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Abstract

Deep generative models (DGMs) aim at characterizing the distribution of the train-
ing set by maximizing the marginal likelihood of inputs in an unsupervised manner,
making them a promising option for unsupervised out-of-distribution (OOD) de-
tection. However, recent works have reported that DGMs often assign higher
likelihoods to OOD data than in-distribution (ID) data, i.e., overestimation, leading
to their failures in OOD detection. Although several pioneer works have tried to
analyze this phenomenon, and some VAE-based methods have also attempted to
alleviate this issue by modifying their score functions for OOD detection, the root
cause of the overestimation in VAE has never been revealed to our best knowl-
edge. To fill this gap, this paper will provide a thorough theoretical analysis on
the overestimation issue of VAE, and reveal that this phenomenon arises from two
Inside-Enemy aspects: 1) the improper design of prior distribution; 2) the gap
of dataset entropies between ID and OOD datasets. Based on these findings, we
propose a novel score function to Alleviate VAE’s Overestimation In unsupervised
OOD Detection, named “AVOID”, which contains two novel techniques, specifi-
cally post-hoc prior and dataset entropy calibration. Experimental results verify
our analysis, demonstrating that the proposed method is effective in alleviating
overestimation and improving unsupervised OOD detection performance.

1 Introduction

The detection of out-of-distribution (OOD) data, i.e., identifying data that differ from the in-
distribution (ID) training set, is crucial for ensuring the reliability and safety of real-world applications
[L} 12 13, 14]. While the most commonly used OOD detection methods rely on supervised classifiers
[5) 16, [70 18L 9L (10} [11]], which require labeled data, the focus of this paper is on designing an unsu-
pervised OOD detector. Unsupervised OOD detection refers to the task of designing a detector,
based solely on the unlabeled training data, that can determine whether an input is ID or OOD
(12,1314} 115,164 17, [18]. This unsupervised approach is more practical for real-world scenarios
where the data lack labels.

Deep generative models (DGMs) are a highly attractive option for unsupervised OOD detection.
DGMs, mainly including the auto-regressive model [[19, 20], flow model [21 22], diffusion model
[23], generative adversarial network [24]], and variational autoencoder (VAE) [25]], are designed
to model the distribution of the training set by explicitly or implicitly maximizing the likelihood
estimation of p(x) for its input & without category label supervision or additional OOD auxiliary
data. They have achieved great successes in a wide range of applications, such as image and text
generation. Since generative models are promising at modeling the distribution of the training set,
they could be seen as an ideal unsupervised OOD detector, where the likelihood of the unseen OOD
data output by the model should be lower than that of the in-distribution data.
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Unfortunately, developing a flawless unsupervised OOD detector using DGMs is not as easy as it
seems to be. Recent experiments have revealed a counterfactual phenomenon that directly applying
the likelihood of generative models as an OOD detector can result in overestimation, i.e., DGMs
assign higher likelihoods to OOD data than ID data [12][13}[17,/18]. For instance, a generative
model trained on the FashionMNIST dataset could assign higher likelihoods to data from the MNIST
dataset (OOD) than data from the FashionMNIST dataset (ID), as shown in Figure [6(a)} Since OOD
detection can be viewed as a verification of whether a generative model has learned to model the
distribution of the training set accurately, the counterfactual phenomenon of overestimation not only
poses challenges to unsupervised OOD detection but also raises doubts about the generative model’s
fundamental ability in modeling the data distribution. Therefore, it highlights the need for developing
more effective methods for unsupervised OOD detection and, more importantly, a more thorough
understanding of the reasons behind the overestimation in deep generative models.

To develop more effective methods for unsupervised OOD detection, some approaches have modified
the likelihood to new score functions based on empirical assumptions, such as low- and high-level
features’ consistency [17, 18] and ensemble approaches [26]. While these methods, particularly the
VAE-based methods [[18]], have achieved state-of-the-art (SOTA) performance in unsupervised OOD
detection, none of them provides a clear explanation for the overestimation issue. To gain insight into
the overestimation issue in generative models, pioneering works have shown that the overestimation
issue could arise from the intrinsic model curvature brought by the invertible architecture in flow
models [27]]. However, in contrast to the exact marginal likelihood estimation used in flow and
auto-regressive models, VAE utilizes a lower bound of the likelihood, making it difficult to analyze.
Overall, the reasons behind the overestimation issue of VAE are still not fully understood.

In this paper, we try to address the research gap by providing a theoretical analysis of VAE’s
overestimation in unsupervised OOD detection. Our contributions can be summarized as follows:

1. Through theoretical analyses, we are the first to identify two factors that cause the overestima-
tion issue of VAE: 1) the improper design of prior distribution; 2) the intrinsic gap of dataset
entropies between ID and OOD datasets;

2. Focused on these two discovered factors, we propose a new score function, named “AVOID”,
to alleviate the overestimation issue from two aspects: i) post-hoc prior for the improper
design of prior distribution; ii) dataset entropy calibration for the gap of dataset entropies;

3. Extensive experiments demonstrate that our method can effectively improve the performance
of VAE-based methods on unsupervised OOD detection, with theoretical guarantee.

2 Preliminaries

2.1 Unsupervised Out-of-distribution Detection

In this part, we will first give a problem statement of OOD detection and then we will introduce the
detailed setup for applying unsupervised OOD detection.

Problem statement. While deploying a machine learning system, it is possible to encounter inputs
from unknown distributions that are semantically and/or statistically different from the training data,
and such inputs are referred to as OOD data. Processing OOD data could potentially introduce critical
errors that compromise the safety of the system [1]]. Thus, the OOD detection task is to identify these
OOD data, which could be seen as a binary classification task: determining whether an input x is
more likely ID or OOD. It could be formalized as a level-set estimation:

{ID, it S(x) > A
xr =

00D, if S(z) <A, M

where S(x) denotes the score function, i.e., OOD detector, and the threshold A is commonly chosen
to make a high fraction (e.g., 95%) of ID data is correctly classified [9]]. In conclusion, OOD detection
aims at designing the S(x) that could assign higher scores to ID data samples than OOD ones.

Setup. Denoting the input space with X', an unlabeled training dataset Dy, = {a:l}f\;l containing
of N data points can be obtained by sampling i.i.d. from a data distribution Py . Typically, we treat
the Px as pig, which represents the in-distribution (ID) [17, [27]]. With this unlabeled training set,
unsupervised OOD detection is to design a score function S(x) that can determine whether an input
is ID or OOD. This is different from supervised OOD detection, which typically leverages a classifier
that is trained on labeled data [4. [7,[9]. We provide a detailed discussion in Appendix [A]
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2.2 VAE-based Unsupervised OOD Detection

DGMs could be an ideal choice for unsupervised OOD detection because the estimated marginal
likelihood py () can be naturally used as the score function S(x). Among DGMs, VAE can offer
great flexibility and strong representation ability [28], leading to a series of unsupervised OOD
detection methods based on VAE that have achieved SOTA performance [17,18]. Specifically, VAE
estimates the marginal likelihood by training with the variational evidence lower bound (ELBO), i.e.,

ELBO(z) = Eg, (z|2) [log po(2|2)] — Di(g(2|2)[[p(2)), @

where the posterior ¢,(z|x) is modeled by an encoder, the reconstruction likelihood py(x|z) is
modeled by a decoder, and the prior p(z) is set as a Gaussian distribution A(0, I). After well training
the VAE, ELBO(x) is an estimation of the p(x), which could be directly seen as the score function
S(x) to do OOD detection. But the VAE would suffer from the overestimation issue, which will be
introduced in the next section. More details and Related Work can be seen in Appendix

3 Analysis of VAE’s overestimation in Unsupervised OOD Detection

We will first conduct an analysis to identify the factors contributing to VAE’s overestimation, i.e.,
the improper design of prior distribution and the gap between ID and OOD datasets’ entropies.
Subsequently, we will give a deeper analysis of the first factor to have a better understanding.

3.1 Identifying Factors of VAE’s Overestimation Issue

Following the common analysis procedure [27], an ideal score function S(x) that could achieve good
OOD detection performance is expected to have the following property for any OOD dataset:

g= ]EQJNPid(fB) [S(.’I})] - EmNPood(w) [S(CC)] >0, 3)

where piq(x) and pood () denote the true distribution of the ID and OOD dataset, respectively. A
larger gap between these two expectation terms can usually lead to better OOD detection performance.

