case for e.g. trees and two-dimensional grids).
We stress that, in practice, the scheme performs very well even for much more general classes
of graphs and in the non-asymptotic w limit. We defer extending the proof above to include
these cases as future work.

A.2 Proof of Theorem 4.2 (superiority of repelling random walks for
PageRank estimation

In this appendix, we show how random walks can be used to estimate to the PageRank vector
and prove that using a transient repelling ensemble reduces the estimator mean square error
(Theorem 4.2).
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Our intention is to estimate the vector π, defined as the stationary distribution of the
transition matrix P̃ defined in Eq. 6 and reproduced below:

P̃ := (1 − p)P + p

N
E. (46)

The reader should refer back to Eq. 6 for all symbol definitions. We then require that

π⊤P̃ = π⊤, π⊤1 = 1. (47)

Rearranging and Taylor expanding (1−(1−p)P)−1, it is straightforward to convince oneself
that the solution is given by

πi = p

N

∑
j∈N

∞∑
k=0

(1 − p)kPk
ji. (48)

This is nothing other than a sum over all walks ωji from each of the graph nodes j to
node i, each weighted by a factor of

( 1−p
d

)k
p (with dk generalising to the product of node

degrees along ωji if the graph is not d-regular) and normalised by the number of vertices
N . Equivalently, supposing we simulate a random walk out of a random node on the graph
j, it is the probability that it terminates at node i. This invites the algorithm proposed by
Fogaras et al. (2005) and shown in Alg. 4.1. We construct the unbiased estimator

π̂i = 1
Nm

∑
j∈N

m∑
l=1

I[Ω(j)
l terminates at node i] (49)

where Ω(j)
l denotes the lth walk (out of a total of m ∈ N) simulated from node j.

Our task is now to consider the variance properties of the estimator π̂ when ensembles of
walkers out of each node are either i) independent or ii) repelling according to our QMC
scheme defined in Def. 2.1. Evidently,

E(π̂2
i ) = 1

N2m2

∑
j1,j2∈N

m∑
l1,l2=1

E
{
I[Ω(j1)

l1
terminates at node i ] I[Ω(j2)

l2
terminates at node i ]

}
.

(50)
By construction, only walkers out of the same node are correlated: we simulate repelling
ensembles out of every vertex but a pair of walkers coming from different vertices remain
independent throughout. Therefore, it is sufficient to consider the behaviour of terms j1 =
j2. In particular, we we need to determine whether the value of

E
{
I[Ω(j)

l1
terminates at node i ] I[Ω(j)

l2
terminates at node i ]

}
(51)

is suppressed with repelling random walks for fixed arbitrary j ∈ N . We will refer to this
as the correlation term.
First consider the special case j ̸= i so all walks are of length at least 1. We also consider
transient repulsion (see Def. 2.2) so that walkers only repel at the first timestep; the full-
repelling scheme is empirically effective but difficult to reason about analytically.
For i.i.d. walkers, the correlation term in Eq. 51 evaluates to

p2 (1 − p)2
[

P
1 − (1 − p)P

]2

ji

= p2
(

1 − p

dj

)2 ∑
j′∈N (j)

∑
j′′∈N (j)

[
1

1 − (1 − p)P

]
j′i

[
1

1 − (1 − p)P

]
j′′i

(52)

At the first timestep, a pair of repelling walkers are either assigned to the same ‘block’ (see
Fig. 1) or different ‘blocks’ with a probability that depends on the number of walkers m and
the degree of the first node dj . The correlation term in Eq. 51 depends on its evaluations
conditioned on each of these two events, weighted by their respective probabilities.
If the pair are assigned to different blocks their dynamics are i.i.d. so the correlation term
is unmodified. Meanwhile, if they are assigned to the same block (which happens almost
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surely if m ≤ dj), then the equivalent term evaluates to

p2
(

1 − p

dj

)2(
dj

dj − 1

) ∑
j′∈N (j)

∑
j′′∈N (j)\j′

[
1

1 − (1 − p)P

]
j′i

[
1

1 − (1 − p)P

]
j′′i

. (53)

This differs from Eq. 52 in that i) the variable j′′ in the sum over the neighbours of j can
no longer be equal to j′ since the walks repel, and ii) there is an extra factor of dj

dj−1 to
account for the increase the conditional probability of choosing j′′ given that j′ becomes
excluded when the first walker picks it (‘without replacement’).

