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Abstract

Deep generative models (DGMs) aim at characterizing the distribution of the train-1

ing set by maximizing the marginal likelihood of inputs in an unsupervised manner,2

making them a promising option for unsupervised out-of-distribution (OOD) de-3

tection. However, recent works have reported that DGMs often assign higher4

likelihoods to OOD data than in-distribution (ID) data, i.e., overestimation, leading5

to their failures in OOD detection. Although several pioneer works have tried to6

analyze this phenomenon, and some VAE-based methods have also attempted to7

alleviate this issue by modifying their score functions for OOD detection, the root8

cause of the overestimation in VAE has never been revealed to our best knowl-9

edge. To fill this gap, this paper will provide a thorough theoretical analysis on10

the overestimation issue of VAE, and reveal that this phenomenon arises from two11

Inside-Enemy aspects: 1) the improper design of prior distribution; 2) the gap12

of dataset entropies between ID and OOD datasets. Based on these findings, we13

propose a novel score function to Alleviate VAE’s Overestimation In unsupervised14

OOD Detection, named “AVOID”, which contains two novel techniques, specifi-15

cally post-hoc prior and dataset entropy calibration. Experimental results verify16

our analysis, demonstrating that the proposed method is effective in alleviating17

overestimation and improving unsupervised OOD detection performance.18

1 Introduction19

The detection of out-of-distribution (OOD) data, i.e., identifying data that differ from the in-20

distribution (ID) training set, is crucial for ensuring the reliability and safety of real-world applications21

[1, 2, 3, 4]. While the most commonly used OOD detection methods rely on supervised classifiers22

[5, 6, 7, 8, 9, 10, 11], which require labeled data, the focus of this paper is on designing an unsu-23

pervised OOD detector. Unsupervised OOD detection refers to the task of designing a detector,24

based solely on the unlabeled training data, that can determine whether an input is ID or OOD25

[12, 13, 14, 15, 16, 17, 18]. This unsupervised approach is more practical for real-world scenarios26

where the data lack labels.27

Deep generative models (DGMs) are a highly attractive option for unsupervised OOD detection.28

DGMs, mainly including the auto-regressive model [19, 20], flow model [21, 22], diffusion model29

[23], generative adversarial network [24], and variational autoencoder (VAE) [25], are designed30

to model the distribution of the training set by explicitly or implicitly maximizing the likelihood31

estimation of p(x) for its input x without category label supervision or additional OOD auxiliary32

data. They have achieved great successes in a wide range of applications, such as image and text33

generation. Since generative models are promising at modeling the distribution of the training set,34

they could be seen as an ideal unsupervised OOD detector, where the likelihood of the unseen OOD35

data output by the model should be lower than that of the in-distribution data.36
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Unfortunately, developing a flawless unsupervised OOD detector using DGMs is not as easy as it37

seems to be. Recent experiments have revealed a counterfactual phenomenon that directly applying38

the likelihood of generative models as an OOD detector can result in overestimation, i.e., DGMs39

assign higher likelihoods to OOD data than ID data [12, 13, 17, 18]. For instance, a generative40

model trained on the FashionMNIST dataset could assign higher likelihoods to data from the MNIST41

dataset (OOD) than data from the FashionMNIST dataset (ID), as shown in Figure 6(a). Since OOD42

detection can be viewed as a verification of whether a generative model has learned to model the43

distribution of the training set accurately, the counterfactual phenomenon of overestimation not only44

poses challenges to unsupervised OOD detection but also raises doubts about the generative model’s45

fundamental ability in modeling the data distribution. Therefore, it highlights the need for developing46

more effective methods for unsupervised OOD detection and, more importantly, a more thorough47

understanding of the reasons behind the overestimation in deep generative models.48

To develop more effective methods for unsupervised OOD detection, some approaches have modified49

the likelihood to new score functions based on empirical assumptions, such as low- and high-level50

features’ consistency [17, 18] and ensemble approaches [26]. While these methods, particularly the51

VAE-based methods [18], have achieved state-of-the-art (SOTA) performance in unsupervised OOD52

detection, none of them provides a clear explanation for the overestimation issue. To gain insight into53

the overestimation issue in generative models, pioneering works have shown that the overestimation54

issue could arise from the intrinsic model curvature brought by the invertible architecture in flow55

models [27]. However, in contrast to the exact marginal likelihood estimation used in flow and56

auto-regressive models, VAE utilizes a lower bound of the likelihood, making it difficult to analyze.57

Overall, the reasons behind the overestimation issue of VAE are still not fully understood.58

In this paper, we try to address the research gap by providing a theoretical analysis of VAE’s59

overestimation in unsupervised OOD detection. Our contributions can be summarized as follows:60

1. Through theoretical analyses, we are the first to identify two factors that cause the overestima-61

tion issue of VAE: 1) the improper design of prior distribution; 2) the intrinsic gap of dataset62

entropies between ID and OOD datasets;63

2. Focused on these two discovered factors, we propose a new score function, named “AVOID”,64

to alleviate the overestimation issue from two aspects: i) post-hoc prior for the improper65

design of prior distribution; ii) dataset entropy calibration for the gap of dataset entropies;66

3. Extensive experiments demonstrate that our method can effectively improve the performance67

of VAE-based methods on unsupervised OOD detection, with theoretical guarantee.68

2 Preliminaries69

2.1 Unsupervised Out-of-distribution Detection70

In this part, we will first give a problem statement of OOD detection and then we will introduce the71

detailed setup for applying unsupervised OOD detection.72

Problem statement. While deploying a machine learning system, it is possible to encounter inputs73

from unknown distributions that are semantically and/or statistically different from the training data,74

and such inputs are referred to as OOD data. Processing OOD data could potentially introduce critical75

errors that compromise the safety of the system [1]. Thus, the OOD detection task is to identify these76

OOD data, which could be seen as a binary classification task: determining whether an input x is77

more likely ID or OOD. It could be formalized as a level-set estimation:78

x =

{
ID, if S(x) > λ,

OOD, if S(x) ≤ λ,
(1)

where S(x) denotes the score function, i.e., OOD detector, and the threshold λ is commonly chosen79

to make a high fraction (e.g., 95%) of ID data is correctly classified [9]. In conclusion, OOD detection80

aims at designing the S(x) that could assign higher scores to ID data samples than OOD ones.81

Setup. Denoting the input space with X , an unlabeled training dataset Dtrain = {xi}Ni=1 containing82

of N data points can be obtained by sampling i.i.d. from a data distribution PX . Typically, we treat83

the PX as pid, which represents the in-distribution (ID) [17, 27]. With this unlabeled training set,84

unsupervised OOD detection is to design a score function S(x) that can determine whether an input85

is ID or OOD. This is different from supervised OOD detection, which typically leverages a classifier86

that is trained on labeled data [4, 7, 9]. We provide a detailed discussion in Appendix A.87
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2.2 VAE-based Unsupervised OOD Detection88

DGMs could be an ideal choice for unsupervised OOD detection because the estimated marginal89

likelihood pθ(x) can be naturally used as the score function S(x). Among DGMs, VAE can offer90

great flexibility and strong representation ability [28], leading to a series of unsupervised OOD91

detection methods based on VAE that have achieved SOTA performance [17, 18]. Specifically, VAE92

estimates the marginal likelihood by training with the variational evidence lower bound (ELBO), i.e.,93

ELBO(x) = Eqϕ(z|x) [log pθ(x|z)]−DKL(qϕ(z|x)||p(z)), (2)

where the posterior qϕ(z|x) is modeled by an encoder, the reconstruction likelihood pθ(x|z) is94

modeled by a decoder, and the prior p(z) is set as a Gaussian distribution N (0, I). After well training95

the VAE, ELBO(x) is an estimation of the p(x), which could be directly seen as the score function96

S(x) to do OOD detection. But the VAE would suffer from the overestimation issue, which will be97

introduced in the next section. More details and Related Work can be seen in Appendix B.98

3 Analysis of VAE’s overestimation in Unsupervised OOD Detection99

We will first conduct an analysis to identify the factors contributing to VAE’s overestimation, i.e.,100

the improper design of prior distribution and the gap between ID and OOD datasets’ entropies.101

Subsequently, we will give a deeper analysis of the first factor to have a better understanding.102

3.1 Identifying Factors of VAE’s Overestimation Issue103

Following the common analysis procedure [27], an ideal score function S(x) that could achieve good104

OOD detection performance is expected to have the following property for any OOD dataset:105

G = Ex∼pid(x)[S(x)]− Ex∼pood(x)[S(x)] > 0, (3)

where pid(x) and pood(x) denote the true distribution of the ID and OOD dataset, respectively. A106

larger gap between these two expectation terms can usually lead to better OOD detection performance.107

Using the ELBO(x) as the score function S(x), we could give a formal definition of the repeatedly108

reported VAE’s overestimation issue in the context of unsupervised OOD detection [12, 13, 17, 18].109