Using the ELBO(x) as the score function S(x), we could give a formal definition of the repeatedly
reported VAE'’s overestimation issue in the context of unsupervised OOD detection [12, 13|17, [18]].

Definition 1 (VAE’s overestimation in unsupervised OOD Detection). Assume we have a VAE
trained on a training set and we use the ELBO(x) as the score function to distinguish data points
sampled i.i.d. from the in-distribution testing set (piq) and an OOD dataset (poq). When

g == Emwp‘d(m)[ELBO(IB)] - Em~pood(w) [ELBO(QZ” S O7 (4)
it is called VAE’s overestimation in unsupervised OOD detection.
With a clear definition of overestimation, we could now investigate the underlying factors causing

the overestimation in VAE. After well training a VAE, we could reformulate the expectation term of
ELBO(z) from the perspective of information theory [29] as:

Eop(@) [ELBO(@)] = Eanp(a) [Ezng, (212) 108 P0(@(2)] = Egnp(a) [Dr (46 (2]2)[[p(2))]
= —H,(z) — Dxe(q(2)[|p(2)), (5)
because we have
Eanp(@)Bzng,(zlz) 108 Po(®|2)] = Iy(x, 2) + Ep(a) log p(x) = Io(, 2) — Hp(x),  (6)
Earp(e) [Dxe(ae(2]2)||p(2))] = Zy(x, 2) + Dxo(a(2)|[p(2)), @)

where the Z,(x, z) is mutual information between & and z and the ¢(z) is the aggregated posterior
distribution of the latent variables z, which is defined by ¢(z) = Egp2)q¢(2|x). We leave the
detailed definition and derivation in Appendix [C.1] Thus, the gap G in Eq. (4) could be rewritten as

G = ["Hpu(®) + Hpou(®)] + [~ Dxr(gia(2)[|p(2)) + Dxr(gooa(2)[[P(2))], ®)

where the dataset entropy H,,, (€)/H,,,, () is a constant that only depends on the true distribution
of ID/OOD dataset; the prior p(z) is typically set as a standard (multivariate) Gaussian distribution
N (0, 1) to enable reparameterization for efficient gradient descent optimization [25]].

Through analyzing the most widely used criterion, specifically the expectation of ELBO reformulated
in Eq. (B), for VAE-based unsupervised OOD detection, we find that there will be two potential
factors that lead to the overestimation issue of VAE, i.e., G < 0:



127 Factor I: The improper design of prior distribution p(z). Several studies have argued that the
128 aggregated posterior distribution of latent variables g(z) cannot always equal N (0, I), particularly
129 when the dataset exhibits intrinsic multimodality [28] [30} [3T] 32]]. In fact, when ¢(z) is extremely
130 close to p(z), it is more likely to become trapped in a bad local optimum known as posterior collapse
131 [B3LB34, 33, i.e., q4(z|x) = p(z), resulting in q(2) = [_qg(z|z)p(x) = [ p(z)p(x) = p(z). In
132 this situation, the posterior g4(z|x) becomes uninformative about the inputs. Thus, the value of
133 Dxi(qa(2)||p(2)) could be overestimated, potentially contributing to G < 0.

134 Factor II: The gap between 7, () and #,,, (). Considering the dataset’s statistics, such as the
135 variance of pixel values, different datasets exhibit various levels of entropy. It is reasonable that a
136 dataset containing images with richer low-level features and more diverse content is expected to have
137 a higher entropy. As an example, the FashionMNIST dataset should possess higher entropy compared
138 to the MNIST dataset. Therefore, when the entropy of the ID dataset is higher than that of an OOD
130 dataset, the value of —H,, () + Hp,,, () is less than 0, potentially leading to overestimation.

140 3.2 More Analysis on Factor 1

141 In this part, we will focus on addressing the following question: when is the common design of the
142 prior distribution proper, and when is it not?

Probability
Probability

(a) Data distribution p(x) (b) Prior p(z) (c) Estimated pg () (d) Posterior ¢(z)
Figure 1: Visualization of modeling a single-modal data distribution with a linear VAE.

143 When the design of prior is proper? Assuming that we have a dataset consisting of [V data points
122 {x;}}¥,, each of which is sampled from a given d-dimensional data distribution p(z) = N(x|0, )
145 as shown in Figure Then we construct a linear VAE to estimate p(x), formulated as:
p(z) = N(z[0,T)

¢s(zlz) = N(z|Ax + B, C) )

po(x|z) = N(z|Ez + F,0°1),
146 where A,B,C,E,F, and o are all learnable parameters and their optimal values can be obtained by
147 the derivation in Appendix As the estimated distribution py(x) depicted in Figure [l(c)l we can
148 find that the linear VAE with the optimal parameter values can accurately estimate the p(x) through

149 maximizing ELBO, i.e., the overestimation issue is not present. In this case, Figures[I(b)|and [T(d)]
150 indicate that the design of the prior distribution is proper, where the posterior ¢(z) equals prior p(z).

151 When the design of prior is NOT proper? Consider a more complex data distribution, e.g., a mixture
152 of Gaussians, p(x) = >, TN (x|pr, Xi), K = 2 as shown in Figure 2(a)l where 1, = 1/K

153 and Z,[le i, = 0. We construct a dataset consisting of K x NN data points, obtained by sampling

154 N data samples {:ng)}ivszzl from each component Gaussian N (x|, X). The formulation of

185 p(2z), qs(z|x), and pg(x|z) is consistent with those in Eq. (9). More details are in Appendix

Probability

(a) Data distribution p(x) (b) p(z)&q(=z) (c) po(x) with p(z) (d) po(x) with g(2z)
Figure 2: Visualization of modeling a multi-modal data distribution with a linear VAE.

156 In what follows, we will provide a basic derivation outline for the linear VAE under the multi-modal
157 case. We can first obtain the marginal likelihood pg(z; E, F, o) = [ po(z|2)p(z) = N (z|F,EE" +
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oT) with the strictly tighter importance sampling on ELBO [36]], i.e., learning the optimal generative

process. Then, the joint log-likelihood of the observed dataset {wl(-k) } Z]\L{( x—1 can be formulated as:

K N
R KNd KN KN _
£=3"3logpe(z) = — =5 log(2m) — =~ logdet(M) — —~tr[M~'S],  (10)

k=1 i=1

where M = EET +0?Tand S = 2= 3K SV (2™ — F)(@® — F)T. After that, we could

explore the stationary points of parameters through the ELBO, which can be analytically written as:
Ly Lo

ELBO(x) = Eq,, (2|a) [log po(x|2)] — Dxe[ge (2]2)||p(2)], an

L = 2%[—tr(ECET) — (EAz + EB) (EAz + EB) + 22" (EAz + EB) — o' 2] — g log(2m0?),
g

Lo = %[— log det(C) + (Ax + B)T(A:c +B) +tr(C) — 1].

The detailed derivation of parameter solutions in Eq. (I0) and (TT)) can be found in Appendix [C.4}

In conclusion of this case, Figure2(b)|illustrates that ¢(z) is a multi-modal distribution instead of
p(z) = N(z|0,1), i.e., the design of the prior is not proper, which leads to overestimation as seen in
Figure However, as analyzed in Factor I, we found that the overestimation issue is mitigated
when replacing p(z) in the KL term of the ELBO with ¢(z), which is shown in Figure

More empirical studies on the improper design of prior. To extend to a more practical and
representative case, we used a 3-layer MLP to model ¢, (z|x) and py(z|z) with p(z) = N(0,I) on
the same dataset of the above multi-modal case. Implementation details are provided in Appendix
After training, we observed that ¢(z) still differs from p(z), as shown in Figure[3(a)] The ELBO
still suffers from overestimation, especially in the region near (0, 0), as shown in Figure m

(@) qua(2) (b) Estimated pg () (¢) FashionMNIST (ID) (d) CIFAR10 (ID)

Figure 3: (a) and (b): visualization of gj4(z) and estimated p(xz) by ELBO on the multi-modal
data distribution with a non-linear deep VAE; (c) and (d): the density plot of the log-probability of
posterior z, i.e., z ~ g4(z|x), in prior A'(0, I) on two dataset pairs.

