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Figure 1: Given a source avatar and only text prompts, GG-Editor produces realistic local editing results drastic geometry
deformations and rich texture details.

Abstract
Text-driven 3D avatar customization has attracted increasing atten-
tion in recent years, where precisely editing specific local parts of
avatars with only text prompts is particularly challenging. Previ-
ous editing methods usually use segmentation or cross-attention
masks as constraints for local editing. Although these masks tightly
cover existing objects/parts, they may limit editing methods to cre-
ate drastic geometry deformations beyond the covered contents.
From a different perspective, this paper presents a GPT-guided
local avatar editing framework, namely GG-Editor. Specifically,
GG-Editor progressively mines more reasonable candidate editing
regions via harnessing multimodal large language models which
already organically assimilate common-sense human knowledge.
In order to improve the editing quality of the local areas, GG-Editor
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explicitly decouples the geometry/appearance optimization, and
adopts a global-local synergy editing strategy with GPT-generated
local prompts. Moreover, to preserve concepts residing in source
avatars, GG-Editor proposes an orthogonal denoising score that or-
thogonally decomposes editing directions and introduce an explicit
term for preservation. Comprehensive experiments demonstrate
that GG-Editor with only textual prompts achieves realistic and
high-fidelity local editing results, significantly surpassing prior
works. Project page: https://xuyunqiu.github.io/GG-Editor/.
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1 Introduction
Text-driven 3D avatar generation [26, 27, 41, 71, 74, 78] and edit-
ing [5, 20, 49, 60, 73] are crucial for various applications and indus-
tries, which enable the creation of customized digital humans using
a few words. Despite notable advancements in 3D editing [8, 19, 21,
57, 79], locally editing some specific parts of 3D contents remains
challenging, due to the ambiguity in language and the complexity
of 3D space. In training, the editing-related regions should be spec-
ified and properly manipulated, while the irrelevant contents are
maintained.

Prior local editing methods usually locate the candidate editing
regions via manual designation (e.g., sketch) [51], cross-attention at-
tribution [59, 80] or open-vocabulary grounding/segmentation [33,
63] with manually selected text queries. Manually specifying an
editing region or selecting a suitable text query for grounding it
could be cumbersome and inflexible. Furthermore, it is difficult to
ground some concepts that are not in current images with text
queries, as shown in Fig. 3a. The editing regions indicated by at-
tention/segmentation maps usually tightly cover existing objects
within given images. These object/part masks may not be a good
constraint for editing, since there could be a misalignment between
the candidate editing regions and the object/part masks. For in-
stance, the optimal region to add a hat is the area above the head,
rather than the head region itself. Consequently, it is hard to intro-
duce some non-rigid edits (e.g., drastic geometry deformations), if
the assigned editable region is the head region itself.

Motivated by these observations, we try to mine more reasonable
editing regions using multimodal large language models (LLMs) [1,
3, 4, 7, 29, 42, 45, 47, 52, 66, 69] which already organically assimilate
common-sense human knowledge. In this paper, we exploit the
extraordinary text parsing and spatial reasoning capability of multi-
modal LLMs (i.e., GPT-4V [1]), and present a GPT-guided 3D avatar
editing framework, namely GG-Editor. In contrast to the existing
LLM-guided generation methods [39, 40, 77], our editing method
also requires a good understanding of the existing visual contents
and reasoning in 3D space. To enable multimodal LLMs to handle
3D inputs and locate reasonable regions, we decouple the region
seeking process into multiple steps: representative view selection,
coarse grid region selection and iterative fine region mining. In
addition, we inject some domain knowledge regarding avatars and
devise various visual prompting strategies to enhance the ground-
ing capability of GPT. As a result, GG-Editor progressively mines
some local regions corresponding to the given editing prompts, and
can use the mined regions for subsequent editing.

We incorporate the mined local editing regions into a geometry-
appearance decoupled learning scheme [9, 53], where the geometry
and appearance of the pre-trained source avatars are edited sequen-
tially. We notice that using a standard human-centric camera pose
sampling system may be less effective for local editing, as the local
editing regions could be small or occluded in the rendered full-body
images. To provide high-quality edits with more geometry and tex-
ture details, GG-Editor employs a global-local view synergy editing
strategy that simultaneously renders images from global and focal
views. Nevertheless, the semantics of the local-view images could
be deviate from the given prompt describing the global avatar. To
cope with such semantic misalignment issue, we leverage GPT to

analyze the source/target prompts, and then generate local prompts
tailored for the local view.