Definition 1 (VAE’s overestimation in unsupervised OOD Detection). Assume we have a VAE110

trained on a training set and we use the ELBO(x) as the score function to distinguish data points111

sampled i.i.d. from the in-distribution testing set (pid) and an OOD dataset (pood). When112

G = Ex∼pid(x)[ELBO(x)]− Ex∼pood(x)[ELBO(x)] ≤ 0, (4)

it is called VAE’s overestimation in unsupervised OOD detection.113

With a clear definition of overestimation, we could now investigate the underlying factors causing114

the overestimation in VAE. After well training a VAE, we could reformulate the expectation term of115

ELBO(x) from the perspective of information theory [29] as:116

Ex∼p(x)[ELBO(x)] = Ex∼p(x)[Ez∼qϕ(z|x) log pθ(x|z)]− Ex∼p(x)[DKL(qϕ(z|x)||p(z))]
= −Hp(x)−DKL(q(z)||p(z)), (5)

because we have117

Ex∼p(x)[Ez∼qϕ(z|x) log pθ(x|z)] = Iq(x, z) + Ep(x) log p(x) = Iq(x, z)−Hp(x), (6)

Ex∼p(x)[DKL(qϕ(z|x)||p(z))] = Iq(x, z) +DKL(q(z)||p(z)), (7)

where the Iq(x, z) is mutual information between x and z and the q(z) is the aggregated posterior118

distribution of the latent variables z, which is defined by q(z) = Ex∼p(x)qϕ(z|x). We leave the119

detailed definition and derivation in Appendix C.1. Thus, the gap G in Eq. (4) could be rewritten as120

G = [−Hpid(x) +Hpood(x)] + [−DKL(qid(z)||p(z)) +DKL(qood(z)||p(z))], (8)

where the dataset entropy Hpid(x)/Hpood(x) is a constant that only depends on the true distribution121

of ID/OOD dataset; the prior p(z) is typically set as a standard (multivariate) Gaussian distribution122

N (0, I) to enable reparameterization for efficient gradient descent optimization [25].123

Through analyzing the most widely used criterion, specifically the expectation of ELBO reformulated124

in Eq. (8), for VAE-based unsupervised OOD detection, we find that there will be two potential125

factors that lead to the overestimation issue of VAE, i.e., G ≤ 0:126
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Factor I: The improper design of prior distribution p(z). Several studies have argued that the127

aggregated posterior distribution of latent variables q(z) cannot always equal N (0, I), particularly128

when the dataset exhibits intrinsic multimodality [28, 30, 31, 32]. In fact, when q(z) is extremely129

close to p(z), it is more likely to become trapped in a bad local optimum known as posterior collapse130

[33, 34, 35], i.e., qϕ(z|x) ≈ p(z), resulting in q(z) =
∫
x
qϕ(z|x)p(x) ≈

∫
x
p(z)p(x) = p(z). In131

this situation, the posterior qϕ(z|x) becomes uninformative about the inputs. Thus, the value of132

DKL(qid(z)||p(z)) could be overestimated, potentially contributing to G ≤ 0.133

Factor II: The gap between Hpid(x) and Hpood(x). Considering the dataset’s statistics, such as the134

variance of pixel values, different datasets exhibit various levels of entropy. It is reasonable that a135

dataset containing images with richer low-level features and more diverse content is expected to have136

a higher entropy. As an example, the FashionMNIST dataset should possess higher entropy compared137

to the MNIST dataset. Therefore, when the entropy of the ID dataset is higher than that of an OOD138

dataset, the value of −Hpid(x) +Hpood(x) is less than 0, potentially leading to overestimation.139

3.2 More Analysis on Factor I140

In this part, we will focus on addressing the following question: when is the common design of the141

prior distribution proper, and when is it not?142
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Figure 1: Visualization of modeling a single-modal data distribution with a linear VAE.

When the design of prior is proper? Assuming that we have a dataset consisting of N data points143

{xi}Ni=1, each of which is sampled from a given d-dimensional data distribution p(x) = N (x|0,Σx)144

as shown in Figure 1(a). Then we construct a linear VAE to estimate p(x), formulated as:145

p(z) = N (z|0, I)
qϕ(z|x) = N (z|Ax+B,C) (9)

pθ(x|z) = N (x|Ez + F, σ2I),

where A,B,C,E,F, and σ are all learnable parameters and their optimal values can be obtained by146

the derivation in Appendix C.3. As the estimated distribution pθ(x) depicted in Figure 1(c), we can147

find that the linear VAE with the optimal parameter values can accurately estimate the p(x) through148

maximizing ELBO, i.e., the overestimation issue is not present. In this case, Figures 1(b) and 1(d)149

indicate that the design of the prior distribution is proper, where the posterior q(z) equals prior p(z).150

When the design of prior is NOT proper? Consider a more complex data distribution, e.g., a mixture151

of Gaussians, p(x) =
∑K

k=1 πkN (x|µk,Σk),K = 2 as shown in Figure 2(a), where πk = 1/K152

and
∑K

k=1 µk = 0. We construct a dataset consisting of K ×N data points, obtained by sampling153

N data samples {x(k)
i }N,K

i=1,k=1 from each component Gaussian N (x|µk,Σk). The formulation of154

p(z), qϕ(z|x), and pθ(x|z) is consistent with those in Eq. (9). More details are in Appendix C.2.155
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Figure 2: Visualization of modeling a multi-modal data distribution with a linear VAE.
In what follows, we will provide a basic derivation outline for the linear VAE under the multi-modal156

case. We can first obtain the marginal likelihood p̂θ(x;E,F, σ) =
∫
pθ(x|z)p(z) = N (x|F,EE⊤+157

4



σ2I) with the strictly tighter importance sampling on ELBO [36], i.e., learning the optimal generative158

process. Then, the joint log-likelihood of the observed dataset {x(k)
i }N,K

i=1,k=1 can be formulated as:159

L =

K∑
k=1

N∑
i=1

log p̂θ(x
(k)
i ) = −KNd

2
log(2π)− KN

2
log det(M)− KN

2
tr[M−1S], (10)

where M = EE⊤ + σ2I and S = 1
KN

∑K
k=1

∑N
i=1(x

(k)
i − F)(x

(k)
i − F)⊤. After that, we could160

explore the stationary points of parameters through the ELBO, which can be analytically written as:161

ELBO(x) =

L1︷ ︸︸ ︷
Eqϕ(z|x)[log pθ(x|z)]−

L2︷ ︸︸ ︷
DKL[qϕ(z|x)||p(z)], (11)

L1 =
1

2σ2
[−tr(ECE⊤)− (EAx+EB)⊤(EAx+EB) + 2x⊤(EAx+EB)− x⊤x]− d

2
log(2πσ2),

L2 =
1

2
[− log det(C) + (Ax+B)⊤(Ax+B) + tr(C)− 1].

The detailed derivation of parameter solutions in Eq. (10) and (11) can be found in Appendix C.4.162

In conclusion of this case, Figure 2(b) illustrates that q(z) is a multi-modal distribution instead of163

p(z) = N (z|0, I), i.e., the design of the prior is not proper, which leads to overestimation as seen in164

Figure 2(c). However, as analyzed in Factor I, we found that the overestimation issue is mitigated165

when replacing p(z) in the KL term of the ELBO with q(z), which is shown in Figure 2(d).166

More empirical studies on the improper design of prior. To extend to a more practical and167

representative case, we used a 3-layer MLP to model qϕ(z|x) and pθ(x|z) with p(z) = N (0, I) on168

the same dataset of the above multi-modal case. Implementation details are provided in Appendix169

C.5. After training, we observed that q(z) still differs from p(z), as shown in Figure 3(a). The ELBO170

still suffers from overestimation, especially in the region near (0, 0), as shown in Figure 3(b).171
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Figure 3: (a) and (b): visualization of qid(z) and estimated p(x) by ELBO on the multi-modal
data distribution with a non-linear deep VAE; (c) and (d): the density plot of the log-probability of
posterior z, i.e., z ∼ qϕ(z|x), in prior N (0, I) on two dataset pairs.

Finally, we extend the analysis directly to high-dimensional image data. Since VAE trained on image172

data needs to be equipped with a higher dimensional latent variable space, it is hard to visualize173

directly. But please note that, if qid(z) is closer to p(z) = N (0, I), zid ∼ qid(z) should occupy174

the center of latent space N (0, I) and zood ∼ qood(z) should be pushed far from the center, leading175

to p(zid) to be larger than p(zood). However, surprisingly, we found this expected phenomenon176

does not exist, as shown in Figure 3(c) and 3(d), where the experiments are on two dataset pairs,177

Fashion-MNIST(ID)/MNIST(OOD) and CIFAR10(ID)/SVHN(OOD). This still suggests that the178

prior p(z) is improper, even qood(z) for OOD data may be closer to p(z) than qid(z).179

Brief summary. Through analyzing overestimation scenarios from simple to complex, the answer180

to the question at the beginning of this part could be: the prior distribution p(z) = N (0, I) is an181

improper choice for VAE when modeling a complex data distribution p(x), leading to an overestimated182

DKL(qid(z)||p(z)) and further raising the overestimation issue in unsupervised OOD detection.183

4 Alleviating VAE’s overestimation in Unsupervised OOD Detection184

In this section, we develop the “AVOID” method to alleviate the influence of two aforementioned185

factors in Section 3, including i) post-hoc prior and ii) dataset entropy calibration, both of which are186

implemented in a simple way to inspire related work and can be further investigated for improvement.187

4.1 Post-hoc Prior Method for Factor I188
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Figure 4: The t-SNE visualization of
the latent representations on FashionM-
NIST(ID)/MNIST(OOD) dataset pair.