Finally, we extend the analysis directly to high-dimensional image data. Since VAE trained on image
data needs to be equipped with a higher dimensional latent variable space, it is hard to visualize
directly. But please note that, if giq(z) is closer to p(z) = N(0,I), zig ~ gia(z) should occupy
the center of latent space A/ (0,I) and zooq ~ Good(2) should be pushed far from the center, leading
to p(ziq) to be larger than p(z..q). However, surprisingly, we found this expected phenomenon
does not exist, as shown in Figure and [3(d)] where the experiments are on two dataset pairs,
Fashion-MNISTID)/MNIST(OOD) and CIFAR10(ID)/SVHN(OOD). This still suggests that the
prior p(z) is improper, even ¢ooq(z) for OOD data may be closer to p(z) than ¢;4(2).

Brief summary. Through analyzing overestimation scenarios from simple to complex, the answer
to the question at the beginning of this part could be: the prior distribution p(z) = N(0,1) is an
improper choice for VAE when modeling a complex data distribution p(x), leading to an overestimated
Dx1.(qia(2)]|p(2)) and further raising the overestimation issue in unsupervised OOD detection.

4 Alleviating VAE’s overestimation in Unsupervised OOD Detection

In this section, we develop the “AVOID” method to alleviate the influence of two aforementioned
factors in Section[3] including i) post-hoc prior and ii) dataset entropy calibration, both of which are
implemented in a simple way to inspire related work and can be further investigated for improvement.

4.1 Post-hoc Prior Method for Factor I
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To provide a more insightful view to investigate the re-
lationship between giq(2), Good(2), and p(z), we use t-
SNE [37] to visualize them in Figure[d The visualization
reveals that p(z) cannot distinguish between the latent
variables sampled from giq(2) and gooa(2), While giq(2) is
clearly distinguishable from gooq(2). Therefore, to alle-
viate overestimation, we can explicitly modify the prior
distribution p(z) in Eq. (8) to force it to be closer to gia(z)

and far from geoq(2), i.e., decreasing Dxy (gia(2)||p(2)) oo

and increasing Dk1 (qood(2)||p(2))- —
Figure 4: The t-SNE visualization of

A straightforward modifying approach is to replace p(z) . . )
in ELBO with an additional distribution gig(2) that can i‘fsli‘ﬁ’g)/rf&efse;‘(tgggs) ggtf:?sf‘;‘;?rM
fit gia(2z) well after training, where the target value of

¢id(z) can be acquired by marginalizing g, (z|x) over the

training set, i.e., Gia(2) = Eg~py,(a)[ds(2|x)]. Previous study on distribution matching [30] has
developed an LSTM-based method to efficiently fit ¢;4(z) in the latent space, i.e.,

T
da(2) = [ [ a(ztlz<t), where q(zi]z<i) = N (i, 07). (12)
t=1
Thus, we could propose a “post-hoc prior” (PHP) method for Factor I, formulated as
PHP(x) := E. g, (2/2) log po(x|2) — Dxw(q4(2]2)||Gia(2)), (13)

which could lead to better OOD detection performance since it could enlarge the gap G, i.e.,
Gritp = [~ My (@) + Hypy ()] + [~ D (6(2)||dia(2)) + Dkt (dooa (2)|dia(2))] > G (14)
Please note that PHP can be directly integrated into a trained VAE in a “plug-and-play” manner.

4.2 Dataset Entropy Calibration Method for Factor I1

While the entropy of a dataset is a constant that remains unaffected by different model settings, it is
still an essential factor that leads to overestimation. To address this, a straightforward approach is to
design a calibration method that ensures the value added to the ELBO of ID data will be larger than
that of OOD data. Specifically, we denote the calibration term as C(x), and its expected property
could be formulated as

EmNPid(m) [C(z)] > EmNpuod(w) [C(z)]. (15)

After adding the calibration C(x) to the ELBO(x), we could obtain the “dataset entropy calibration”
(DEC) method for Factor II, formulated as

DEC(x) := Ezngy(zlo) log pg(x|z) — Dxi(ge(z|)||p(2)) + C(2). (16)
With the property in Eq. (T3)), we could find that the new gap Gpgc becomes larger than the original

gap G based solely on ELBO, as Gpec = G +Egrpyy () [C(T)] — Expooy () [C(2)] > G, which should
alleviate the overestimation and lead to better unsupervised OOD detection performance.

How to design the calibration C(x)? For the choice of the function
C(x), inspired by the previous work [[13], we could use image com-
pression methods like Singular Value Decomposition (SVD) [38]]
to roughly measure the complexity of an image, where the images
from the same dataset should have similar complexity. An intuitive
insight into this could be shown in Figure 5] where the ID dataset’s
statistical feature, i.e., the curve, is distinguishable to other datasets. -
Based on this empirical study, we could first propose a non-scaled 0
calibration function, denoted as Cpo, (). First, we could set the num-
ber of singular values as niq, which can achieve the reconstruction
eITOr |Xrecon — €| = € in the ID training set; then for a test input x;,
we use SVD to calculate the smallest n; that could also achieve a
smaller reconstruction error ¢, then Cpon () could be formulated as:

B (ni/niq), if n; < ny,
Coon(@) = {(nid = (ni —nia))/mia, if ni > nig, "

10 15 20
Number of singular values (n)

Figure 5: Visualization of the
relationship between the num-
ber of singular values and the
reconstruction error.
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which can give the ID dataset a higher expectation E.;,,(z)[Cnon ()] than that of other statistically
different OOD datasets. More details to obtain Cyon () can be found in Appendix @

4.3 Putting Them Together to Get “AVOID”

By combining the post-hoc prior (PHP) method and the dataset entropy calibration (DEC) method,
we could develop a new score function, denoted as Savor ():

Savom () 1= Ey, (z|a) [log po(x|2)] — Dxi(ge(2|2)||gia(2)) + C(z). (18)

To balance the importance of PHP and DEC terms in Eq. (I8), we consider to set an appropriate scale
for C(x). For the scale of C (), if it is too small, its effectiveness in alleviating overestimation could be
limited. Otherwise, it may hurt the effectiveness of the PHP method since DEC will dominate the value
of “AVOID”. Additionally, for statistically similar datasets, i.e., H,,, () =~ Hp,, (), the property in
Eq. (I5) cannot be guaranteed and we may only have Egp, (2)[Coon(%)] = Egpo(a) [Coon ()], in
which case we could only rely on the PHP method. Thus, an appropriate scale of Ey.,, (z)[C(2)].
named “Cycqre”, could be derived by Cycye = E [PHP(x)] ~ H,, (x), which leads to

x~pia(T)

Egrpy(z) [DEC(2)] = —Hp, (x) — Dxi(gia(2)][P(2)) + Cseate ® —Dxr(gia(2)|Ip(2)). (19

Thus, when H,,, () = Hp, (2) and Eq oy (2) [C(2)] = Egpy(a) [C ()], the PHP part of “AVOID”
could still be helpful to alleviate overestimation.

Motivated by the above analysis, we could implement the scaled calibration function, formulated as

(ni/nid) X Cscalea if n; < Nid,

. 20
[(nig — (ni — nia))/nia] X Cscale,  if 15 > Nig. 20)

C(CB) = CUOH(w) X Cscale = {

S Experiments

5.1 Experimental Setup

Datasets. In accordance with existing literature [17,[18,|39], we evaluate our method against previous
works using two standard dataset pairs: FashionMNIST [40] (ID) / MNIST [41] (OOD) and CIFAR10
[42] (ID) / SVHN [43] (OOD). The suffixes “ID” and “OOD” represent in-distribution and out-of-
distribution datasets, respectively. To more comprehensively assess the generalization capabilities
of these methods, we incorporate additional OOD datasets, the details of which are available in
Appendix [E.T] Notably, datasets featuring the suffix “-G” (e.g., “CIFAR10-G”) have been converted
to grayscale, resulting in a single-channel format.

Evaluation and Metrics. We adhere to the previous evaluation procedure [17, 18], where all methods
are trained using the training split of the in-distribution dataset, and their OOD detection performance
is assessed on both the testing split of the in-distribution dataset and the OOD dataset. In line
with previous works [1, 15, 44]], we employ evaluation metrics including the area under the receiver
operating characteristic curve (AUROC 7), the area under the precision-recall curve (AUPRC 1),
and the false positive rate at 80% true positive rate (FPR80 |). The arrows indicate the direction of
improvement for each metric.