Many prior 3D editing works [38, 80] optimize models using
score distillation sampling (SDS) [55] with only target prompts. We
believe that it is also important to exploit the information residing
in source avatars and corresponding prompts. Drawing inspira-
tion from an image editing approach [23], we treat the original
contents as the reference and calculate the delta scores that steer
the editing toward a less biased direction. We also observe that
such delta score function may sometimes bring over-editing results
that largely deviate from the source avatars. Thus, we orthogonally
decompose the condition directions, and present a new orthogonal
denoising score (ODS) loss that contains an explicit term to adjust
the preservation of the original contents. In this way, GG-Editor
brings well compositional and high-fidelity edits.

To the best of our knowledge, GG-Editor is the first multimodal
LLM-guided framework for text-driven 3D avatar editing. We show-
case it on multiple avatars with various editing prompts. Com-
prehensive experiments validate its superiority in locally editing
avatars. The main contributions can be summarized as follows:

• We introduce a new GPT-guided framework for zero-shot
text-driven 3D avatar editing, which first integrates common-
sense human knowledge and progressively mines reasonable
candidate regions for local editing.
• We devise a global-local view synergy editing strategy to
improve the local editing results by training models with ad-
ditional local renderings and GPT-generated local prompts.
• We present ODS loss that orthogonally decomposes the edit-
ing directions and introduces an explicit term to adjust the
preservation of the source concept.

2 Related Works
Controllable Text-Driven 3D Content Editing.Most current

text-driven 3D editingmethods globallymanipulate (e.g., style trans-
fer) the whole scenes [21, 31, 34, 49, 65] or objects [10, 19, 20, 50, 57].
Implementing local editing and maintaining the unrelated areas
is more challenging, which requires models to have a more fine-
grained understanding of 3D contents and editing prompts. To
improve the local editing controllability, some methods manually
assign multi-view semantic sketches [51] or editable regions [6, 12,
36, 38] as auxiliary constraints. However, manually adding such
constraints in a 3D space could be cumbersome and inflexible.

Numerous methods [11, 15, 22, 33, 63, 73, 76] try to generate
masks as constraints for local editing, using off-the-shelf open-
vocabulary segmentation or grounding methods [32, 43]. A few
works [13, 14] attempt to locate the semantically related local re-
gions on mesh surface using CLIP guidance [56]. Another line of
work [28, 59, 79, 80] utilizes cross-attention mask-based techniques
to obtain the editable regions. While these mask-based methods
show promising results regarding rigid editing (e.g., changing ap-
pearance), they usually struggle to bring drastic geometry defor-
mations, as the editable regions have been aligned with existing
objects/parts indicated by a manually selected text query. This
paper, from a different perspective, attempts to mine reasonable
editing regions with only text prompts and presents a local editing
method effectively utilizing the obtained editable regions.
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Figure 2: Overview of the proposed GG-Editor. With only textual prompts, GG-Editor first mines reasonable candidate regions
for local editing. Using the candidate editing regions as constraints, GG-Editor then performs geometry-appearance decoupled
local editing with global-local synergy and ODS loss.

LLM-Guided Visual Content Generation. LLMs, like GPT [1]
and BLIP [37] series, have exhibited outstanding efficacy in many
text-related tasks. Lv et al. [46] and Sun et al. [64] utilize LLMs to
generate Python scripts commanding 3D software (e.g., Blender) for
text-to-video and 3D generation. Gao et al. [18] use GPT to generate
scene graphs assisting compositional 3D scene generation. Another
branch of research explores LLMs to generate various types of text-
grounded layouts (e.g., boxes and polygons) as constraints for text-
to-image [16, 39, 70, 75], video [40, 44] and 3D generation [67, 77].
Unlike prior works that employ LLM to generate layouts that reflect
the spatial relationships and motions described by given texts, we
aim at exploiting multimodal LLMs to better understand both the
textual and 3D visual inputs and then infer reasonable local regions
for 3D editing.

