
Supplementary Materials for “Pareto-Frontier-aware Neural
Architecture Search”

In the supplementary, we provide more discussions, more implementation details, and more experi-
mental results of the proposed PFNAS. We organize the supplementary material as follows.

• In Section A, we provide the derivations of the objective function of the controller model.

• In Section B, we give more discussions on the pairwise ranking loss.

• In Section C, we conduct analyses of the size of the considered search space.

• In Section D, we provide the detailed model design of our PFNAS.

• In Section E, we give more details on the constraint representation method of PFNAS.

• In Section F, we provide more training and inference details of PFNAS.

• In Section G, we investigate the effect of K on the search performance of PFNAS.

• In Section H, we show the training curves of the architecture evaluator and the controller.

• In Section I, we show the latency histograms of the architectures searched by PFNAS under
different budgets.

• In Section J, we provide more results on CPU devices.

• In Section K, we provide more results on GPU devices.

• In Section L, we visualize all the searched architectures on three hardware platforms.

A DERIVATIONS OF THE OBJECTIVE FUNCTION

The objective function of the controller in PFNAS can be formulated as

J(θ) = ET∼T
[
Eα

T
∼π(·|T ;θ) [R (αT |T ;w)] + λH

(
π(·|T ; θ)

)]
=
∑
T

p(T)

∑
α

T

π(αT |T ; θ)R (αT |T ;w) + λH
(
π(·|T ; θ)

) . (1)

Let p(T) be the probability to sample a specific latency T from the distribution T . The gradient of
the objective function w.r.t. θ can be computed by

∇θJ(θ) =
∑
T

p(T)

∑
α

T

∇θπ(αT |T ; θ)R (αT |T ;w) + λ∇θH
(
π(·|T ; θ)

)
=
∑
T

p(T)

∑
α

T

π(αT |T ; θ)∇θ log π(αT |T ; θ)R (αT |T ;w) + λ∇θH
(
π(·|T ; θ)

)
= Eα

T
∼π(·|T ;θ),T∼T

[
∇θ log π(αT |T ; θ)R (αT |T ;w) + λ∇θH

(
π(·|T ; θ)

)]
≈ 1

KN

K∑
k=1

N∑
i=1

[
∇θ log π(α

(i)
Tk
|Tk; θ)R(α

(i)
Tk
|Tk;w) + λ∇θH(π(·|Tk; θ))

]
.

(2)

B MORE DISCUSSIONS ON THE PAIRWISE RANKING LOSS

In this section, we provide more discussions on the pairwise ranking loss (Freund et al., 2003; Burges
et al., 2005; Chen et al., 2009). To provide a reward for PFNAS, we propose a Pareto dominance rule
and learn an architecture evaluator to match it. Based on M architectures that are uniformly sampled
from the search space, we construct M(M − 1) architecture pairs after omitting the pairs with the

1

same architectures. Given K different budgets, we train the architecture evaluator by minimizing the
following loss function

L(w) =
1

KM(M−1)

K∑
k=1

M∑
i=1

M∑
j=1,j 6=i

φ
(

(R(βi|Tk;w)−R(βj |Tk;w)) · d(βi, βj , Tk)
)
, (3)

where φ(z) = max(0, 1− z) is the hinge loss function. The goal of minimizing Eqn. (3) is to make
the architecture evaluator R(βi|Tk;w) rank different architectures under the budgets w.r.t. Tk. To this
end, given any two architectures βi and βj , we use the hinge loss φ(·) to force the predicted ranking
result R(βi|Tk;w)−R(βj |Tk;w) to be consistent with the ranking result d(βi, βj , Tk) obtained by
the comparison rules. Based on the pretrained evaluator, given an arbitrary architecture and a target
latency, we are able to obtain a score/reward that indicates whether the architecture is good under the
budget w.r.t. the considered latency.

C SEARCH SPACE SIZE ANALYSIS

In this section, we analyze the size of the considered search space. We use MobileNetV3 (Howard
et al., 2019) as the backbone to build the search space (Cai et al., 2020; Huang & Chu, 2020).
Specifically, we divide a network into several units, each of which contains a sequence of layers
where only the first layer has a stride of 2. To find promising architectures, we allow each unit to
have 1) any numbers of layers (i.e., depth) that can be chosen from {2, 3, 4}, 2) any width expansion
ratios in each layer (i.e., width) that can be chosen from {3, 4, 6}, and 3) any kernel sizes that can be
chosen from {3, 5, 7}. Following (Cai et al., 2020), we build the model with 5 units Thus, there are
3×3 combinations of widths and kernel sizes for each layer. Given 3 different depths and 5 units,
there are roughly

(
(3×3)2+(3×3)3+(3×3)4

)5≈2×1019 different architectures in the search space.

D MODEL DESIGN OF ARCHITECTURE EVALUATOR AND CONTROLLER

In this section, we provide the detailed model design of the architecture evaluator and the controller
model. We show the architecture in Figure A. We build the architecture evaluator with a three-layer
fully connected network and each of them is followed by a ReLU (Nair & Hinton, 2010) activation
layer. We set the number of intermediate neurons to 512 (See Figure A(a)). As for the controller,
we use an LSTM to build the model(See Figure A(b)). Since the architecture can be represented by
a sequence of tokens (Zoph & Le, 2017; Pham et al., 2018), the LSTM based controller is able to
produce architectures by sequentially predicting the token sequences, including depth, width, and
kernel size.