Baselines. Our experiments primarily encompass two comparison aspects: i) evaluating our novel
score function “AVOID” against previous unsupervised OOD detection methods to determine whether
it can achieve competitive performance; and ii) comparing “AVOID” with VAE’s ELBO to assess
whether our method can mitigate overestimation and yield improved performance. For comparisons
in i, we can categorize the baselines into three groups, as outlined in [18]: “Supervised” includes
supervised OOD detection methods that utilize in-distribution data labels [} 15} 9} 145,146} 47, 148} 49];
“Auxiliary” refers to methods that employ auxiliary knowledge gathered from OOD data [13/[39} 44];
and “Unsupervised” encompasses methods without reliance on labels or OOD-specific assumptions
[14} (17} 18}, 26]]. For comparisons in ii, we compare our method with a standard VAE [25]], which also
serves as the foundation of our method. Further details regarding these baselines and their respective
categories can be found in Appendix[E.2]

Implementation Details. The VAE’s latent variable z’s dimension is set as 200 for all experiments
with the encoder and decoder parameterized by a 3-layer convolutional neural network, respectively.
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Table 1: The comparisons of our method and other OOD detection methods. The best results achieved
by the methods of the category “Not ensembles” of “Unsupervised” have been bold.

FashinMNIST(ID)/MNIST(OOD) CIFAR10(ID)/SVHN(OOD)

Supervised Aucxiliary Unsupervised Supervised Aucxiliary Unsupervised
Method AUROC?|Mehod AUROCT [Method AUROC?T|Method ~ AUROCt|Mehod AUROC?|Method AUROCT
CP (I 73.4 |LR(PC) [39 99.4  |-Ensembles MD [46 99.7 |LR(PC) [39 93.0 |-Ensembles
CP(Ent) [1 74.6  |LR(BC) [39 455 |WAIC(SVAE) [26] 76.6 |LMD [47 27.9 |LR(VAE) 39 26.5 |WAIC(5Glow) [26]  99.0
ODIN [45 752 |CP(OOD) [39] 87.7 |WAIC(SPC) [26 22.1 [EN [6 98.9 |OE [44 98.4  |WAIC(SPC) [26 62.8
VIB (5 94.1 |CP(Cal) [39 90.4  |-Not Ensembles iDE [52 95.7 |IC(Glow) [13 95.0  |-Not Ensembles
MD(CNN) [46] 942 |IC(Glow) [13]  99.8 |LRe [14. 98.8 |LN[9 98.4 |IC(PC++) [13 929 |LRe [14 87.5
MD(DN) [46 98.6 [IC(PC++) [13] 96.7 |HVK [IZ 98.4 |ODIN [45] 829 |IC(HVAE)([13] 833 |HVKI[IZ 89.1
DE (1 85.7 LLR[T 98.0 |GN [49 76.7 LLR[T 94.2

AVOID(ours) 99.2 AVOID(ours) 94.5

Table 2: The comparisons of our method with post-hoc prior (denoted as “PHP”) or dataset en-
tropy calibration (denoted as “DEC”) individually and other unsupervised OOD detection methods.
“PHP+DEC" is equal to our method “AVOID". Bold numbers are superior results.

FashinMNIST(ID)/MNIST(OOD) CIFARI0O(ID)/SVHN(OOD)

Method AUROCT AUPRCT FPR80]. Method AUROCT AUPRCT FPRS0]
ELBO 25 235 356 985 ELBO 25 249 36.7 946
WAIC(5PC) [26 22.1 40.1 91.1 WAIC(5PC) [26 62.8 61.6 65.7
HVK [I7 98.4 98.4 13 HVK [17 89.1 87.5 17.2
LLR [T 97.0 97.6 0.9 LLR T 92.6 91.8 1.1
-Ours: -Ours:

PHP 89.7 90.3 133 PHP 39.6 42.6 85.7
DEC 34.1 40.7 925 DEC 87.8 89.9 17.8
PHP+DEC 99,2 99.4 0.00 PHP+DEC 94.5 95.3 4.24

The reconstruction likelihood distribution is modeled by a discretized mixture of logistics [20]. For
optimization, we adopt the same Adam optimizer [SO] with a learning rate of le-3. We train all
models in comparison by setting the batch size as 128 and the max epoch as 1000. All experiments
are performed on a PC with an NVIDIA A100 GPU and our code is implemented with PyTorch [S1]].
More implementation details can be found in Appendix [E.3]

5.2 Comparison with Unsupervised OOD Detection Baselines

First, we compare our method with other SOTA baselines in Table E} The results demonstrate that our
method achieves competitive performance compared to “Supervised” and “Auxiliary” methods and
outperforms “Unsupervised” OOD detection methods. Next, we provide a more detailed comparison
with some unsupervised methods, particularly the ELBO of VAE, as shown in Table 2] These
results indicate that our method effectively mitigates overestimation and enhances OOD detection
performance when using VAE as the backbone. Lastly, to assess our method’s generalization
capabilities, we test it on a broader range of datasets, as displayed in Table[3] Experimental results
strongly verify our analysis of the VAE’s overestimation issue and demonstrate that our method
consistently mitigates overestimation, regardless of the type of OOD datasets.

5.3 Ablation Study on Verifying the Post-hoc Prior Method

To evaluate the effectiveness of the Post-hoc Prior (PHP), we compare it with other unsupervised
methods in Table E} Moreover, we test the PHP method on additional datasets and present the results
in Table [d of Appendix[F] The experimental results demonstrate that the PHP method can alleviate
the overestimation. To provide a better understanding, we also visualize the density plot of ELBO and
PHP for the “FashionMNIST(ID)/MNIST(OOD)” dataset pair in Figures[6(a)] and [6(b)] respectively.

The Log-likelihood Ratio (£LLR) methods [17,[18] are the current SOTA unsupervised OOD detection
methods that also focus on latent variables. These methods are based on an empirical assumption
that the bottom layer latent variables of a hierarchical VAE could learn low-level features and top
layers learn semantic features. However, we discovered that while ELBO could already perform
well in detecting some OOD data, the LLR method [18] could negatively impact OOD detection
performance to some extent, as demonstrated in Figure where the model is trained on MNIST
and detects FashionMNIST as OOD. On the other hand, our method can still maintain comparable
performance since the PHP method can explicitly alleviate overestimation, which is one of the
strengths of our method compared to the SOTA methods.

5.4 Ablation Study on Verifying the Dataset Entropy Calibration Method

We evaluate the performance of dataset entropy calibration, referred to as “DEC”, in Table [2{and
Table [5] of Appendix [G] Although the DEC method is simple, our results show that it effectively
alleviates overestimation. To better understand DEC, we visualize the calculated C(x) of CIFAR10



310
311
312
313
314

315

316
317
318
319

321

Table 3: The comparisons of our method “AVOID” and baseline “ELBO” on more datasets. Bold

numbers are superior performance.

D FashionMNIST ID CIFAR10
00D AUROC 1 AUPRC 1 FPR80 | 00D AUROC 1 AUPRC 1 PFR80 |
ELBO / AVOID (ours) ELBO / AVOID (ours)

KMNIST 60.03 /78.71 54.60 / 68.91 61.6/48.4 CIFAR100 52.91/55.36 51.15/72.13 77.42/73.93
Omniglot 99.86 /100.0 99.89/100.0 0.00/0.00 CelebA 57.27/71.23 54.51/7213 69.03 / 54.45
notMNIST 94.12/97.72 94.09/97.70 8.29/2.20 Places365 57.24/ 68.37 56.96 / 69.05 73.13/ 62.64
CIFAR10-G 98.01/99.01 98.24 /99.04 1.20/0.40 LFWPeople 64.15/67.72 59.71/68.81 59.44 / 54.45
CIFAR100-G 98.49 /98.59 97.49/97.87 1.00/1.00 SUN 53.14/ 63.09 54.48/63.32 79.52/ 68.63
SVHN-G 95.61/96.20 96.20/97.41 3.00/0.40 STL10 49.37/64.51 47.79 /1 65.50 78.02/67.23
CelebA-G 97.33/97.87 94.71/95.82 3.00/0.40 Flowers102 67.68/76.83 64.68 /78.01 57.94 / 46.65
SUN-G 99.16/99.32 99.39/99.47 0.00/0.00 GTSRB 39.50/53.06 41.73/49.84 86.61/73.63
Places365-G 98.92/98.89 98.05/98.61 0.80/0.80 DTD 37.86/ 81.82 40.93/62.42 82.22/64.24
Const 94.94/95.20 97.271/97.32 1.80/1.70 Const 0.001 / 80.12 30.71/89.42 100.0 / 22.38
Random 99.80/100.0 99.90/100.0 0.00/0.00 Random 71.81/99.31 82.89/99.59 85.71/0.000

MNIST (ID) / FashionMNIST (OOD)

MNIST (ID) / FashionMNIST (OOD)

True Positive Rate

True Positive Rate

— ELBO p — ELBO
— LCR PHP

o 00 o8 10

-1 - - 25 200 -us 25 100 15 50 oo o2 ot os o8
bitsrdim False Positive Rate

(a) Density plot of ELBO (b) Density plot of PHP  (c) ROC curve of LLR  (d) ROC curve of PHP

04 06
False Positive Rate

Figure 6: Density plots and ROC curves. (a): directly using ELBO(x), an estimation of the p(x),
of a VAE trained on FashionMNIST leads to overestimation in detecting MNIST as OOD data; (b):
using PHP method could alleviate the overestimation; (¢): SOTA method £LLR hurts the performance
when ELBO could already work well; (d): PHP method would not hurt the performance.