3 Preliminary
Geometry-Appearance-Decoupled 3D Representation. Learn-

ing 3D representations with explicit disentanglement of geome-
try and appearance has shown its effectiveness in 3D reconstruc-
tion [53] and text-to-3D generation [9]. In light of these findings,
we adopt a similar two-stage scheme for editing.

In the first stage, DMTet [61] is utilized as the geometry repre-
sentation 𝜃geo, which can efficiently render high-resolution meshes
with differentiable rasterization [35]. DMTet models 3D shapes us-
ing a deformable tetrahedral grid and an implicit SDF [54]. The SDF
values and the position offsets of deformable tetrahedral vertices
are learned using a MLP in DMTet. In training, the explicit mesh
can be extracted through the differentiable marching tetrahedral
layer.

Once the geometry model 𝜃geo is trained, an extra physically-
based rendering (PBR) material model [48] is adopted to learn the

appearance representation. The material model 𝜃mat is parameter-
ized using a MLP, which outputs diffuse value 𝑘d, roughness and
metallic value 𝑘rm, and normal perturbation value 𝑘n for any point
on themesh surface extracted from 𝜃geo. When both representations
are optimized, we can produce textured meshes that are compatible
with standard 3D tools and game engines.

Score Distillation Sampling. SDS proposed by Poole et al. [55]
has become a popular way to distill the diffusion priors for text-
driven 3D generation and editing. Formally, given a diffusion model
𝜙 and images x = 𝑔(𝜃, 𝑝) generated with a differentiable renderer
𝑔(·) and a camera pose 𝑝 , SDS minimizes the difference between
the added Gaussian noise 𝜖 and the predicted noise 𝜖𝑠

𝜙
:

∇𝜃 LSDS = 𝑤 (𝑡 )
(
𝜖𝑠
𝜙

(
z𝑡 ; 𝑦, 𝑡

)
− 𝜖

) 𝜕x
𝜕𝜃

, (1)

where 𝑦 indicates the text condition and z𝑡 is obtained by adding
noise 𝜖 to x corresponding to the 𝑡-th timestep of the diffusion
process.𝑤 (𝑡) denotes a weighting function determined by the time
step 𝑡 , and 𝜖𝑠

𝜙

(
z𝑡 ;𝑦, 𝑡

)
is the classifier-free guidance (CFG) [25]:

𝜖𝑠
𝜙
(z𝑡 ; 𝑦, 𝑡 ) = 𝜖𝜙 (z𝑡 ;∅, 𝑡 ) + 𝑠

(
𝜖𝜙 (z𝑡 ; 𝑦, 𝑡 ) − 𝜖𝜙 (z𝑡 ;∅, 𝑡 )

)
, (2)

where ∅ is a null condition. The conditioned prediction 𝜖𝜙 (z𝑡 ;𝑦, 𝑡)
of the noise is extrapolated away from the unconditioned predic-
tion 𝜖𝜙 (z𝑡 ;∅, 𝑡) by an amount controlled by a scalar 𝑠 . During
training, the diffusion model 𝜙 is frozen and the gradients are back-
propagated to the parameterizable 3D representation 𝜃 .

4 Methodology
Given a 3D avatar along with a text prompt describing the original
visual content (i.e., source prompt), our goal is to locally edit the
avatar using another target prompt specifying the content after
editing. It requires imposing proper manipulation on specific local
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adding a shoe to the image of the Hulk. Since the Hulk needs to
be holding the shoe, the editing region should include one of
his hands while being as small as possible to avoid unnecessary
changes to other parts of the image.
Red box: reasoning for red box... (score 20)
Blue box: reasoning for blue box … (score 80)
Orange box: reasoning for orange box... (score 60)
Magenta box: reasoning for magenta box … (score 40)

input images

(c) regions comparatively selected by GPT
Figure 3: Comparison of different approaches for mining the candidate local editing regions.

regions corresponding to the editing prompts and retaining other
editing-extraneous regions. Furthermore, the edited avatars should
look realistic and keep cross-view consistency.