To provide a more insightful view to investigate the re-189

lationship between qid(z), qood(z), and p(z), we use t-190

SNE [37] to visualize them in Figure 4. The visualization191

reveals that p(z) cannot distinguish between the latent192

variables sampled from qid(z) and qood(z), while qid(z) is193

clearly distinguishable from qood(z). Therefore, to alle-194

viate overestimation, we can explicitly modify the prior195

distribution p(z) in Eq. (8) to force it to be closer to qid(z)196

and far from qood(z), i.e., decreasing DKL(qid(z)||p(z))197

and increasing DKL(qood(z)||p(z)).198

A straightforward modifying approach is to replace p(z)199

in ELBO with an additional distribution q̂id(z) that can200

fit qid(z) well after training, where the target value of201

qid(z) can be acquired by marginalizing qϕ(z|x) over the202

training set, i.e., qid(z) = Ex∼pid(x)[qϕ(z|x)]. Previous study on distribution matching [30] has203

developed an LSTM-based method to efficiently fit qid(z) in the latent space, i.e.,204

q̂id(z) =

⊤∏
t=1

q(zt|z<t), where q(zt|z<t) = N (µi, σ
2
i ). (12)

Thus, we could propose a “post-hoc prior” (PHP) method for Factor I, formulated as205

PHP(x) := Ez∼qϕ(z|x) log pθ(x|z)−DKL(qϕ(z|x)||q̂id(z)), (13)
which could lead to better OOD detection performance since it could enlarge the gap G, i.e.,206

GPHP = [−Hpid(x) +Hpood(x)] + [−DKL(qid(z)||q̂id(z)] +DKL(qood(z)||q̂id(z))] > G. (14)
Please note that PHP can be directly integrated into a trained VAE in a “plug-and-play” manner.207

4.2 Dataset Entropy Calibration Method for Factor II208

While the entropy of a dataset is a constant that remains unaffected by different model settings, it is209

still an essential factor that leads to overestimation. To address this, a straightforward approach is to210

design a calibration method that ensures the value added to the ELBO of ID data will be larger than211

that of OOD data. Specifically, we denote the calibration term as C(x), and its expected property212

could be formulated as213

Ex∼pid(x)[C(x)] > Ex∼pood(x)[C(x)]. (15)

After adding the calibration C(x) to the ELBO(x), we could obtain the “dataset entropy calibration”214

(DEC) method for Factor II, formulated as215

DEC(x) := Ez∼qϕ(z|x) log pθ(x|z)−DKL(qϕ(z|x)||p(z)) + C(x). (16)

With the property in Eq. (15), we could find that the new gap GDEC becomes larger than the original216

gap G based solely on ELBO, as GDEC = G+Ex∼pid(x)[C(x)]−Ex∼pood(x)[C(x)] > G, which should217

alleviate the overestimation and lead to better unsupervised OOD detection performance.218
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Figure 5: Visualization of the
relationship between the num-
ber of singular values and the
reconstruction error.

How to design the calibration C(x)? For the choice of the function219

C(x), inspired by the previous work [13], we could use image com-220

pression methods like Singular Value Decomposition (SVD) [38]221

to roughly measure the complexity of an image, where the images222

from the same dataset should have similar complexity. An intuitive223

insight into this could be shown in Figure 5, where the ID dataset’s224

statistical feature, i.e., the curve, is distinguishable to other datasets.225

Based on this empirical study, we could first propose a non-scaled226

calibration function, denoted as Cnon(x). First, we could set the num-227

ber of singular values as nid, which can achieve the reconstruction228

error |xrecon − x| = ϵ in the ID training set; then for a test input xi,229

we use SVD to calculate the smallest ni that could also achieve a230

smaller reconstruction error ϵ, then Cnon(x) could be formulated as:231

Cnon(x) =

{
(ni/nid), if ni < nid,

(nid − (ni − nid))/nid, if ni ≥ nid,
(17)
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which can give the ID dataset a higher expectation Ex∼pid(x)[Cnon(x)] than that of other statistically232

different OOD datasets. More details to obtain Cnon(x) can be found in Appendix D.233

4.3 Putting Them Together to Get “AVOID”234

By combining the post-hoc prior (PHP) method and the dataset entropy calibration (DEC) method,235

we could develop a new score function, denoted as SAVOID(x):236

SAVOID(x) := Eqϕ(z|x) [log pθ(x|z)]−DKL(qϕ(z|x)||q̂id(z)) + C(x). (18)

To balance the importance of PHP and DEC terms in Eq. (18), we consider to set an appropriate scale237

for C(x). For the scale of C(x), if it is too small, its effectiveness in alleviating overestimation could be238

limited. Otherwise, it may hurt the effectiveness of the PHP method since DEC will dominate the value239

of “AVOID”. Additionally, for statistically similar datasets, i.e., Hpid(x) ≈ Hpood(x), the property in240

Eq. (15) cannot be guaranteed and we may only have Ex∼pid(x)[Cnon(x)] ≈ Ex∼pood(x)[Cnon(x)], in241

which case we could only rely on the PHP method. Thus, an appropriate scale of Ex∼pid(x)[C(x)],242

named “Cscale”, could be derived by Cscale = Ex∼pid(x)[PHP(x)] ≈ Hpid(x), which leads to243

Ex∼pid(x)[DEC(x)] = −Hpid(x)−DKL(qid(z)||p(z)) + Cscale ≈ −DKL(qid(z)||p(z)). (19)

Thus, when Hpid(x) ≈ Hpood(x) and Ex∼pid(x)[C(x)] ≈ Ex∼pood(x)[C(x)], the PHP part of “AVOID”244

could still be helpful to alleviate overestimation.245

Motivated by the above analysis, we could implement the scaled calibration function, formulated as246

C(x) = Cnon(x)× Cscale =

{
(ni/nid)× Cscale, if ni < nid,

[(nid − (ni − nid))/nid]× Cscale, if ni ≥ nid.
(20)

5 Experiments247

5.1 Experimental Setup248

Datasets. In accordance with existing literature [17, 18, 39], we evaluate our method against previous249

works using two standard dataset pairs: FashionMNIST [40] (ID) / MNIST [41] (OOD) and CIFAR10250

[42] (ID) / SVHN [43] (OOD). The suffixes “ID” and “OOD” represent in-distribution and out-of-251

distribution datasets, respectively. To more comprehensively assess the generalization capabilities252

of these methods, we incorporate additional OOD datasets, the details of which are available in253

Appendix E.1. Notably, datasets featuring the suffix “-G” (e.g., “CIFAR10-G”) have been converted254

to grayscale, resulting in a single-channel format.255

Evaluation and Metrics. We adhere to the previous evaluation procedure [17, 18], where all methods256

are trained using the training split of the in-distribution dataset, and their OOD detection performance257

is assessed on both the testing split of the in-distribution dataset and the OOD dataset. In line258

with previous works [1, 5, 44], we employ evaluation metrics including the area under the receiver259

operating characteristic curve (AUROC ↑), the area under the precision-recall curve (AUPRC ↑),260

and the false positive rate at 80% true positive rate (FPR80 ↓). The arrows indicate the direction of261

improvement for each metric.262

Baselines. Our experiments primarily encompass two comparison aspects: i) evaluating our novel263

score function “AVOID” against previous unsupervised OOD detection methods to determine whether264

it can achieve competitive performance; and ii) comparing “AVOID” with VAE’s ELBO to assess265

whether our method can mitigate overestimation and yield improved performance. For comparisons266

in i, we can categorize the baselines into three groups, as outlined in [18]: “Supervised” includes267

supervised OOD detection methods that utilize in-distribution data labels [1, 5, 9, 45, 46, 47, 48, 49];268

“Auxiliary” refers to methods that employ auxiliary knowledge gathered from OOD data [13, 39, 44];269

and “Unsupervised” encompasses methods without reliance on labels or OOD-specific assumptions270

[14, 17, 18, 26]. For comparisons in ii, we compare our method with a standard VAE [25], which also271

serves as the foundation of our method. Further details regarding these baselines and their respective272

categories can be found in Appendix E.2.273

Implementation Details. The VAE’s latent variable z’s dimension is set as 200 for all experiments274

with the encoder and decoder parameterized by a 3-layer convolutional neural network, respectively.275
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Table 1: The comparisons of our method and other OOD detection methods. The best results achieved
by the methods of the category “Not ensembles” of “Unsupervised” have been bold.