(ID) in Figure and other OOD datasets in Figure when njg = 20. Our results show that
the C(x) of CIFAR10 (ID) achieves generally higher values than that of other datasets, which is the
underlying reason for its effectiveness in alleviating overestimation. Additionally, we investigate the
impact of different n;g on OOD detection performance in Figure where our results show that the
performance is consistently better than ELBO.

= DEC
—- B0

LFWPeople
SUN397
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SVHN
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400
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(a) C(x) of CIFARI0 (ID) (b) C(x) of OOD datasets (c) Impact of nig

Figure 7: (a) and (b) are respectively the visualizations of the calculated entropy calibration C(x) of
CIFARI0 (ID) and other OOD datasets, where the C(x) of CIFAR10 (ID) could achieve generally
higher values. (c) is the OOD detection performance of dataset entropy calibration with different n;q
settings, which consistently outperforms ELBO.

6 Conclusion

In conclusion, we have identified the underlying factors that lead to VAE’s overestimation in un-
supervised OOD detection: the improper design of the prior and the gap of the dataset entropies
between the ID and OOD datasets. With this analysis, we have developed a novel score function
called “AVOID”, which is effective in alleviating overestimation and improving unsupervised OOD
detection. This work may lead a research stream for improving unsupervised OOD detection by
developing more efficient and sophisticated methods aimed at optimizing these revealed factors.
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Appendix

A More Background on OOD Detection

To provide a clear distinction and avoid confusion between supervised and unsupervised OOD
detection, we delineate the key differences here, primarily focusing on their respective setups.

Setup of unsupervised OOD detection. Denoting the input space with X', an unlabeled training
dataset Dyyin = {x;} Y, containing of N data points can be obtained by sampling i.i.d. from a data
distribution P . Typically, we treat the Py as p;q, which represents the in-distribution (ID) 27].
With this unlabeled training set, unsupervised OOD detection is to design a score function S(x) that
can determine whether an input is ID or OOD.

Setup of supervised OOD detection. Compared with the setup of unsupervised OOD detection,
supervised one needs to additionally introduce a label space Y = {1, ..., k} with k classes, and the
training set becomes Dyain = { (i, ;) }Y,. Then, it typically needs to train a classifier f : X — R,
and OOD detection can be achieved based on the property of the classifier [4}[7,9].

We illustrate the distinction between supervised and unsupervised OOD detection in Figure|[g]

Supervised OOD Detection Unsupervised OOD Detection

3= K‘]'»"’f'-"l EREOTR

y G (o) G () (o)

L
L 00D detector s(x) J

Design with {(x;, )}, Design with {(x)}Y,

Training data

00D detector s(x) ELETELN Data example x is /D / 00D.

Testing data

Figure 8: An illustration showcasing the difference between supervised and unsupervised OOD
detection.

B Related Work

B.1 Deep Generative Models

Deep Generative Models (DGMs) have been developed with the aim of modeling the true data
distribution p(x), leveraging deep neural networks to learn a generative process [53]]. These models
span several types, mainly including the autoregressive model [19,20], flow model [21}22], generative
adversarial network [24], diffusion model [23]], and variational autoencoder (VAE) [25]. Below,
we briefly introduce each of these models: The autoregressive model operates under the premise
that a data sample x is a sequential series, implying that the value of a pixel in an image is only
dependent on the pixels preceding it. The flow model comes with an inherent requirement for the
invertibility of the projection between x and z, which imposes constraints on the implementation
of its backbone. The generative adversarial network adopts an additional discriminator to implicitly
learn the data distribution. Despite its power, it faces challenges such as unstable training and mode
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collapse [28]. The diffusion model, trained using a score-based method, has the drawback of being
slow in sampling due to its multiple stochastic layers. Among these models, VAE stands out for its
flexibility in implementation, comprehensive mode coverage, and fast sampling [28]]. However, its
training objective, an evidence lower bound of the data distribution, presents difficulties for analysis.

B.2 VAE-based Unsupervised OOD Detection

Given the advantages of flexibility, comprehensive mode coverage, and fast sampling capabilities,
variational autoencoder (VAE)-based methods have emerged as a promising choice for unsupervised
out-of-distribution (OOD) detection. Based on the necessity to modify the training of VAE, these
methods can be categorized into two groups. i) The first group includes methods that modify the
training of VAE. Hierarchical VAE expands the VAE’s layers to augment its representational capacity
[L5], yet the improvements in performance are marginal, and the issue of overestimation persists.
The adaptive log-likelihood ratio method, LLR s also grounded in the hierarchical VAE and
introduces a generative skip connection to propagate information to higher layers of latent variables
[18]. It utilizes the differences between each layer of latent variables for OOD detection, achieving
state-of-the-art performance despite certain shortcomings as discussed in section [5.3] The tilted
variational autoencoder enforces the latent variable to exist within the sphere of a tilted Gaussian
[L6], thereby disrupting the efficient, widely adopted reparameterization based on the Gaussian. It
should be noted that modifying the training of VAE may be less practical as the proposed method
cannot be directly applied to other VAEs. This implies that applying the OOD detection method
to a new advanced VAE necessitates meticulous training using the new modification method. ii)
The second group of methods attempts to utilize the properties of a trained VAE for OOD detection
without modifying it. The likelihood-ratio method simulates the background using noise and employs
the difference between the original and simulated background images for OOD detection [12].
The likelihood-regret method finetunes the trained VAE with the test sample to observe changes
in likelihood [[14]. The log-likelihood ratio method leverages the assumption that latent variables
of lower layers capture low-level features of inputs while those of higher layers grasp semantic
features [17]]. The difference between these latent variables can then be used for OOD detection.
WAIC utilizes empirical ensemble methods for OOD detection [26]. However, it should be stressed
that none of these methods have strived to provide an exhaustive theoretical analysis of the VAE’s
overestimation issue.

C Derivation of the Analysis

C.1 Derivation for Eq. (3)

We first give the definition of the mutual information Z, (x, z) as follows:

Iq(m’z):/ /q(w,z) logq(a):’f))

//q¢ z|x)p(x) log q¢((z|;1:) (21)

q(2 Iw)]

q(z) 7
where the data distribution p() should actually be replaced by ¢(), i.e., the data distribution given
the observed data points in the whole training set, when the size of the training set is big enough,
i.e., g(x) is close to p(x); and the ¢(z) is called the aggregated posterior distribution [54} 53] [56]],
expressed as:

= Em~p(:c),z~q¢ (z]x) [IOg

a(z) = / 4o (2|2)p(). 22)

Recall that Eq. (5) comprises two components, denoted as:
Ly Ly
Eg~p(z) [ELBO()] = Egp(a) [Ezng, (z]2) 108 Po(2|2)] = Egmpiz) [Dxe (g (2]2)[[p(2))] -
(23)
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Let’s begin with the second component:

Lz = Egnp(e) [Bzng, (s10) 108 qﬁéf )
= Eanp(a) Ezng, (z12) 10g[qq;9(fz|)gc ). 38”
= Eonp(a)Ezngy (zl2) 10g[%;((i|)w) ' 252“ 24)
= Earp@)[Ezngy (/o) 108 q¢q(é;c )] + Eop(a) [Ezng, (212) 10g[28]]
= Eorp(@) a2l [108 w] T Eanaollos 222]

= T,(x, z) + Dxi(q(2)||p(2)).