To achieve the above objectives, we propose GG-Editor a new
GPT-guided avatar editing framework (see Fig. 2). Given an avatar
with source and target prompts, we utilize multimodal LLMs (i.e.,
GPT-4V) to analyze and gradually seek reasonable regions for edit-
ing. We devise a coarse-to-fine pipeline with various prompting
strategies to alleviate the hallucination issue and obtain more accu-
rate regions. The mined candidate editing regions are integrated
into a geometry-appearance decoupled pipeline for local editing.
For higher-quality local edits, a global-local synergy editing strat-
egy is employed to optimize models with additional local views
with GPT-generated local prompts. Moreover, we introduce an or-
thogonal denoising score, which performs 3D editing effectively
and introduces an explicit term controlling the preservation of the
source concept.

4.1 GPT-Guided Coarse-to-Fine Candidate
Editing Region Mining

Unlike segmentation-based editing methods using accurate masks
that cover existing contents, we aim to seek reasonable editing
regions beyond given avatars with multimodal LLM guidance. Lo-
cating 3D local editing regions indicated by source/target prompts
is quite difficult, though the powerful GPT is leveraged. We split
the overall process into several steps and introduce a coarse-to-fine
pipeline, gradually mining the candidate editing regions.

Representative View Selection. To enable GPT to understand
the 3D contents, we first project 3D avatars to 2D space. We em-
pirically render four images from the orthogonal views (i.e., front,
back, left and right views) that are informative enough to represent
the input meshes. Then, we request GPT to select a pair of images
from the rendered images, where the selected image pair should be
view-orthogonal and can better present the candidate edits.

Drawing inspiration from chain-of-thought [68], we also employ
reasoning before answering prompting strategy to improve the
robustness of multimodal LLMs. Specifically, we prompt GPT to first
provide the descriptions of the given images and candidate edits,
as well as the reasoning for the decision making before returning
the selected views.

Coarse Region Mining by Grid Selection. With the selected
two renderings, we attempt to locate the regions relevant for can-
didate editing. However, we notice that GPT usually struggles with
producing accurate coordinates, especially at fine granularity, as

shown in Fig. 3b. Thus, we devise several visual prompting [62, 72]
strategies to unleash its locating capability.

We encode visual prompts to help GPT identify different regions
within images. Concretely, we divide the images into different grids
and assign different identifiers to each grid. We ask GPT first to
analyze the required image modifications based on given source/-
target prompts and then select several grids within the encoded
images that are most relevant. The selected grids roughly indicate
the regions for editing.

Fine RegionMining via Iterative Verification. The fine region
mining is formulated as an iterative proposal selection process. At
each round of selection, one optimal box is selected as the reference,
and then we jitter the coordinates of the reference box to generate
multiple box proposals around the reference and avatar for the next
round. At the beginning of selection, we initialize the reference box
proposal based on the selected grids.

To enable GPT to be aware of different regions, we encode visual
prompts in the rendered images by indicating these boxes with
different colors, as shown in Fig. 3c. We also provide GPT with
some key guidelines as well as the process steps for selecting a
good proposal for editing. At each round of selection, GPT first
interrupts the editing task and analyzes some key factors, based on
the source/target prompts. GPT describes the regions covered by
each box and scores each region with the corresponding reasoning
before returning the final selection. Since the selected proposals
could be noisy, we introduce a chain-of-verification strategy to
alleviate the hallucinations of GPT. Concretely, the selected boxes
in different rounds are stored, and we verify the previously selected
boxes every 𝑁ver rounds. After multiple rounds of selection, we can
obtain a reasonable candidate region for local editing.

Optionally, if the mined region does not meet the user’s specific
requirements, we can also interactively chat with GPT to further
rectify the box to determine a better editing region. After obtaining
the coordinates of two dimensions (e.g., X-axis and Y-axis) from
the first view, we perform a similar coarse-to-fine mining process
on the other view using the fixed Y-axis coordinates to obtain
the coordinates in another dimension (e.g., Z-axis). We project all
mined coordinates back to 3D space and generate a 3D bounding
box indicating the editable regions.

4.2 Geometry-Appearance Decoupled Local
Editing with Global-Local View Synergy

Geometry and Appearance Editing with Local Constraints.
As in the geometry-appearance decoupled framework discussed in
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(a) renderings in global view 𝑝glb (b) renderings in local view 𝑝loc

Figure 4: Visualizations of the mined editable regions and
images rendered from global and local views.