FashinMNIST(ID)/MNIST(OOD) CIFAR10(ID)/SVHN(OOD)
Supervised Auxiliary Unsupervised Supervised Auxiliary Unsupervised

Method AUROC↑ Mehod AUROC↑ Method AUROC↑ Method AUROC↑ Mehod AUROC↑ Method AUROC↑
CP [1] 73.4 LR(PC) [39] 99.4 -Ensembles MD [46] 99.7 LR(PC) [39] 93.0 -Ensembles
CP(Ent) [1] 74.6 LR(BC) [39] 45.5 WAIC(5VAE) [26] 76.6 LMD [47] 27.9 LR(VAE) [39] 26.5 WAIC(5Glow) [26] 99.0
ODIN [45] 75.2 CP(OOD) [39] 87.7 WAIC(5PC) [26] 22.1 EN [6] 98.9 OE [44] 98.4 WAIC(5PC) [26] 62.8
VIB [5] 94.1 CP(Cal) [39] 90.4 -Not Ensembles iDE [52] 95.7 IC(Glow) [13] 95.0 -Not Ensembles
MD(CNN) [46] 94.2 IC(Glow) [13] 99.8 LRe [14] 98.8 LN[9] 98.4 IC(PC++) [13] 92.9 LRe [14] 87.5
MD(DN) [46] 98.6 IC(PC++) [13] 96.7 HVK [17] 98.4 ODIN [45] 82.9 IC(HVAE) [13] 83.3 HVK [17] 89.1
DE [1] 85.7 LLRada[18] 98.0 GN [49] 76.7 LLRada[18] 94.2

AVOID(ours) 99.2 AVOID(ours) 94.5

Table 2: The comparisons of our method with post-hoc prior (denoted as “PHP”) or dataset en-
tropy calibration (denoted as “DEC”) individually and other unsupervised OOD detection methods.
“PHP+DEC" is equal to our method “AVOID". Bold numbers are superior results.

FashinMNIST(ID)/MNIST(OOD) CIFAR10(ID)/SVHN(OOD)
Method AUROC↑ AUPRC↑ FPR80↓ Method AUROC↑ AUPRC↑ FPR80↓
ELBO [25] 23.5 35.6 98.5 ELBO [25] 24.9 36.7 94.6
WAIC(5PC) [26] 22.1 40.1 91.1 WAIC(5PC) [26] 62.8 61.6 65.7
HVK [17] 98.4 98.4 1.3 HVK [17] 89.1 87.5 17.2
LLRada[18] 97.0 97.6 0.9 LLRada[18] 92.6 91.8 11.1
-Ours: -Ours:
PHP 89.7 90.3 13.3 PHP 39.6 42.6 85.7
DEC 34.1 40.7 92.5 DEC 87.8 89.9 17.8
PHP+DEC 99.2 99.4 0.00 PHP+DEC 94.5 95.3 4.24

The reconstruction likelihood distribution is modeled by a discretized mixture of logistics [20]. For276

optimization, we adopt the same Adam optimizer [50] with a learning rate of 1e-3. We train all277

models in comparison by setting the batch size as 128 and the max epoch as 1000. All experiments278

are performed on a PC with an NVIDIA A100 GPU and our code is implemented with PyTorch [51].279

More implementation details can be found in Appendix E.3.280

5.2 Comparison with Unsupervised OOD Detection Baselines281

First, we compare our method with other SOTA baselines in Table 1. The results demonstrate that our282

method achieves competitive performance compared to “Supervised” and “Auxiliary” methods and283

outperforms “Unsupervised” OOD detection methods. Next, we provide a more detailed comparison284

with some unsupervised methods, particularly the ELBO of VAE, as shown in Table 2. These285

results indicate that our method effectively mitigates overestimation and enhances OOD detection286

performance when using VAE as the backbone. Lastly, to assess our method’s generalization287

capabilities, we test it on a broader range of datasets, as displayed in Table 3. Experimental results288

strongly verify our analysis of the VAE’s overestimation issue and demonstrate that our method289

consistently mitigates overestimation, regardless of the type of OOD datasets.290

5.3 Ablation Study on Verifying the Post-hoc Prior Method291

To evaluate the effectiveness of the Post-hoc Prior (PHP), we compare it with other unsupervised292

methods in Table 2. Moreover, we test the PHP method on additional datasets and present the results293

in Table 4 of Appendix F. The experimental results demonstrate that the PHP method can alleviate294

the overestimation. To provide a better understanding, we also visualize the density plot of ELBO and295

PHP for the “FashionMNIST(ID)/MNIST(OOD)” dataset pair in Figures 6(a) and 6(b), respectively.296

The Log-likelihood Ratio (LLR) methods [17, 18] are the current SOTA unsupervised OOD detection297

methods that also focus on latent variables. These methods are based on an empirical assumption298

that the bottom layer latent variables of a hierarchical VAE could learn low-level features and top299

layers learn semantic features. However, we discovered that while ELBO could already perform300

well in detecting some OOD data, the LLR method [18] could negatively impact OOD detection301

performance to some extent, as demonstrated in Figure 6(c), where the model is trained on MNIST302

and detects FashionMNIST as OOD. On the other hand, our method can still maintain comparable303

performance since the PHP method can explicitly alleviate overestimation, which is one of the304

strengths of our method compared to the SOTA methods.305

5.4 Ablation Study on Verifying the Dataset Entropy Calibration Method306

We evaluate the performance of dataset entropy calibration, referred to as “DEC”, in Table 2 and307

Table 5 of Appendix G. Although the DEC method is simple, our results show that it effectively308

alleviates overestimation. To better understand DEC, we visualize the calculated C(x) of CIFAR10309
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Table 3: The comparisons of our method “AVOID” and baseline “ELBO” on more datasets. Bold
numbers are superior performance.

ID FashionMNIST ID CIFAR10
OOD AUROC ↑ AUPRC ↑ FPR80 ↓ OOD AUROC ↑ AUPRC ↑ PFR80 ↓

ELBO / AVOID (ours) ELBO / AVOID (ours)
KMNIST 60.03 / 78.71 54.60 / 68.91 61.6 / 48.4 CIFAR100 52.91 / 55.36 51.15 / 72.13 77.42 / 73.93
Omniglot 99.86 / 100.0 99.89 / 100.0 0.00 / 0.00 CelebA 57.27 / 71.23 54.51 / 72.13 69.03 / 54.45

notMNIST 94.12 / 97.72 94.09 / 97.70 8.29 / 2.20 Places365 57.24 / 68.37 56.96 / 69.05 73.13 / 62.64
CIFAR10-G 98.01 / 99.01 98.24 / 99.04 1.20 / 0.40 LFWPeople 64.15 / 67.72 59.71 / 68.81 59.44 / 54.45
CIFAR100-G 98.49 / 98.59 97.49 / 97.87 1.00 / 1.00 SUN 53.14 / 63.09 54.48 / 63.32 79.52 / 68.63

SVHN-G 95.61 / 96.20 96.20 / 97.41 3.00 / 0.40 STL10 49.37 / 64.51 47.79 / 65.50 78.02 / 67.23
CelebA-G 97.33 / 97.87 94.71 / 95.82 3.00 / 0.40 Flowers102 67.68 / 76.83 64.68 / 78.01 57.94 / 46.65

SUN-G 99.16 / 99.32 99.39 / 99.47 0.00 / 0.00 GTSRB 39.50 / 53.06 41.73 / 49.84 86.61 / 73.63
Places365-G 98.92 / 98.89 98.05 / 98.61 0.80 / 0.80 DTD 37.86 / 81.82 40.93 / 62.42 82.22 / 64.24

Const 94.94 / 95.20 97.27 / 97.32 1.80 / 1.70 Const 0.001 / 80.12 30.71 / 89.42 100.0 / 22.38
Random 99.80 / 100.0 99.90 / 100.0 0.00 / 0.00 Random 71.81 / 99.31 82.89 / 99.59 85.71 / 0.000
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Figure 6: Density plots and ROC curves. (a): directly using ELBO(x), an estimation of the p(x),
of a VAE trained on FashionMNIST leads to overestimation in detecting MNIST as OOD data; (b):
using PHP method could alleviate the overestimation; (c): SOTA method LLR hurts the performance
when ELBO could already work well; (d): PHP method would not hurt the performance.

(ID) in Figure 7(a) and other OOD datasets in Figure 7(b) when nid = 20. Our results show that310

the C(x) of CIFAR10 (ID) achieves generally higher values than that of other datasets, which is the311

underlying reason for its effectiveness in alleviating overestimation. Additionally, we investigate the312

impact of different nid on OOD detection performance in Figure 7(c), where our results show that the313

performance is consistently better than ELBO.314
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Figure 7: (a) and (b) are respectively the visualizations of the calculated entropy calibration C(x) of
CIFAR10 (ID) and other OOD datasets, where the C(x) of CIFAR10 (ID) could achieve generally
higher values. (c) is the OOD detection performance of dataset entropy calibration with different nid
settings, which consistently outperforms ELBO.