Before embarking on a similar derivation for the first component, it’s crucial to comprehend the
notation “q” and “p” within the context of VAE. Here, “q” signifies an approximated distribution
given observed data, typically parameterized by a neural network, while “p” represents the actual
distribution. For example, g, (z|z) denotes the approximated posterior distribution, and its corre-
sponding true posterior is p(z|x). The gap between ¢4 (z|x) and p(z|x) contributes to the concept
of a "lower bound", as depicted by

log p(x) = ELBO(x) + Dki(qy(z]x)||p(2|x)). (25)

However, it may appear that py (x|z), approximated by a decoder whose parameter is 6, should be
represented as g(x|z). This particular interpretation arises due to the fact that the global optimum
of the decoder’s parameters in the ELBO coincides with the global maximum of the marginal
likelihood of the observed data [57]]. Specifically, this means that the generative process pg(x) =
|, pe(x|z)p(z) achieves optimality once the VAE has been trained to reach the ELBO’s optimum.
Thus, after the VAE is well trained and the data distribution ¢() of the observed data points in the
training set could well represent the true data distribution p(x), implying that py(x|2z)’s parameters
reach the maximum likelihood estimation given the observed training data, we can state the following:

_ _q(@,2) _ ge(z]x) gzl
po(x|z) = q(z|z) = @ @) (ac)—iq(z) (). (26)

Inserting this into the first component of Eq. (3)), we obtain the following result:

L= Emwp(w) [Ez~q¢(z|m) 10gpg(iL’|Z)]

= Em~p(w) [Ez~q¢(z|w) IOg[q(bq((zzl)m)p(wﬂ]

qo(z|x
= Emwp(ac)Ez~q¢(z\a:) IOg Z((Z) ) + Emwp(ac)Equd)(z\a:) Ing(m) 27

g (2|T)
:Emw x),z2~qe (2| IOg +Em~ x Ing T
p(@),=~ao (<o) [108 = 3] p(e) log p(x)

=1,(x, z) — Hp().

Hence, we can achieve the following expression:

Egwp(a)[ELBO(2)] = —H,(2) — Dxi(¢(2)[[p(2))- (28)

C.2 Toy Examples’ Details

Single-modal case setup. In this scenario, the data distribution is determined by a standard 2-
dimensional Gaussian distribution p(x) = N (x]0, X4 ), where

10
Yo = [0 1] . (29)
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In order to simulate the dimension-reduction property of VAE, we designate the dimension of the
latent variable as 1-dimensional; that is, the variance I in p(z) reduces to 1. Under this configuration,
we i.i.d. sample N = 5000 data points from the data distribution p(x) to construct a training set.
Each parameter’s solutions are calculated analytically.

Multi-modal case setup. The data distribution is made by a mixture of two standard single-modal
Gaussian distributions, i.e., p(x) = Zszl TN (x|, X)), where K = 2, 1, = 1/2 and

= m,m: [‘3],21= [(1) ﬂébz [5 (1)] (30)

The training set of this multi-modal case is built by i.:.d. sampling from 5000 data points from each
component Gaussian distribution N (x|, Xk ), i.e., 10000 data points in total.

C.3 Derivation for Single-modal Case in Section [3.2]

Assume we have a dataset containing N data samples {@1, 2, ..., xN},2; € R? d = 2, and we
already know the groundtruth distribution of it, i.e.,

p(x) = N(x|0, Ex), (31)
where 3, = I. We have a linear VAE model parameterized as:
p(z) = N(z]0.1) (32)
¢s(zlz) = N(z|Ax + B, C) (33)
po(x|z) = N(z[Ez + F,0°T), (34)

where p(z) is the prior distribution, z € R?, ¢ = 1, g4(z|x) is the approximated posterior distribution,
and py(x|z) is the approximated likelihood distribution. Directly employing the knowledge from
probabilistic Principal Component Analysis (pPCA) [S8]], we could get the maximum likelihood
estimation of pg(x|2):

d

1
mE=T— DA (35)

—q.

J=q+1
2 1/2

EMLE = Uq (Aq — UMLE) R (36)
Fyvie =0 (37

. . . N
where A\g41, ..., Ag are the smallest eigenvalues of the sample covariance matrix S = % Dot xx',

the d x ¢ orthogonal matrix U, is made by the ¢ dominant eigenvectors of S, the diagonal matrix A,
contains the corresponding ¢ largest eigenvalues, and R is an arbitary g x ¢ orthogonal matrix. Note
that, when ¢ = 1, we have R = I. After we get the parameters of py(x|z), we could get the p(z|x)
by Bayes rule:
po(x|2)p(2)

p(x) (38)
= N(z|2;1El—\r/ILEma omeZe ),

where 3, = E; ;Emie + 0y 1. Thus, the maximum likelihood estimates of g4(z|x)’s parameters
are:

p(z|®) =

Avie = 3. 'Ey e (39)
Bvmig =0 (40)
Cumie = o3, (41)

Although the maximum likelihood estimations are ascertained, it remains necessary to verify whether
these estimations allow the ELBO to reach the global optimum. The derivation of ELBO is as follows:

log p(®) = Eq, (21 [log p(2|2)] — Dxr(gs(2[2)[|p(2)) + Dxi(gs(2[)||p(z]2))

= ELBO(x) + Dk (g (2|2)||p(2|2)). “

Given that g, (z[2) = N (2|2 ' Blype, ofupE5") = plle). Dii(gs(zle)||p(a|z)) becomes
zero. Furthermore, any modifications to the parameters of g, would result in an increase of
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Dxi(gs(z|z)||p(x|2)); in other words, it would result in a decrease of ELBO. Hence, the global
optimum of the ELBO is attained when Ay g ~ Evmig, omig are implemented in the linear VAE.
Moreover, in this situation, log p(x) equates to ELBO.

Finally, we could get the expression of the aggregated posterior distribution ¢(z):

a(z) = / 4 (zl)p(@)
- / N (285 Bl s, o2up s A (2]0, 5y)

- / N (2T B, o2 TN ([0, T)
s 43)
N(z‘El\—/rlLEw7 JI%ALEI)N(wl(L I)

=N(0 EMLEEMLE + UMLEI)

In summing up the single-modal case, our assertion is that D [¢(z)||p(z)] = 0, indicating that the
design of the prior distribution is appropriate and would not result in an overestimation of VAE.

C.4 Derivation for Multi-modal Case in Section[3.2]

Assume we have a distribution p(x) = 2521 7N (| pr, Xi) and we build a dataset containing
K x N data samples, which is made by sampling N data samples from each NV (x|uy, X). The
parameterization setting of the p(2), ¢4(z|x), and py(x|2) is the same as the single-modal case in

Section[3.21

Deriving from the single-modal scenario, an analytical formulation of Dy (g(z|)||p(z|x)) is
unattainable in the multi-modal case. Thus, it necessitates a derivation directly from the ELBO.
Due to the fact that the global optimum of the decoder’s parameters in the ELBO coincides with
the global maximum of the marginal likelihood of the observed data [57], we firstly commence
with the derivation of the maximum likelihood estimation of py(x|z). Despite the feasibility of
directly obtaining the maximum likelihood estimation of the parameters in py(x|z) by optimizing the
integration pg(x) = [, pg(x|2)p(2) using the observed data, we propose an additional clarification
connecting this mtegratlon and the ELBO. With reference to the strictly tighter importance sampling
on the ELBO [36]], we can derive that

(]2 p(2(*))

o ( z(s |)

ELBO® (@) = B, (zm)[log — Zp" (44)
s=1

Setting the number of instances S = 1, ELBO® () equates to the regular ELBO(x). As S approaches
+o00, it follows that

po(z|2)p(2)
qs(2|T)

= Bgy (zpm) log /z q¢(ZI¢B)W¢z]

— E,, 2o llog / po(|2)p(2)dz]

z

ELBO®(z) = Ey, (2]2) 108 Eq, (2|2)

(45)
~ log / po(@|2)p(2)dz
= log pg(x).

18



616 The expression of py(x) is shown as:
po(@) = [ elz)oz)
z

_ / N (2|Ez +F, 0* )N (2]0,T) (46)

= N(z|F,EE" + o°I).

617 Then, the joint log-likelihood of the observed dataset {azgk }fv f x—1 can be formulated as:

K d KN KN
L= ; leogp (k) ——log(27) — —— log det(M) — Ttr[l\/l_lS]7 47)
o1 where M =EET + 0%l and S = o Zszl Zf\il(:cgk) - F)(:cgk) -F)".