Sec. 3, we sequentially manipulate the geometry and appearance of
the given avatars. We first initialize the geometry and appearance
models of the target avatar using the pre-trained source avatar:
{𝜃 tgtgeo, 𝜃

tgt
mat} ← {𝜃 srcgeo, 𝜃

src
mat}. Then, we successively optimize the

target avatar’s geometry 𝜃
tgt
geo and appearance 𝜃 tgtmat using similar

losses while keeping the source avatar fixed.
With a randomly sampled camera pose, we simultaneously ren-

der both the source and target avatars as well as the 3D bound-
ing box indicating the candidate editing regions. Specifically, we
calculate the editable map m, based on the rendered depth map
dbox ∈ [0, 1] and object mask obox ∈ [0, 1] of the 3D box and the
source avatar’s depth map dsrc:

m = 1{dbox⩽dsrc}o
box, (3)

where 1{dbox⩽dsrc } is the indicator function, being 1 if dbox ⩽ dsrc

and 0 otherwise. To maintain the original contents, in both geome-
try and appearance editing stages, we impose reconstruction losses
on the non-editable regions:

Lrecon = (1 − m) ( ∥otgt − osrc ∥22 + ∥xtgt − xsrc ∥1 ), (4)

where x ∈ {n, c} denotes the normal/shading in geometry/appear-
ance editing stages respectively.

Similar to SDS loss in Eqn. (1), we can distill the prior knowledge
from a pre-trained text-to-image diffusionmodel [58] to the editable
regions m for editing target avatar’s geometry/appearance:

∇𝜃 tgtLSDS-m = m𝑤 (𝑡 )
(
𝜖𝑠
𝜙

(
ztgt𝑡 ; 𝑦tgt, 𝑡

)
− 𝜖

) 𝜕xtgt

𝜕𝜃 tgt
, (5)

where 𝑦tgt is the target prompt, and ztgt𝑡 ∈ {z𝑡 (ntgt), z𝑡 (ctgt)} repre-
sents the noisy normals/shadings. 𝜃 tgt ∈ {𝜃 tgtgeo, 𝜃

tgt
mat} indicates the

parameterizable 3D representation of avatar’s geometry/texture.
Global and Local SynergywithGPT-Generated Local Prompt.

As the editable regions are determined, we present a global-local
viewpoint synergy strategy to improve the editing quality of the
local regions. Besides randomly sampling camera poses 𝑝glb around
the whole body as in [9], we further set up another spherical coor-
dinate system centered on the 3D box and sample some focal views
𝑝 loc around the local editing regions. At each optimization step
with Eqns. (4) and (5), we simultaneously render normals/shadings
and editable masks from global and local views (see Fig. 4) to enrich
geometry/texture details within local editing regions.

However, using shared prompts for both global and local views
may not be optimal in training, because the semantics of local parts
may differ from that of global views. As shown in Fig. 2b, using a
prompt "Hulk holding a shoe" does not accurately describe the
contents covered a local view that covers only the hand regions of

the Hulk. To cope with this issue, we harness the reasoning capa-
bility of GPT to parse global source and target prompts, and infer
the local prompts for training. Specifically, given the source and
target prompts, we ask multimodal LLMs to analyze the candidate
editing areas as well as the interactions with the avatars, and then
generate more appropriate prompts (e.g., "hand holding a shoe")
for local views.

4.3 Orthogonal Denoising Score
SDS loss is initially designed for text-to-3D generation and has
become a common practice in many 3D editing works [38, 59, 80].
However, we believe it may not be optimal for editing tasks. As
shown in Fig 2c, SDS loss leads samples from different views to
one concept center defined by target prompts. We argue that it is
also important to exploit the information residing in the original
inputs (i.e., source avatar and corresponding prompt) for 3D avatar
editing.