6 Conclusion315

In conclusion, we have identified the underlying factors that lead to VAE’s overestimation in un-316

supervised OOD detection: the improper design of the prior and the gap of the dataset entropies317

between the ID and OOD datasets. With this analysis, we have developed a novel score function318

called “AVOID”, which is effective in alleviating overestimation and improving unsupervised OOD319

detection. This work may lead a research stream for improving unsupervised OOD detection by320

developing more efficient and sophisticated methods aimed at optimizing these revealed factors.321
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Appendix483

A More Background on OOD Detection484

To provide a clear distinction and avoid confusion between supervised and unsupervised OOD485

detection, we delineate the key differences here, primarily focusing on their respective setups.486

Setup of unsupervised OOD detection. Denoting the input space with X , an unlabeled training487

dataset Dtrain = {xi}Ni=1 containing of N data points can be obtained by sampling i.i.d. from a data488

distribution PX . Typically, we treat the PX as pid, which represents the in-distribution (ID) [17, 27].489

With this unlabeled training set, unsupervised OOD detection is to design a score function S(x) that490

can determine whether an input is ID or OOD.491

Setup of supervised OOD detection. Compared with the setup of unsupervised OOD detection,492

supervised one needs to additionally introduce a label space Y = {1, ..., k} with k classes, and the493

training set becomes Dtrain = {(xi,yi)}Ni=1. Then, it typically needs to train a classifier f : X → Rk,494

and OOD detection can be achieved based on the property of the classifier [4, 7, 9].495

We illustrate the distinction between supervised and unsupervised OOD detection in Figure 8.
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Figure 8: An illustration showcasing the difference between supervised and unsupervised OOD
detection.

496

B Related Work497

B.1 Deep Generative Models498

Deep Generative Models (DGMs) have been developed with the aim of modeling the true data499

distribution p(x), leveraging deep neural networks to learn a generative process [53]. These models500

span several types, mainly including the autoregressive model [19, 20], flow model [21, 22], generative501

adversarial network [24], diffusion model [23], and variational autoencoder (VAE) [25]. Below,502

we briefly introduce each of these models: The autoregressive model operates under the premise503

that a data sample x is a sequential series, implying that the value of a pixel in an image is only504

dependent on the pixels preceding it. The flow model comes with an inherent requirement for the505

invertibility of the projection between x and z, which imposes constraints on the implementation506

of its backbone. The generative adversarial network adopts an additional discriminator to implicitly507

learn the data distribution. Despite its power, it faces challenges such as unstable training and mode508
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collapse [28]. The diffusion model, trained using a score-based method, has the drawback of being509

slow in sampling due to its multiple stochastic layers. Among these models, VAE stands out for its510

flexibility in implementation, comprehensive mode coverage, and fast sampling [28]. However, its511

training objective, an evidence lower bound of the data distribution, presents difficulties for analysis.512

B.2 VAE-based Unsupervised OOD Detection513

Given the advantages of flexibility, comprehensive mode coverage, and fast sampling capabilities,514

variational autoencoder (VAE)-based methods have emerged as a promising choice for unsupervised515

out-of-distribution (OOD) detection. Based on the necessity to modify the training of VAE, these516

methods can be categorized into two groups. i) The first group includes methods that modify the517

training of VAE. Hierarchical VAE expands the VAE’s layers to augment its representational capacity518

[15], yet the improvements in performance are marginal, and the issue of overestimation persists.519

The adaptive log-likelihood ratio method, LLRada, is also grounded in the hierarchical VAE and520

introduces a generative skip connection to propagate information to higher layers of latent variables521

[18]. It utilizes the differences between each layer of latent variables for OOD detection, achieving522

state-of-the-art performance despite certain shortcomings as discussed in section 5.3. The tilted523

variational autoencoder enforces the latent variable to exist within the sphere of a tilted Gaussian524

[16], thereby disrupting the efficient, widely adopted reparameterization based on the Gaussian. It525

should be noted that modifying the training of VAE may be less practical as the proposed method526

cannot be directly applied to other VAEs. This implies that applying the OOD detection method527

to a new advanced VAE necessitates meticulous training using the new modification method. ii)528

The second group of methods attempts to utilize the properties of a trained VAE for OOD detection529

without modifying it. The likelihood-ratio method simulates the background using noise and employs530

the difference between the original and simulated background images for OOD detection [12].531

The likelihood-regret method finetunes the trained VAE with the test sample to observe changes532

in likelihood [14]. The log-likelihood ratio method leverages the assumption that latent variables533

of lower layers capture low-level features of inputs while those of higher layers grasp semantic534

features [17]. The difference between these latent variables can then be used for OOD detection.535

WAIC utilizes empirical ensemble methods for OOD detection [26]. However, it should be stressed536

that none of these methods have strived to provide an exhaustive theoretical analysis of the VAE’s537

overestimation issue.538

C Derivation of the Analysis539

C.1 Derivation for Eq. (5)540

We first give the definition of the mutual information Iq(x, z) as follows:541

Iq(x, z) =
∫
x

∫
z

q(x, z) log
q(x, z)

p(x)q(z)

=

∫
x

∫
z

qϕ(z|x)p(x) log
qϕ(z|x)
q(z)

= Ex∼p(x),z∼qϕ(z|x)[log
qϕ(z|x)
q(z)

],

(21)

where the data distribution p(x) should actually be replaced by q(x), i.e., the data distribution given542

the observed data points in the whole training set, when the size of the training set is big enough,543

i.e., q(x) is close to p(x); and the q(z) is called the aggregated posterior distribution [54, 55, 56],544

expressed as:545

q(z) =

∫
z

qϕ(z|x)p(x). (22)

Recall that Eq. (5) comprises two components, denoted as:546

Ex∼p(x)[ELBO(x)] =

L1︷ ︸︸ ︷
Ex∼p(x)[Ez∼qϕ(z|x) log pθ(x|z)]−

L2︷ ︸︸ ︷
Ex∼p(x)[DKL(qϕ(z|x)||p(z))] .

(23)
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Let’s begin with the second component:547

L2 = Ex∼p(x)[Ez∼qϕ(z|x) log
qϕ(z|x)
p(z)

]

= Ex∼p(x)[Ez∼qϕ(z|x) log[
qϕ(z|x)
p(z)

· q(z)
q(z)

]]

= Ex∼p(x)[Ez∼qϕ(z|x) log[
qϕ(z|x)
q(z)

· q(z)
p(z)

]]

= Ex∼p(x)[Ez∼qϕ(z|x) log
qϕ(z|x)
q(z)

] + Ex∼p(x)[Ez∼qϕ(z|x) log[
q(z)

p(z)
]]

= Ex∼p(x),z∼qϕ(z|x)[log
qϕ(z|x)
q(z)

] + Ez∼q(z)[log
q(z)

p(z)
]

= Iq(x, z) +DKL(q(z)||p(z)).

(24)

Before embarking on a similar derivation for the first component, it’s crucial to comprehend the548

notation “q” and “p” within the context of VAE. Here, “q” signifies an approximated distribution549

given observed data, typically parameterized by a neural network, while “p” represents the actual550

distribution. For example, qϕ(z|x) denotes the approximated posterior distribution, and its corre-551

sponding true posterior is p(z|x). The gap between qϕ(z|x) and p(z|x) contributes to the concept552

of a "lower bound", as depicted by553

log p(x) = ELBO(x) +DKL(qϕ(z|x)||p(z|x)). (25)

However, it may appear that pθ(x|z), approximated by a decoder whose parameter is θ, should be554

represented as q(x|z). This particular interpretation arises due to the fact that the global optimum555

of the decoder’s parameters in the ELBO coincides with the global maximum of the marginal556

likelihood of the observed data [57]. Specifically, this means that the generative process pθ(x) =557 ∫
z
pθ(x|z)p(z) achieves optimality once the VAE has been trained to reach the ELBO’s optimum.558

Thus, after the VAE is well trained and the data distribution q(x) of the observed data points in the559

training set could well represent the true data distribution p(x), implying that pθ(x|z)’s parameters560

reach the maximum likelihood estimation given the observed training data, we can state the following:561

pθ(x|z) = q(x|z) = q(x, z)

q(z)
=

qϕ(z|x)
q(z)

q(x) =
qϕ(z|x)
q(z)

p(x). (26)

Inserting this into the first component of Eq. (5), we obtain the following result:562

L1 = Ex∼p(x)[Ez∼qϕ(z|x) log pθ(x|z)]

= Ex∼p(x)[Ez∼qϕ(z|x) log[
qϕ(z|x)
q(z)

p(x)]]

= Ex∼p(x)Ez∼qϕ(z|x) log
qϕ(z|x)
q(z)

+ Ex∼p(x)Ez∼qϕ(z|x) log p(x)

= Ex∼p(x),z∼qϕ(z|x)[log
qϕ(z|x)
q(z)

] + Ex∼p(x) log p(x)

= Iq(x, z)−Hp(x).