Denote the matrix element f(j′, i) :=
[

1
1−(1−p)P

]
j′i

. Then the difference between the terms
in Eqs 52 and 53 is equal to

p2
(

1 − p

dj

)2 ∑
j′∼j

∑
j′′∼j

f(j′, i)f(j′′, i)
[
1 − dj

dj − 1 I(do not share first edge)
]

. (54)

This can be rewritten

p2
(

1 − p

dj

)2
dj

dj − 1
∑
j′∼j

∑
j′′∼j

f(j′, i)f(j′′, i)
[
I(share first edge) − 1

dj

]

= p2 (1 − p)2 1
dj − 1

 1
dj

∑
j′∼j

f(j′, i)2 −

 1
dj

∑
j′∼j

f(j′, i)

2
 ≥ 0

(55)

where we used Jensen’s inequality.
To complete the proof, we also consider the subcase i = j. For i.i.d. walkers, the correlation
term evaluates to

p2
[

1
1 − (1 − p)P

]2

ii

= p2
[
1 + (1 − p)P

1 − (1 − p)P

]2

ii

= p2

(
1 + 2(1 − p)

[
P

1 − (1 − p)P

]
ii

+ (1 − p)2
[

P
1 − (1 − p)P

]2

ii

) (56)

For repelling walkers in the same block, we need to consider contributions from i) both
walkers terminating immediately, ii) one terminating and one leaving then returning to i, and
iii) both walkers leaving (to different neighbours (i′ ̸= i′′) then returning to i. Enumerating
these possibilities, we get:

p2
(

1 + 2(1 − p)
[

P
1 − (1 − p)P

]
ii

+

(
1 − p

di

)2
di

di − 1
∑

i′∈N (i)

∑
i′′∈N (i)\i′

[
1

1 − (1 − p)P

]
i′i

[
1

1 − (1 − p)P

]
i′′i

 .

(57)

Only the final term differs compared to Eq. 56. It is of precisely the same form as considered
above with i = j, so we immediately deduce that it is smaller with repelling walkers in the
same block. It follows that when i = j repelling random walkers also yield lower variance
estimators π̂j .
We have now considered the cases where the pair of walkers are in either different blocks or
the same block, including the sub-cases i ̸= j and i = j, and proved that the variance of the
estimator π̂ is the same or reduced in both cases. The proof is complete.

A.3 Proof of Theorem 4.4 (variance of step-by-step linear functions is
reduced by transient repulsion)

In this section, we supplement the discussion at the end of 4, identifying a general class of
functions whose variance is suppressed by conditioning that random walks exhibit transient
repulsion.
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Following Def. 4.3, let Ωr denote the set of all infinite-length walks starting at node r,
Ωr := {(vi)∞

i=0 | v0 = r, vi ∈ N , (vi, vi+1) ∈ E}. Recall that we refer to a function y : Ωr → R
as step-by-step linear if it takes the form:

y(ω) =
∞∑

i=0
f(vi, i)

i∏
j=1

g(vj−1, vj , j, j − 1). (58)