Drawing inspiration from an image editing method [23], we use
the images rendered from the source avatar as the reference to help
the optimization. We add the identical noise 𝜖 to source and target
inputs, and calculate the delta denoising score (DDS) loss:

∇𝜃 tgtLDDS-m = m𝑤 (𝑡 )
(
𝜖𝑠
𝜙

(
ztgt𝑡 ; 𝑦tgt, 𝑡

)
− 𝜖𝑠

𝜙

(
zsrc𝑡 ; 𝑦src, 𝑡

) ) 𝜕xtgt

𝜕𝜃 tgt
. (6)

Following the assumption introduced by Katzir et al. [30], we de-
couple the CFG score 𝜖𝑠

𝜙
(z𝑡 ;𝑦, 𝑡) in SDS loss into three components:

∇𝜃 LSDS = 𝑤 (𝑡 )
(
𝜖𝜙 (z𝑡 ;∅, 𝑡 )︸        ︷︷        ︸

𝛿N+𝛿D

+𝑠
(
𝜖𝜙 (z𝑡 ; 𝑦, 𝑡 ) − 𝜖𝜙 (z𝑡 ;∅, 𝑡 )︸                            ︷︷                            ︸

𝛿C

)
− 𝜖

) 𝜕x
𝜕𝜃

,

(7)
where 𝛿C is the condition direction leading the generated image
towards the text condition 𝑦. 𝛿D and 𝛿N are domain correction and
denoising direction respectively, which are not directly related to
the editing prompts. Since the editing is from a pre-trained avatar
that can render in-domain images, 𝛿D component is not effectively
required and can be dropped. The noisy residual 𝛿N − 𝜖 is relatively
negligible and also can be dropped. Consequently, Eqn. (6) can be
reformulated as:

∇𝜃 tgtLDDS-m = m𝑠𝑤 (𝑡 )
(
𝛿
tgt
C − 𝛿

src
C

) 𝜕xtgt

𝜕𝜃 tgt
. (8)

Though optimizing models using the delta of source and tar-
get condition directions improves the editing effectiveness, it is
still prone to bring edits that deviate significantly from the source
avatars. To tackle this issue, we try to disentangle the editing di-
rection, inspired by Perp-Neg [2]. Specifically, we orthogonally
decompose the condition directions and introduce an explicit term
to preserve source-concept contents, as shown in Fig. 2c. Suppose
the projection and perpendicular of 𝛿 tgtC on 𝛿srcC are:

Δproj =
⟨𝛿 tgtC , 𝛿srcC ⟩
∥𝛿srcC ∥

2 𝛿srcC and Δprep = 𝛿
tgt
C − Δproj, (9)

we present a new orthogonal denoising score (ODS) function and
use it in both geometry and appearance editing stages:

∇𝜃 tgtLODS-m = m𝑠𝑤 (𝑡 )
(
𝜆projΔproj + Δprep

) 𝜕xtgt

𝜕𝜃 tgt
, (10)

where 𝜆proj is an adjustable term for source concept preservation.
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A DSLR photo of Albus Dumbledore wearing sunglasses

Stormtrooper standing on wooden skateboards 

Hulk holding a can of coke

Hulk with a cowboy hat

Source avatar Fantasia3D-FT DreamEditor VoX-E GG-Editor (ours)
Figure 5: Qualitative comparisons to three baselines on four different cases. The results show that our GG-Editor achieves
realistic local editing results corresponding to the given prompts while better preserve the irrelevant regions. In addition,
GG-Editor also shows high-quality results with richer geometry and texture details in the local editing regions. The source
prompts are colored in gray.

5 Experiments
Implementation Details. We optimize our models with four

NVIDIA RTX 3090 GPUs. For each avatar, we optimize the geometry
and appearance models for 3K iterations (∼60 mins) and 2K itera-
tions (∼40 mins) respectively. We adopt Stable Diffusion v1.5 as the
diffusion prior for both geometry and appearance stages. AdamW
optimizer is utilized with a learning rate of 10−3 and 10−2 for the
two stages respectively. DMTet grid resolution is set to 128. The
overall batch size is set to 4, where 2 for the local view.𝑁ver and 𝜆proj
is empirically set to 5 and 0.2. The source avatars can be generated
using Fantasia3D [9] or reconstructed using nvdiffrec [53].

Evaluation Metrics. Following previous 3D editing works, we
adopt CLIP similarity (CLIPsim) [56], CLIP directional similarity
(CLIPdir) [17], Frechét Inception Distance (FID) [24] and peak signal-
to-noise ratio (PSNR) for quantitative evaluation. CLIPsim measures
the alignment between the target avatars and the target prompts.
CLIPdir evaluates the alignment between the changes in both the
avatars and text prompts. FID validates the edit magnitude, and
PSNR quantifies the ability to preserve the source contents. Since
the quality assessment of editing results could be subjective, we
also conduct user studies for evaluation. Concretely, we provide
360◦ videos of source avatars and multiple target avatars edited
by different methods, and ask users to select the best based on the
local editing quality and the similarity to the source avatars.