619 Repeatly using the knowledge in pPCA again, we could get the maximum likelihood estimation of
620 the parameters:

(0_*)2 — m Z Aj (48)
J=q+1

E =U, (A, — ("))’ R (49)

P o, (50)

621 where A1, ..., Ag are the smallest eigenvalues of the sample covariance matrix S = + Z -1 zx |,

622 thed X q orthogonal matrix U, is made by the ¢ dominant eigenvectors of S, the diagonal matrix A,
623 contains the corresponding g largest eigenvalues, and R is an arbitary ¢ x ¢ orthogonal matrix. Note
624 that, when ¢ = 1, we have R = 1. Actually, with the same p(z) and a decoder py(x|z) parameterized
625 by the same linear network, the expression of the maximum likelihood estimation of the py(x|z) in
626 the multi-modal case is the same as the single-modal case.

627 In order to determine g, (z|x)’s parameters, we can initiate the process by identifying the stationary
628 points of g, (z|x) with respect to the ELBO. The ELBO can be analytically expressed as follows:

Ly Ly
ELBO(z) =E,, (2|z)[log pe(x|2)] — Dxi[ge (2|)||p(2)] (61
_ (Ez—x) (Ez—x) d 2
L1 —Eqd)(z|m)[— 202 — 510g27r0 }
—(E2)T(E2)+22'Ez—2'x d
:Eq¢(z|z)[ ( ) ( )20_2 — 510g(271'0'2)}

:%[—tr(ECET) — (EAz +EB)' (EAz + EB) 4+ 2z (EAz + EB) — z ' x
ag
— glog(Zﬂ'aQ) (52)

Lo :%[f log det(C) + (Ax +B) " (Az + B) + tr(C) — ¢ (53)

620 For a dataset consisting of KN data samples, the stationary points with respect to the ELBO can be
630 obtained through the following expressions:

KN
(> "" ELBO(x)) _KN|-AS—Bz' - - (ETEAS) - ~ (ETEBz” - E'S)] =
oA o? o
(54
KN '
LT ELBO) _jeni pg- LETBAC+H LETa- 1+ E BB -0 9
(> "VELBO(z)) KN T
ac == ()T -1~ E(E E) =0, °0
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where S = 2o SV 22T and = Ly "N 2. Upon further investigation, we have discovered
that the stationary points of A, B, and C solely depend on the parameters E and ¢. In mathematical
terms, they can be expressed as:

I+ %ETE)™!

A" = - ET (57)
g

B* =0 (58)

C*=(I+ %ETE)T)*. (59)
g

Finally, we can derive the expression of ¢(z) in this multi-modal case as follows:

«a:/%ummw

K
- /N(z|A*a:, C*) Zwkj\/(w|uk, )

k=1

K
=Y [ MelATE, €Nl ) “
k=1

x

K
=Y mN(2[A pr, A Sk (A7) 4+ CY)
k=1

# p(2).

In conclusion, we observe that Dy [¢(z)||p(2)] # 0, indicating that the design of the prior distri-
bution p(z) is not appropriate in this multi-modal case and may result in overestimation issue of
VAE.

C.5 Implementation Details of Deep VAE in Section [3.2]

The non-linear deep VAE’s encoder is implemented as a 3-layer MLP, which takes the 2D data points
as inputs. The encoder consists of two linear layers with a hidden dimension of 10 and LeakyReLLU
activation function [59]]. The output layer, with a dimension of 2, does not have an activation function
and provides the values for z1. and log o2 for each dimension of the latent variable.

For the decoder, it takes the sampled latent variable z through reparameterization and feeds it into
two linear layers with a hidden dimension of 10 and LeakyReL U activation function. The final output
is obtained by a linear layer without activation function, with a dimension of 4. The reconstruction
likelihood is modeled as a Gaussian distribution, where the first two dimensions represent i, (the
mean of the reconstruction likelihood) and the remaining dimension represents log o2 (the log
variance of the reconstruction likelihood).

The deep VAE is trained using the Adam optimizer [S0] with a learning rate of 1e-5. The training set
consists of a total of 10,000 data points.

D Details of the Non-scaled Entropy Calibration Method

We provide a pseudo code here for calculating the Co, () of a testing sample @ in Algorithm
Noted that, the maximum number of singular values N should be larger than njq.

E Details of Experimental Setup

E.1 Description of all Datasets

For grayscale image datasets, we utilize the following datasets: FashionMNIST [40]], MNIST [41],
KMNIST [60], notMNIST [61], Omniglot [62], and several grayscale datasets transformed from
RGB datasets. FashionMNIST is a dataset consisting of 60,000 grayscale images of Zalando’s article
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Algorithm 1 Non-scaled dataset entropy calibration Cpe, () algorithm

Input: Hyperparameter njq and its corresponding reconstruction error € = Egp., |Trecon — |,
maximum number of singular values N, a testing sample x.
Ouput: Cyon().
Do SVD for the testing sample x;
for n; =1to N do
Calculate reconstruction error €; using n; singular values;
if ¢; < e then
break;
end if
end for
if n; < njq then
Calculate Cyon () = 1 /1ia;
else
Calculate Cnon(w) = (nid — (nz — nid))/nid;
end if
return Cyo, ()

pictures for training, and 10,000 images for testing. Each image is 28x28 pixels and belongs to one of
the 10 classes. MNIST is a widely used dataset containing 70,000 grayscale images of handwritten
digits. It consists of a training set of 60,000 images and a test set of 10,000 images. Each image is
28x28 pixels. KMNIST is derived from the Kuzushiji Dataset and serves as a drop-in replacement
for the MNIST dataset. It includes 70,000 grayscale images, each with a resolution of 28x28 pixels.
notMNIST is a dataset composed of 547,838 grayscale images of glyphs extracted from publicly
available fonts. The images are 28x28 pixels in size and cover letters A to J from various fonts.
Omniglot contains 32,460 grayscale images of 1623 different handwritten characters from 50 distinct
alphabets. Each image has a resolution of 28x28 pixels. Additionally, we have transformed several
RGB datasets into grayscale versions, including CIFAR10-G, CIFAR100-G, SVHN-G, CelebA-G,
SUN-G, and Places365-G.

For RGB datasets, we utilize the following datasets: CIFAR10/CIFAR100 [42], SVHN [43]], CelebA
[63]], Places365 [64], Flower102 [65], LFWPeople [66], SUN [67], STL10 [68], GTSRB [69],
and DTD [70] datasets. CIFAR10 and CIFAR100 are datasets consisting of 32x32 color images.
CIFARI10 contains 50,000 training images and 10,000 testing images, with 10 different classes.
CIFAR100 has the same number of images but includes 100 classes. SVHN is a dataset obtained
from Google Street View images, primarily used for recognizing digits and numbers in natural scene
images. CelebA is a large-scale face attributes dataset containing over 200,000 celebrity images,
each annotated with 40 attribute labels. Places365 is a dataset that includes 1.8 million training
images from 365 scene categories. The validation set contains 50 images per category, and the testing
set contains 900 images per category. Flower102 is an image classification dataset consisting of
102 flower categories, with each class containing between 40 and 258 images. The selected flowers
are commonly found in the United Kingdom. LFWPeople contains more than 13,000 images of
faces collected from the web, making it a popular dataset for face-related tasks. SUN is a large-scale
scene recognition dataset, covering a wide range of scenes from abbey to zoo. STL10 is an image
recognition dataset designed for unsupervised feature learning. It includes labeled data from 10
categories and unlabeled data from additional classes. GTSRB is a dataset specifically developed
for the task of German traffic sign recognition. DTD is an evolving collection of textured images in
various real-world settings. All images from these datasets are resized to the dimensions of 32x32x3
before being used as input for the models.