(27)

Hence, we can achieve the following expression:563

Ex∼p(x)[ELBO(x)] = −Hp(x)−DKL(q(z)||p(z)). (28)

C.2 Toy Examples’ Details564

Single-modal case setup. In this scenario, the data distribution is determined by a standard 2-565

dimensional Gaussian distribution p(x) = N (x|0,Σx), where566

Σx =

[
1 0
0 1

]
. (29)
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In order to simulate the dimension-reduction property of VAE, we designate the dimension of the567

latent variable as 1-dimensional; that is, the variance I in p(z) reduces to 1. Under this configuration,568

we i.i.d. sample N = 5000 data points from the data distribution p(x) to construct a training set.569

Each parameter’s solutions are calculated analytically.570

Multi-modal case setup. The data distribution is made by a mixture of two standard single-modal571

Gaussian distributions, i.e., p(x) =
∑K

k=1 πkN (x|µk,Σk), where K = 2, πk = 1/2 and572

µ1 =

[
3
3

]
,µ2 =

[
−3
−3

]
,Σ1 =

[
1 0
0 1

]
,Σ2 =

[
1 0
0 1

]
. (30)

The training set of this multi-modal case is built by i.i.d. sampling from 5000 data points from each573

component Gaussian distribution N (x|µk,Σk), i.e., 10000 data points in total.574

C.3 Derivation for Single-modal Case in Section 3.2575

Assume we have a dataset containing N data samples {x1,x2, ...,xN}, xi ∈ Rd, d = 2, and we576

already know the groundtruth distribution of it, i.e.,577

p(x) = N (x|0,Σx), (31)

where Σx = I. We have a linear VAE model parameterized as:578

p(z) = N (z|0, I) (32)
qϕ(z|x) = N (z|Ax+B,C) (33)

pθ(x|z) = N (x|Ez + F, σ2I), (34)

where p(z) is the prior distribution, z ∈ Rq, q = 1, qϕ(z|x) is the approximated posterior distribution,579

and pθ(x|z) is the approximated likelihood distribution. Directly employing the knowledge from580

probabilistic Principal Component Analysis (pPCA) [58], we could get the maximum likelihood581

estimation of pθ(x|z):582

σ2
MLE =

1

d− q

d∑
j=q+1

λj (35)

EMLE = Uq

(
Λq − σ2

MLE

)1/2
R (36)

FMLE = 0 (37)

where λq+1, ..., λd are the smallest eigenvalues of the sample covariance matrix S = 1
N

∑N
n=1 xx

⊤,583

the d× q orthogonal matrix Uq is made by the q dominant eigenvectors of S, the diagonal matrix Λq584

contains the corresponding q largest eigenvalues, and R is an arbitary q × q orthogonal matrix. Note585

that, when q = 1, we have R = I. After we get the parameters of pθ(x|z), we could get the p(z|x)586

by Bayes rule:587

p(z|x) = pθ(x|z)p(z)
p(x)

= N (z|Σ−1
x E⊤

MLEx, σ
2
MLEΣ

−1
x ),

(38)

where Σx = E⊤
MLEEMLE + σ2

MLEI. Thus, the maximum likelihood estimates of qϕ(z|x)’s parameters588

are:589

AMLE = Σ−1
x E⊤

MLE (39)
BMLE = 0 (40)

CMLE = σ2
MLEΣ

−1
x . (41)

Although the maximum likelihood estimations are ascertained, it remains necessary to verify whether590

these estimations allow the ELBO to reach the global optimum. The derivation of ELBO is as follows:591

log p(x) = Eqϕ(z|x)[log p(x|z)]−DKL(qϕ(z|x)||p(z)) +DKL(qϕ(z|x)||p(z|x))
= ELBO(x) +DKL(qϕ(z|x)||p(z|x)).

(42)

Given that qϕ(z|x) = N (z|Σ−1
x E⊤

MLEx, σ
2
MLEΣ

−1
x ) = p(z|x), DKL(qϕ(z|x)||p(x|z)) becomes592

zero. Furthermore, any modifications to the parameters of qϕ would result in an increase of593
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DKL(qϕ(z|x)||p(x|z)); in other words, it would result in a decrease of ELBO. Hence, the global594

optimum of the ELBO is attained when AMLE ∼ EMLE, σMLE are implemented in the linear VAE.595

Moreover, in this situation, log p(x) equates to ELBO.596

Finally, we could get the expression of the aggregated posterior distribution q(z):597

q(z) =

∫
x

qϕ(z|x)p(x)

=

∫
x

N (z|Σ−1
x E⊤

MLEx, σ
2
MLEΣ

−1
x )N (x|0,Σx)

=

∫
x

N (z|I−1E⊤
MLEx, σ

2
MLEI

−1)N (x|0, I)

=

∫
x

N (z|E⊤
MLEx, σ

2
MLEI)N (x|0, I)

= N (0,E⊤
MLEEMLE + σ2

MLEI)

= N (0,Σx)

= N (0, I)

= p(z).

(43)

In summing up the single-modal case, our assertion is that DKL[q(z)||p(z)] = 0, indicating that the598

design of the prior distribution is appropriate and would not result in an overestimation of VAE.599

C.4 Derivation for Multi-modal Case in Section 3.2600

Assume we have a distribution p(x) =
∑K

k=1 πkN (x|µk,Σk) and we build a dataset containing601

K × N data samples, which is made by sampling N data samples from each N (x|µk,Σk). The602

parameterization setting of the p(z), qϕ(z|x), and pθ(x|z) is the same as the single-modal case in603

Section 3.2.604

Deriving from the single-modal scenario, an analytical formulation of DKL(qϕ(z|x)||p(z|x)) is605

unattainable in the multi-modal case. Thus, it necessitates a derivation directly from the ELBO.606

Due to the fact that the global optimum of the decoder’s parameters in the ELBO coincides with607

the global maximum of the marginal likelihood of the observed data [57], we firstly commence608

with the derivation of the maximum likelihood estimation of pθ(x|z). Despite the feasibility of609

directly obtaining the maximum likelihood estimation of the parameters in pθ(x|z) by optimizing the610

integration p̂θ(x) =
∫
z
pθ(x|z)p(z) using the observed data, we propose an additional clarification611

connecting this integration and the ELBO. With reference to the strictly tighter importance sampling612

on the ELBO [36], we can derive that613

ELBOs(x) = Eqϕ(z|x)[log
1

S

S∑
s=1

pθ(x|z(s))p(z(s))

qϕ(z(s)|x)
]. (44)

Setting the number of instances S = 1, ELBOs(x) equates to the regular ELBO(x). As S approaches614

+∞, it follows that615

ELBOs(x) = Eqϕ(z|x)[logEqϕ(z|x)
pθ(x|z)p(z)
qϕ(z|x)

]

= Eqϕ(z|x)[log

∫
z

qϕ(z|x)
pθ(x|z)p(z)
qϕ(z|x)

dz]

= Eqϕ(z|x)[log

∫
z

pθ(x|z)p(z)dz]

= log

∫
z

pθ(x|z)p(z)dz

= log p̂θ(x).

(45)
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The expression of p̂θ(x) is shown as:616

p̂θ(x) =

∫
z

pθ(x|z)p(z)

=

∫
z

N (x|Ez+ F, σ2I)N (z|0, I)

= N (x|F,EE⊤ + σ2I).

(46)

Then, the joint log-likelihood of the observed dataset {x(k)
i }N,K

i=1,k=1 can be formulated as:617

L =

K∑
k=1

N∑
i=1

log p̂θ(x
(k)
i ) = −KNd

2
log(2π)− KN

2
log det(M)− KN

2
tr[M−1S], (47)

where M = EE⊤ + σ2I and S = 1
KN

∑K
k=1

∑N
i=1(x

(k)
i − F)(x

(k)
i − F)⊤.618

Repeatly using the knowledge in pPCA again, we could get the maximum likelihood estimation of619

the parameters:620

(σ∗)2 =
1

d− q

d∑
j=q+1

λj (48)

E∗ = Uq

(
Λq − (σ∗)2

)1/2
R (49)

F∗ = 0, (50)

where λq+1, ..., λd are the smallest eigenvalues of the sample covariance matrix S = 1
N

∑N
n=1 xx

⊤,621

the d× q orthogonal matrix Uq is made by the q dominant eigenvectors of S, the diagonal matrix Λq622

contains the corresponding q largest eigenvalues, and R is an arbitary q × q orthogonal matrix. Note623

that, when q = 1, we have R = I. Actually, with the same p(z) and a decoder pθ(x|z) parameterized624

by the same linear network, the expression of the maximum likelihood estimation of the pθ(x|z) in625

the multi-modal case is the same as the single-modal case.626

In order to determine qϕ(z|x)’s parameters, we can initiate the process by identifying the stationary627

points of qϕ(z|x) with respect to the ELBO. The ELBO can be analytically expressed as follows:628