An example of such a function provided by ϕ(i)k, the k-th component of the graph random
feature corresponding to node i, for which f(vi, i) = I(vi = k) and g(vj−1, vj , j, j − 1) =
wvj−1,vj

dvj−1
1−p I(tj > p). Here, wvj−1,vj

is the weight of the edge (vj−1, vj) ∈ E , dvj−1 is
the degree of the node vj−1 and tj ∼ Unif(0, 1) is a termination random variable which
controls whether the walk ends at the jth timestep. Another example is provided by the kth
component of the PageRank vector estimator π̂k, in which case f(vi, i) = I(vi = k)I(tj > p)
and g(vj−1, vj , j, j − 1) = I(tj−1 < p), ensuring that y(w) evaluates to 1 if the walker
terminates at node k and is zero otherwise.
In Theorem 4.4, we asserted that, for the estimator Y :=

∑m
i=1 y(ωi) (where {ωi}m

i=1 enu-
merates m (infinite) walks on G and y : Ωr → R is a step-by-step linear function),

Var(Yrepelling) ≤ Var(Yi.i.d.). (59)
This is proved as follows. Begin by writing

y(ω(k)) = f(v0, 0) +
∞∑

i=1
f(v(k)

i , i)
i∏

j=1
g(v(k)

j−1, v
(k)
j , j, j − 1) = f(v0, 0) + h

(
(v(k)

i )∞
i=1

)
(60)

with k = {1, 2}. Note that we took v
(1)
0 = v

(2)
0 = v0 since the walkers begin at the same

node, and introduced the function h to simplify notation.
As in Sec. A.2, a pair of walks may be either assigned to the same block or different blocks
(see Fig. 1). We focus on the former case since in the latter they are i.i.d. and the variance
of the estimator is trivially unchanged. This means that our walkers diverge at the first
timestep, v

(1)
1 ̸= v

(2)
1 . It follows from the definition of transient repulsion that the random

variables h((v(k)
i )∞

i=1) are conditionally independent given (v(1)
1 , v

(2)
1 ) since at this point the

walkers stop repelling. Moreover, since in both cases the marginal distribution over ω is
identical, for Var(Y ) to be reduced by repulsion we just require that

Ei.i.d.

[
h
(

(v(1)
i )∞

i=1

)
h
(

(v(2)
i )∞

i=1

)] ?
≥ Erep

[
h
(

(v(1)
i )∞

i=1

)
h
(

(v(2)
i )∞

i=1

)]
. (61)

In the i.i.d. scheme, v
(1)
1 and v

(2)
1 are independent and are uniformly distributed among the

set of neighbours N (v0), each with probability 1/d0. Meanwhile, in the repelling scheme,
(v(1)

1 , v
(2)
1 ) is uniformly distributed among the set {(vi, vj)|vi, vj ∈ N (v0), vi ̸= vj} – i.e. all

d0(d0 − 1) possible pairs of distinct neighbours of node v0. Then Eq. 61 evaluates to
1
d2

0

∑
v

(1)
1 ∈N (v0)

v
(2)
1 ∈N (v0)

E(h|v(1)
1 )E(h|v(2)

1 ) − 1
d0(d0 − 1)

∑
v

(1)
1 ∈N (v0)

v
(2)
1 ∈N (v0)\v

(1)
1

E(h|v(1)
1 )E(h|v(2)

1 )
?
≥ 0 (62)

where we used that h(1,2) are conditionally independent given v
(1,2)
1 . Rearranging, this

expression is nothing other than
1

d0 − 1Varv1∈N (v0)(E(h|v1))
?
≥ 0 (63)

where the variance is being computed over the d0 nodes that neighbour v0. Eq. 63 trivially
holds, confirming that Var(Yrepelling) ≤ Var(Yi.i.d.).
Note that Theorem 4.4 does not obviate the long proof in Sec. A.1: suppressing the variance
of the GRF coordinate ϕ(i)k, i, k ∈ N is not sufficient to conclude that the variance of the
dot product K̂ij = ϕ(i)⊤ϕ(j) is also reduced since now we need to consider correlations
between ϕ(i)k1 and ϕ(i)k2 with k1 ̸= k2. On the other hand, it does subsume Theorem 4.2
as a special case, though we keep this section in the manuscript for clarity of presentation.
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