E.2 Description of all Baselines

Following the categorization in LLR Y 18], we provide a detailed description of each baseline
within the three categories:

e “Supervised” (Methods using in-distribution data labels y, which is the same as the “Label”

category in LLR e [18]): maximum softmax classification probability (CP) method [1]] and its
variants, denoted as "CP", "CP(OOD)" with OOD as noise class, "CP(Cal)" with calibration on
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OOD and "CP(Ent)" with entropy of softmax classification probability p(y|z), and Mahalanobis
distance (MD) method [46], latent Mahalanobis distance (LMD) method [47], ODIN method [435]],
VIB method [5], LogitNorm (LN) method [9], GradNorm (GN) method [49], and deep ensembles
(DE) method [48]] with 20 classifiers;

 “Auxiliary” (Methods using auxiliary knowledge assumptions about ID or OOD data type, which
is the same as the “Prior” category in LLR [18]): Likelihood Ratio (LR) method [39] with
different backbones, denoted as "LR(PC)" with backbone PixcelCNN, "LR(VAE)" with VAE
and "LR(BC)" with binary classifier), Outlier exposure (OE) method [44] and Input complexity
(IC) method [13]] with different backbones, denoted as "IC(PC)" with backbone PixcelCNN,
"IC(Glow)" with backbone Glow and "IC(HVAE)" with backbone HVAE;

e “Unsupervised” (Methods with no OOD-specific assumptions): Ensemble methods: WAIC
method [26] with different backbones, denoted as "WAIC (5Glow)" with 5 Glow models, "WAIC
(5VAE)" with 5 VAE models and "WAIC (5PC)" with 5 PixcelCNN models; Not ensembles
methods: Likelihood regret (LRe) method [14], Log-Likelihood Ratio (HVK) method [17],
adaptive Log-Likelihood Ratio (££R**®) method [18].

E.3 Details of the Implementation

The encoder of the VAE is implemented as a 3-layer convolutional network with kernel numbers
of 32, 64, and 128, and strides of 1, 2, and 2, respectively. The ReL.U [71] activation function is
applied. The output layer consists of a linear layer that outputs the mean and log-variance of the
latent variables, with a dimension of 200.

On the other hand, the decoder takes the reparameterized latent variables as input and utilizes a
3-layer transposed convolutional network. The network has kernel numbers of 128, 64, and 32, and
strides of 2, 2, and 1, respectively. The ReL.U activation function is used. Finally, the output layer
is parameterized by a convolutional layer that models the distribution as a discretized mixture of
logistics.

In the PHP method, an LSTM is employed as the backbone [72]. The hidden size of the LSTM is
set to 64, and the outputted hidden state is fed into a 3-layer linear network. The hidden sizes of the
linear layers are 64, 32, and 2, respectively. The ReLU activation function is applied to the first two
layers. The optimizer used for learning the ¢(z) distribution is Adam, and the learning rate is set to
le-4.

F More Ablation Study Results on Verifying the Post-hoc Prior

We evaluate the effectiveness of the PHP method on additional datasets as shown in Table

Table 4: The comparisons of the OOD detection performance of our method on more datasets. The
new score function only has post-hoc prior part.

D FashionMNIST ID CIFAR10
00D AUROC 1 AUPRC 1 FPRS80 | 00D AUROC 1 AUPRC 1 PFR80 |
ELBO / PHP (ours) ELBO / PHP (ours)

KMNIST 60.03/72.98  54.60/69.34  61.6/48.1 CIFAR100 5291/55.00  51.15/54.01 77.42/70.23
Omniglot 99.86/99.90  99.89/99.89  0.00/0.00 CelebA 57.27/70.91 54.51/72.16  69.03/52.95
notMNIST 94.12/94.39  94.09/94.35 8.29/17.79 Places365 57.24/57.36  56.96/56.55  73.13/52.95
CIFAR10-G 98.01/98.84  98.24/99.13 1.20/0.30 | LFWPeople | 64.15/64.57 59.71/6520  59.44/64.74
CIFAR100-G | 98.49/98.50  97.49/97.50 1.00/0.90 SUN 53.14/53.27  54.48/54.67  79.52/78.12
SVHN-G 95.61/96.00  96.20/97.13 3.00/0.60 STL10 49.37/51.07  47.79/49.69  78.02/75.02
CelebA-G 97.33/97.71 94.71/95.62 3.00/2.20 Flowers102 67.68/67.76  64.68/64.75  57.94/57.63

SUN-G 99.16/99.26  99.39/99.40  0.00/0.00 GTSRB 39.50/52.62  41.73/50.81 86.61/75.12
Places365-G 98.92/98.96  98.05/98.95  0.80/0.60 DTD 37.86/43.38  40.93/43.99 82.22/80.12
Const 94.94/95.08  97.27/97.35 1.80/0.00 Const 0.001/15.70 30.71/30.78 100.0 / 86.62
Random 99.80/99.81 99.90/99.90  0.00/0.00 Random 71.81/72.52 82.89 /83.42 85.71/85.00
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We evaluate the effectiveness of the DEC method on additional datasets as shown in Table

Table 5: The comparisons of the OOD detection performance of our method on more datasets. The
new score function only has dataset entropy calibration part.

D FashionMNIST ID CIFAR10
00D AUROC 1 AUPRC 1 FPR80 | 00D AUROC 1 AUPRC 1 PFR80 |
ELBO / DEC (ours) ELBO / DEC (ours)

KMNIST 60.03/60.54  54.60/55.18 61.6/60.3 CIFAR100 5291/54.69  51.15/52.98  77.42/73.23
Omniglot 99.86/99.91 99.89/99.94  0.00/0.00 CelebA 57.27/69.00  54.51/61.83  69.03/50.93
notMNIST 94.12/94.50  94.09/93.61 8.29/6.89 Places365 57.24/68.14  56.96/65.16  73.13/64.26
CIFAR10-G 98.01/99.31 98.24/99.25 1.20/0.40 | LFWPeople | 64.15/67.84  59.71/60.28  59.44/54.75
CIFAR100-G 98.49 /98.81 97.49 / 98.05 1.00/0.90 SUN 53.14/60.55  54.48/60.67  79.52/68.75
SVHN-G 95.61/97.06  96.20/97.92 3.00/0.00 STL10 49.37/64.16  47.79/61.76  78.02/67.65
CelebA-G 97.33/97.69  94.71/95.94 3.00/2.10 Flowers102 67.68/7559  64.68/77.84  57.94/46.48

SUN-G 99.16/99.58  99.39/99.67  0.00/0.00 GTSRB 39.50/48.35  41.73/45.59 86.61/73.83
Places365-G 08.92/99.14  98.05/98.77  0.80/0.60 DTD 37.86/70.36  40.93/60.02 82.22/64.16
Const 94.94/99.31 97.27199.25 1.80/0.40 Const 0.001/76.20 30.71/83.27 100.0 / 58.04

Random 99.80/100.0  99.90/100.0  0.00/0.00 Random 71.81/99.53 82.89/99.73 85.71/0.000

H Error Bar

We conduct random experiments on all grayscale and RGB datasets for 5 trials using the trainable
methods (ELBO, PHP, and AVOID methods). The average error rates are presented in Table [H] and it
can be observed that the error rates are similar across these methods.

Datasets Grayscale datasets RGB datasets
Method ELBO PHP  AVOID | ELBO PHP  AVOID
Avg. error | +0.788 +0.512 40.613 | £1.408 +£1.579 +£1.649

I Broader Impact

The impact of our research can be outlined in two key aspects:

» For Unsupervised OOD Detection: Our approach stands out due to its broad applicability and

versatility. Unlike many conventional methods, it does not require labeled data and it can be
applied to model the distribution of diverse data types using deep generative models. This is
particularly useful in applications where labeled data is scarce or unavailable. Additionally, our
method provides a universal solution to enhance OOD detection performance. This is achieved by
offering an innovative perspective on the overestimation issue in VAE, which is not predicated on
the data type.

For the development of deep generative models: Our research offers valuable insights for the
progression of deep generative models. By employing the KL divergence, Dk (q(2)||p(z)),
our method can provide verification of whether a generative model has adequately learned to
model the data distribution. These insights could potentially spark new developments and inspire
more representative generative models, thereby furthering the field of deep learning research and
applications.

In conclusion, our research holds promising potential to provide substantial contributions to both the
realm of unsupervised OOD detection and the development of deep generative models.

J Limitation

The primary limitation of this paper lies in the simplicity of the developed methods, which could
potentially under-explore the full capabilities of our method on unsupervised OOD detection. This
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design choice is deliberated to allow readers to focus more on our central theme: the analysis of the
overestimation issue in VAE. We aim to create methods as straightforward as possible, with the express
purpose of verifying the analyzed factors, while introducing as few additional hyperparameters as
possible. This approach is intended to provide readers with greater insight into our analysis, as well
as inspire them to develop their own advanced methods based on our analysis. We provide examples
and helpful insights into our work through Figures @ and[5] While acknowledging the aforementioned
limitation, we posit that our analysis can pave the way for the creation of more advanced methods.
These enhanced approaches can potentially lead to further improvements in the performance of
unsupervised OOD detection. Our work, therefore, should be seen as a stepping stone towards more
sophisticated applications in this field.
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