ELBO(x) =

L1︷ ︸︸ ︷
Eqϕ(z|x)[log pθ(x|z)]−

L2︷ ︸︸ ︷
DKL[qϕ(z|x)||p(z)] (51)

L1 =Eqϕ(z|x)[−
(Ez − x)⊤(Ez − x)

2σ2
− d

2
log 2πσ2]

=Eqϕ(z|x)[
−(Ez)⊤(Ez) + 2x⊤Ez − x⊤x

2σ2
− d

2
log(2πσ2)]

=
1

2σ2
[−tr(ECE⊤)− (EAx+EB)⊤(EAx+EB) + 2x⊤(EAx+EB)− x⊤x]

− d

2
log(2πσ2) (52)

L2 =
1

2
[− log det(C) + (Ax+B)⊤(Ax+B) + tr(C)− q] (53)

For a dataset consisting of KN data samples, the stationary points with respect to the ELBO can be629

obtained through the following expressions:630

∂(
∑KN ELBO(x))

∂A
=KN [−AS−Bx̄⊤ − 1

σ2
(E⊤EAS)− 1

σ2
(E⊤EBx̄⊤ −E⊤S)] = 0

(54)

∂(
∑KN ELBO(x))

∂B
=KN [−Ax̄− 1

σ2
E⊤EAx̄+

1

σ2
E⊤x̄− (I+

E⊤E

σ2
)B] = 0 (55)

∂(
∑KN ELBO(x))

∂C
=
KN

2
((C−1)⊤ − I− 1

σ2
(E⊤E)) = 0, (56)
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where S = 1
KN

∑KN
xx⊤ and x̄ = 1

KN

∑KN
x. Upon further investigation, we have discovered631

that the stationary points of A, B, and C solely depend on the parameters E and σ. In mathematical632

terms, they can be expressed as:633

A∗ =
(I+ 1

σ2E
⊤E)−1

σ2
E⊤ (57)

B∗ =0 (58)

C∗ =((I+
1

σ2
E⊤E)⊤)−1. (59)

Finally, we can derive the expression of q(z) in this multi-modal case as follows:634

q(z) =

∫
x

qϕ(z|x)p(x)

=

∫
x

N (z|A∗x,C∗)

K∑
k=1

πkN (x|µk,Σk)

=

K∑
k=1

πk

∫
x

N (z|A∗x,C∗)N (x|µk,Σk)

=

K∑
k=1

πkN (z|A∗µk,A
∗Σk(A

∗)⊤ +C∗)

̸= p(z).

(60)

In conclusion, we observe that DKL[q(z)||p(z)] ̸= 0, indicating that the design of the prior distri-635

bution p(z) is not appropriate in this multi-modal case and may result in overestimation issue of636

VAE.637

C.5 Implementation Details of Deep VAE in Section 3.2638

The non-linear deep VAE’s encoder is implemented as a 3-layer MLP, which takes the 2D data points639

as inputs. The encoder consists of two linear layers with a hidden dimension of 10 and LeakyReLU640

activation function [59]. The output layer, with a dimension of 2, does not have an activation function641

and provides the values for µz and log σ2
z for each dimension of the latent variable.642

For the decoder, it takes the sampled latent variable z through reparameterization and feeds it into643

two linear layers with a hidden dimension of 10 and LeakyReLU activation function. The final output644

is obtained by a linear layer without activation function, with a dimension of 4. The reconstruction645

likelihood is modeled as a Gaussian distribution, where the first two dimensions represent µx (the646

mean of the reconstruction likelihood) and the remaining dimension represents log σ2
x (the log647

variance of the reconstruction likelihood).648

The deep VAE is trained using the Adam optimizer [50] with a learning rate of 1e-5. The training set649

consists of a total of 10,000 data points.650

D Details of the Non-scaled Entropy Calibration Method651

We provide a pseudo code here for calculating the Cnon(x) of a testing sample x in Algorithm 1.652

Noted that, the maximum number of singular values N should be larger than nid.653

E Details of Experimental Setup654

E.1 Description of all Datasets655

For grayscale image datasets, we utilize the following datasets: FashionMNIST [40], MNIST [41],656

KMNIST [60], notMNIST [61], Omniglot [62], and several grayscale datasets transformed from657

RGB datasets. FashionMNIST is a dataset consisting of 60,000 grayscale images of Zalando’s article658
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Algorithm 1 Non-scaled dataset entropy calibration Cnon(x) algorithm
Input: Hyperparameter nid and its corresponding reconstruction error ϵ = Ex∼pid |xrecon − x|,
maximum number of singular values N , a testing sample x.
Ouput: Cnon(x).
Do SVD for the testing sample x;
for ni = 1 to N do

Calculate reconstruction error ϵi using ni singular values;
if ϵi ≤ ϵ then

break;
end if

end for
if ni < nid then

Calculate Cnon(x) = ni/nid;
else

Calculate Cnon(x) = (nid − (ni − nid))/nid;
end if
return Cnon(x)

pictures for training, and 10,000 images for testing. Each image is 28x28 pixels and belongs to one of659

the 10 classes. MNIST is a widely used dataset containing 70,000 grayscale images of handwritten660

digits. It consists of a training set of 60,000 images and a test set of 10,000 images. Each image is661

28x28 pixels. KMNIST is derived from the Kuzushiji Dataset and serves as a drop-in replacement662

for the MNIST dataset. It includes 70,000 grayscale images, each with a resolution of 28x28 pixels.663

notMNIST is a dataset composed of 547,838 grayscale images of glyphs extracted from publicly664

available fonts. The images are 28x28 pixels in size and cover letters A to J from various fonts.665

Omniglot contains 32,460 grayscale images of 1623 different handwritten characters from 50 distinct666

alphabets. Each image has a resolution of 28x28 pixels. Additionally, we have transformed several667

RGB datasets into grayscale versions, including CIFAR10-G, CIFAR100-G, SVHN-G, CelebA-G,668

SUN-G, and Places365-G.669

For RGB datasets, we utilize the following datasets: CIFAR10/CIFAR100 [42], SVHN [43], CelebA670

[63], Places365 [64], Flower102 [65], LFWPeople [66], SUN [67], STL10 [68], GTSRB [69],671

and DTD [70] datasets. CIFAR10 and CIFAR100 are datasets consisting of 32x32 color images.672

CIFAR10 contains 50,000 training images and 10,000 testing images, with 10 different classes.673

CIFAR100 has the same number of images but includes 100 classes. SVHN is a dataset obtained674

from Google Street View images, primarily used for recognizing digits and numbers in natural scene675

images. CelebA is a large-scale face attributes dataset containing over 200,000 celebrity images,676

each annotated with 40 attribute labels. Places365 is a dataset that includes 1.8 million training677

images from 365 scene categories. The validation set contains 50 images per category, and the testing678

set contains 900 images per category. Flower102 is an image classification dataset consisting of679

102 flower categories, with each class containing between 40 and 258 images. The selected flowers680

are commonly found in the United Kingdom. LFWPeople contains more than 13,000 images of681

faces collected from the web, making it a popular dataset for face-related tasks. SUN is a large-scale682

scene recognition dataset, covering a wide range of scenes from abbey to zoo. STL10 is an image683

recognition dataset designed for unsupervised feature learning. It includes labeled data from 10684

categories and unlabeled data from additional classes. GTSRB is a dataset specifically developed685

for the task of German traffic sign recognition. DTD is an evolving collection of textured images in686

various real-world settings. All images from these datasets are resized to the dimensions of 32x32x3687

before being used as input for the models.688

E.2 Description of all Baselines689

Following the categorization in LLRada [18], we provide a detailed description of each baseline690

within the three categories:691

• “Supervised” (Methods using in-distribution data labels y, which is the same as the “Label”692

category in LLRada [18]): maximum softmax classification probability (CP) method [1] and its693

variants, denoted as "CP", "CP(OOD)" with OOD as noise class, "CP(Cal)" with calibration on694
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OOD and "CP(Ent)" with entropy of softmax classification probability p(y|x), and Mahalanobis695

distance (MD) method [46], latent Mahalanobis distance (LMD) method [47], ODIN method [45],696

VIB method [5], LogitNorm (LN) method [9], GradNorm (GN) method [49], and deep ensembles697

(DE) method [48] with 20 classifiers;698

• “Auxiliary” (Methods using auxiliary knowledge assumptions about ID or OOD data type, which699

is the same as the “Prior” category in LLRada [18]): Likelihood Ratio (LR) method [39] with700

different backbones, denoted as "LR(PC)" with backbone PixcelCNN, "LR(VAE)" with VAE701

and "LR(BC)" with binary classifier), Outlier exposure (OE) method [44] and Input complexity702

(IC) method [13] with different backbones, denoted as "IC(PC)" with backbone PixcelCNN,703