Table 1: Quantitative comparison with state-of-the-art meth-
ods on 16 cases.

CLIPsim↑ CLIPdir↑ FID↓ PSNR↑ User↑
Fantasia3D-FT [9] 0.284 0.016 149.419 18.016 0.054
DreamEditor [80] 0.273 0.005 68.105 29.799 0.039
Vox-E [59] 0.289 0.021 102.845 26.178 0.093
GG-Editor (ours) 0.297 0.026 42.408 26.924 0.814

5.1 Main Results
We compare our GG-Editor to several recent advanced methods i.e.,
Fantasia3D [9], DreamEditor [80] and Vox-E [59]. As Fantasia3D is
a text-to-3D generation method that can be initialized with custom
meshes, we adapt it to editing by fine-tuning pre-trained source
avatars with target prompts and lower learning rate.

Qualitative Comparisons. As shown in Fig. 5, without local
region constraints, Fantasia3D-FT is prone to manipulate the entire
avatars. DreamEditor and VoX-E can sometimes locate reasonable
regions for local editing, but they usually show unrealistic results
with limited geometry changes. Our GG-Editor successfully mines
reasonable local editing regions and imposes faithful editing in
relevant regions to the textual prompts, while the irrelevant regions
are properly retained. We present more results of our GG-Editor
in Fig. 6. Various high-quality normal and shaded RGB renderings
validate the effectiveness and generalization of our local editing
method. Please find more examples in the supplementary material.
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Hulk wearing pink mini skirt A DSLR photo of Albus Dumbledore wearing a pair of sandals

A DSLR photo of Albus Dumbledore with a clown faceHulk holding a red apple

Hulk with fat belly A DSLR photo of Albus Dumbledore wearing Nike shoes

Figure 6: More editing results of our GG-Editor. Both geometry and appearance results are visualized.

(a) w/o local view (b) w/o local prompt (c) w/ global-local syn.
Figure 7: Ablation of global-local view synergy editing strat-
egy. Our global-local view synergy editing strategy enhances
local editing in terms of geometry and appearance.

Quantitative Comparisons. We report the quantitative results
of GG-Editor compared to several state-of-the-art methods in Ta-
ble 1. Although GG-Editor manipulates a few local regions within
source contents, it achieves the best results on CLIPsim, CLIPdir and
FID, demonstrating its excellent editing capability. Meanwhile, GG-
Editor also obtains the second-best results on PSNR, indicating the
strong ability to preserve the source contents. Moreover, GG-Editor
receives 81.4% of the votes in user studies, which further validates
the advantages of our local editing method from the perspective of
human preferences.

5.2 Ablation Study
Effectiveness of Global-Local Synergy. To verify the necessity

of the global-local view synergy strategy, we showcase an ablation
on a challenging case (i.e.,Hulk holding a shoe) in Fig. 7. We compare
it to themodel trained using only global views and themodel trained
with global and local views but without the local prompts. In Fig. 7a,
we can find blurry results are achieved when training without the
local view. After adding the local views, edited results have more
geometry and texture details. However, using a global prompt "Hulk
holding a shoe" is not optimal to describe the local region around
the hand, which could bring noise in the optimization process. In
our global-local synergy, the local region can be specified by the
GPT-generated local prompt, which facilitates the local editing.

(a) source avatar (b) w/ SDS loss (c) w/ DDS loss (d) w/ ODS loss
Figure 8: Comparison of editing losses. Our ODS loss brings
high-quality editing results (i.e., shoe), while preserves the
source concept (i.e., hand).

(a) source avatar (b) w/o Δproj (c) w/o Δprep (d) full ODS loss
Figure 9: Analysis of the projection and perpendicular terms
in ODS loss. When the both terms are utilized, high-fidelity
edits are achieved without artifacts.