"IC(Glow)" with backbone Glow and "IC(HVAE)" with backbone HVAE;704

• “Unsupervised” (Methods with no OOD-specific assumptions): Ensemble methods: WAIC705

method [26] with different backbones, denoted as "WAIC (5Glow)" with 5 Glow models, "WAIC706

(5VAE)" with 5 VAE models and "WAIC (5PC)" with 5 PixcelCNN models; Not ensembles707

methods: Likelihood regret (LRe) method [14], Log-Likelihood Ratio (HVK) method [17],708

adaptive Log-Likelihood Ratio (LLRada) method [18].709

E.3 Details of the Implementation710

The encoder of the VAE is implemented as a 3-layer convolutional network with kernel numbers711

of 32, 64, and 128, and strides of 1, 2, and 2, respectively. The ReLU [71] activation function is712

applied. The output layer consists of a linear layer that outputs the mean and log-variance of the713

latent variables, with a dimension of 200.714

On the other hand, the decoder takes the reparameterized latent variables as input and utilizes a715

3-layer transposed convolutional network. The network has kernel numbers of 128, 64, and 32, and716

strides of 2, 2, and 1, respectively. The ReLU activation function is used. Finally, the output layer717

is parameterized by a convolutional layer that models the distribution as a discretized mixture of718

logistics.719

In the PHP method, an LSTM is employed as the backbone [72]. The hidden size of the LSTM is720

set to 64, and the outputted hidden state is fed into a 3-layer linear network. The hidden sizes of the721

linear layers are 64, 32, and 2, respectively. The ReLU activation function is applied to the first two722

layers. The optimizer used for learning the q(z) distribution is Adam, and the learning rate is set to723

1e-4.724

F More Ablation Study Results on Verifying the Post-hoc Prior725

We evaluate the effectiveness of the PHP method on additional datasets as shown in Table 4.

Table 4: The comparisons of the OOD detection performance of our method on more datasets. The
new score function only has post-hoc prior part.

ID FashionMNIST ID CIFAR10
OOD AUROC ↑ AUPRC ↑ FPR80 ↓ OOD AUROC ↑ AUPRC ↑ PFR80 ↓

ELBO / PHP (ours) ELBO / PHP (ours)
KMNIST 60.03 / 72.98 54.60 / 69.34 61.6 / 48.1 CIFAR100 52.91 / 55.00 51.15 / 54.01 77.42 / 70.23
Omniglot 99.86 / 99.90 99.89 / 99.89 0.00 / 0.00 CelebA 57.27 / 70.91 54.51 / 72.16 69.03 / 52.95

notMNIST 94.12 / 94.39 94.09 / 94.35 8.29 / 7.79 Places365 57.24 / 57.36 56.96 / 56.55 73.13 / 52.95
CIFAR10-G 98.01 / 98.84 98.24 / 99.13 1.20 / 0.30 LFWPeople 64.15 / 64.57 59.71 / 65.20 59.44 / 64.74
CIFAR100-G 98.49 / 98.50 97.49 / 97.50 1.00 / 0.90 SUN 53.14 / 53.27 54.48 / 54.67 79.52 / 78.12

SVHN-G 95.61 / 96.00 96.20 / 97.13 3.00 / 0.60 STL10 49.37 / 51.07 47.79 / 49.69 78.02 / 75.02
CelebA-G 97.33 / 97.71 94.71 / 95.62 3.00 / 2.20 Flowers102 67.68 / 67.76 64.68 / 64.75 57.94 / 57.63

SUN-G 99.16 / 99.26 99.39 / 99.40 0.00 / 0.00 GTSRB 39.50 / 52.62 41.73 / 50.81 86.61 / 75.12
Places365-G 98.92 / 98.96 98.05 / 98.95 0.80 / 0.60 DTD 37.86 / 43.38 40.93 / 43.99 82.22 / 80.12

Const 94.94 / 95.08 97.27 / 97.35 1.80 / 0.00 Const 0.001 / 15.70 30.71 / 30.78 100.0 / 86.62
Random 99.80 / 99.81 99.90 / 99.90 0.00 / 0.00 Random 71.81 / 72.52 82.89 /83.42 85.71 / 85.00

726
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G More Ablation Study Results on Verifying the Dataset Entropy Calibration727

We evaluate the effectiveness of the DEC method on additional datasets as shown in Table 5.

Table 5: The comparisons of the OOD detection performance of our method on more datasets. The
new score function only has dataset entropy calibration part.

ID FashionMNIST ID CIFAR10
OOD AUROC ↑ AUPRC ↑ FPR80 ↓ OOD AUROC ↑ AUPRC ↑ PFR80 ↓

ELBO / DEC (ours) ELBO / DEC (ours)
KMNIST 60.03 / 60.54 54.60 / 55.18 61.6 / 60.3 CIFAR100 52.91 / 54.69 51.15 / 52.98 77.42 / 73.23
Omniglot 99.86 / 99.91 99.89 / 99.94 0.00 / 0.00 CelebA 57.27 / 69.00 54.51 / 61.83 69.03 / 50.93

notMNIST 94.12 / 94.50 94.09 / 93.61 8.29 / 6.89 Places365 57.24 / 68.14 56.96 / 65.16 73.13 / 64.26
CIFAR10-G 98.01 / 99.31 98.24 / 99.25 1.20 / 0.40 LFWPeople 64.15 / 67.84 59.71 / 60.28 59.44 / 54.75
CIFAR100-G 98.49 / 98.81 97.49 / 98.05 1.00 / 0.90 SUN 53.14 / 60.55 54.48 / 60.67 79.52 / 68.75

SVHN-G 95.61 / 97.06 96.20 / 97.92 3.00 / 0.00 STL10 49.37 / 64.16 47.79 / 61.76 78.02 / 67.65
CelebA-G 97.33 / 97.69 94.71 / 95.94 3.00 / 2.10 Flowers102 67.68 / 75.59 64.68 / 77.84 57.94 / 46.48

SUN-G 99.16 / 99.58 99.39 / 99.67 0.00 / 0.00 GTSRB 39.50 / 48.35 41.73 / 45.59 86.61 / 73.83
Places365-G 98.92 / 99.14 98.05 / 98.77 0.80 / 0.60 DTD 37.86 / 70.36 40.93 / 60.02 82.22 / 64.16

Const 94.94 / 99.31 97.27 / 99.25 1.80 / 0.40 Const 0.001 / 76.20 30.71 / 83.27 100.0 / 58.04
Random 99.80 / 100.0 99.90 / 100.0 0.00 / 0.00 Random 71.81 / 99.53 82.89 / 99.73 85.71 / 0.000

728

H Error Bar729

We conduct random experiments on all grayscale and RGB datasets for 5 trials using the trainable730

methods (ELBO, PHP, and AVOID methods). The average error rates are presented in Table H, and it731

can be observed that the error rates are similar across these methods.732

Datasets Grayscale datasets RGB datasets
Method ELBO PHP AVOID ELBO PHP AVOID

Avg. error ±0.788 ±0.512 ±0.613 ±1.408 ±1.579 ±1.649

I Broader Impact733

The impact of our research can be outlined in two key aspects:734

• For Unsupervised OOD Detection: Our approach stands out due to its broad applicability and735

versatility. Unlike many conventional methods, it does not require labeled data and it can be736

applied to model the distribution of diverse data types using deep generative models. This is737

particularly useful in applications where labeled data is scarce or unavailable. Additionally, our738

method provides a universal solution to enhance OOD detection performance. This is achieved by739

offering an innovative perspective on the overestimation issue in VAE, which is not predicated on740

the data type.741

• For the development of deep generative models: Our research offers valuable insights for the742

progression of deep generative models. By employing the KL divergence, DKL(q(z)||p(z)),743

our method can provide verification of whether a generative model has adequately learned to744

model the data distribution. These insights could potentially spark new developments and inspire745

more representative generative models, thereby furthering the field of deep learning research and746

applications.747

In conclusion, our research holds promising potential to provide substantial contributions to both the748

realm of unsupervised OOD detection and the development of deep generative models.749

J Limitation750

The primary limitation of this paper lies in the simplicity of the developed methods, which could751

potentially under-explore the full capabilities of our method on unsupervised OOD detection. This752
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design choice is deliberated to allow readers to focus more on our central theme: the analysis of the753

overestimation issue in VAE. We aim to create methods as straightforward as possible, with the express754

purpose of verifying the analyzed factors, while introducing as few additional hyperparameters as755

possible. This approach is intended to provide readers with greater insight into our analysis, as well756

as inspire them to develop their own advanced methods based on our analysis. We provide examples757

and helpful insights into our work through Figures 4 and 5. While acknowledging the aforementioned758

limitation, we posit that our analysis can pave the way for the creation of more advanced methods.759

These enhanced approaches can potentially lead to further improvements in the performance of760

unsupervised OOD detection. Our work, therefore, should be seen as a stepping stone towards more761

sophisticated applications in this field.762
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