Effectiveness of Orthogonal Denoising Score As shown in
Fig. 8, the shoe optimized using SDS is still unclear and unrealistic,
while DDS and ODS effectively add a realistic shoe to the hand.
Since the concept of the shoe is quite close to that of the foot, the
Hulk’s hand becomes a foot through optimization with DDS (see
hand regions in the bottom images). In contrast, ODS can better
preserve the source concept and retain the hand in the back view.
In Fig. 9, We also analyze the effectiveness of orthogonally terms in
ODS loss. Without projection and perpendicular terms, the edited
avatars show obvious artifacts and ineffective editing respectively.
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mIoU over 16 cases

Gounding DINO

GPT directly predicting

GPT-guided coarse-to-fine mining

Figure 10: Quantitative analysis of our proposed GPT-guided
local region mining.

Hulk wearing Superman shorts
A DSLR photo of Albus Dumbledore

wearing leather shoes
Figure 11: Examples of appearance editing with fixed shapes.

A DSLR photo of Albus
Dumbledore wearing sunglasses A DSLR photo of barefoot Albus Dumbledore

Figure 12: Examples of removal editing using GG-Editor.

Effectiveness of GPT-Guided Editing RegionMining. In order
to show the superiority of the proposed GPT-guided coarse-to-fine
editing region mining approach, we measure the overlap of the
mined local editing regions with respect to the human-preferred
areas using mIoU. As shown in Fig. 10, compared to grounding
DINO [43] and directly predicting coordinates via GPT, our pro-
posed method can select candidate editing regions that are more
consistent with human preferences.

5.3 More Applications
As the optimization process of geometry and appearance is explic-
itly decoupled, it is easy to retexture the avatars with fixed shapes,
as shown in Fig. 11. Besides addition and modification editing, GG-
Editor can also performs removal editing as illustrated in Fig. 12
Another characteristic of our proposed method is that GG-Editor
can make local edits incrementally. Fig. 13 showcases an example of
incremental editing. In each editing step, only the contents within
the local editing regions are manipulated, while contents irrelevant
to the editing are retained. In addition, GG-Editor directly exports
textured avatar meshes that can be used for various downstream
applications like relighting and animation in the classic graphics
pipeline, as visualized in Fig. 14.

6 Limitations and Future Works
As a pioneer in taming multimodal LLMs for text-driven 3D local
editing, GG-Editor presents realistic editing results. However, due
to the limited performance of existing text-to-image diffusion mod-
els [58] for hand and human-object interaction generation, we find
it sometimes fails to edit challenging cases faithfully (see left part
of Fig. 15). As our method maintains the editing irrelevant contents
by directly regressing the normals and colors of source avatars, our
method could bring some artifacts around the boundaries of the
local editing regions (see middle part of Fig. 15). Since GPT-4V lacks

Hulk with 
fat belly

Hulk with fat
belly wearing
denim shorts

Hulk with black
beard and fat belly

wearing denim shorts

Figure 13: Examples of incremental editing using GG-Editor.

(a) Albus Dumbledore with clown face in different light conditions

(b) Hulk wearing denim shorts is doing swing dancing
Figure 14: Examples of relighting and animation of avatars
edited using GG-Editor.

Hulk wearing sports shortsHulk holding a rose Hulk wearing a watch

Figure 15: Failure cases of our proposed method.

accurate localization capacity, it is hard for GG-Editor to localize
some tiny regions from avatars precisely, and such mislocalization
may result in some unsatisfactory results (see right part of Fig. 15).

GG-Editor is an early attempt at 3D local editingwithmultimodal
LLM guidance, focusing only on 3D human avatars. In the future,
we would like to explore mining local editing regions from more
challenging and general scenes. In addition, we will investigate
enhancing the locating capability of multimodal LLMs, thereby
improving the controllability of 3D local editing.

7 Conclusion
This paper proposes a new multimodal LLM-guided framework for
locally editing 3D avatars, namely GG-Editor. GG-Editor harnesses
GPT-4V combined with human common sense knowledge to in-
fer some reasonable local editing regions beyond existing avatars.
To enrich the geometry and texture details within local editable
regions, we devise a global-local view synergy editing strategy. Inte-
grating it into a geometry-appearance decoupled learning pipeline,
GG-Editor achieves high-fidelity local editing results with cross-
view consistency. Besides, we present ODS loss that orthogonally
decomposes editing directions and introduces an explicit term for
adjusting source concept preservation. Experiments with multiple
avatars and various editing prompts showcase the effectiveness and
superiority of our GG-Editor for local avatar editing.
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