𝑇

FC + ReLU

FC + ReLU

FC + ReLU

𝛼#
(a) Architecture evaluator.

Select
Depth

LSTM LSTM LSTM

Select
Width

Select
Kernel Size

(b) Pareto-Frontier-aware controller.

Figure A: Model design of the architecture evaluator and the Pareto-Frontier-aware controller.

E MORE DETAILS ON CONSTRAINT REPRESENTATION METHOD

In the experiments, we select K discrete latency budget constraints by evenly dividing the range
(e.g., {80, 110, 140, 170, 200} on mobile devices with K = 5). Following (Pham et al., 2018), we
randomly sample a budget from the K discrete latency budgets and use its embedding to train the
PFNAS model. To represent any latency budget T during inference, we perform a linear interpolation
between the embedding of two adjacent discrete latencies. Specifically, given two adjacent discrete

2

latency T1 and T2 as well as a desired latency T1 ≤ T̂ ≤ T2, we can calculate T̂ by a linear
interpolation as

T̂ = λT1 + (1− λ)T2, (4)

where λ ∈ [0, 1] denotes the weight of the linear interpolation. Thus, we have λ = (T2−T̂)/(T2−T1).
Then, we construct the embedding ẑ w.r.t. latency T̂ by

ẑ = λz1 + (1− λ)z2, (5)

where z1 and z2 are the embedding of T1 and T2, respectively. With the representation of any latency
T , PFNAS generates the Pareto frontier over a range of diverse latency budgets.

F MORE TRAINING AND EVALUATION DETAILS

In this section, we give more training and evaluation details of the proposed PFNAS. More details
can be founded in our submitted code.

Training details. We first train the architecture evaluator and then train the controller model. During
training, we train the architecture evaluator for 250 epochs. We apply the SGD optimizer with
the weight decay of 3×10−5 and the momentum of 0.9. The learning rate is initialized to 0.1 and
decreased to 1×10−3 with a cosine annealing. The minibatch size is set to 32. As for the controller,
we use Adam optimizer with a learning rate of 3 × 10−4 and train the model for 6, 000 epochs.
Following ENAS (Pham et al., 2018), we sample N=1 architecture at each iteration and find that it
works fine. We first collect M=16, 000 architectures by uniformly sampling architectures from the
search space Ω and obtain the latency ranges on three hardware platforms. Then, we select K=5
latency budgets by evenly dividing the range (e.g., {80, 110, 140, 170, 200} on Google Pixel1 phone).
The hyper-parameter λ is set to 1×10−3 for balancing the entropy regularization term.

Evaluation details. Based on the learned policy π(·|T ; θ), we first sample several candidate archi-
tectures from π(·|T ; θ) and then select the architecture with the highest validation accuracy from
the architectures with c(αT) ≤ T . To accelerate the inference, following (Cai et al., 2020), we train
two predictors to predict the latency and validation accuracy, respectively. After that, we deploy
the resultant architecture to hardware platforms and measure the running latency and test accuracy.
To measure the latency on hardware platforms, we deploy the resultant architectures to different
devices and measure the latency over a batch of images. Specifically, we measure the latency on
mobile and CPU devices with a batch size of 1. Since the inference on GPU is too fast to obtain the
accurate latency, we measure the latency with the batch size of 64 on NVIDIA TITAN X. Following
OFA (Cai et al., 2020), we directly apply the weights from the learned super network to the searched
architectures and evaluate different architectures on ImageNet. For a fair comparison, on three
hardware platforms, we do not finetune the resultant models obtained by all the considered methods,
including OFA (Cai et al., 2020), OFA-S, OFA-MO, and our PFNAS.

G EFFECT OF K ON THE SEARCH PERFORMANCE OF PFNAS

In this part, we investigate the effect of K on the search performance of PFNAS. Note that we
evenly select K budgets from the range of latency (e.g., given K=5, the selected latencies are
{80, 110, 140, 170, 200}) on Google Pixel1 phone. To investigate the effect ofK, we consider several
candidate values of K ∈ {2, 5, 10, 30, 75}. We use Ps to denote the average over K proportions of
the searched architectures satisfying the corresponding budget constraints. From Table A, since a
larger K corresponds to a more difficult optimization problem, Ps would decrease when we gradually
increase K from 2 to 75. It is worth noting that, even with a very large K=75, our method still
achieves promising performance. These results demonstrate the effectiveness of the proposed PFNAS
method under diverse budgets.

H TRAINING CURVES OF PFNAS

In this section, we show the training curves of the architecture evaluator and the controller model
in Figure B. As shown in Figure B(a), by minimizing the pairwise ranking loss, the architecture

3

Table A: Effect ofK on the search performance of PFNAS. Ps denotes the average overK proportions
of the searched architectures that satisfy the corresponding budgets.

K 2 5 10 30 75

Ps (%) 89.1 75.4 73.4 70.7 66.8

evaluator is able to converge very fast. Based on the pretrained architecture evaluator, the controller
can be effectively trained to obtain higher rewards gradually (See Figure B(b)). Since we train the
controller over a set of diverse budgets, our PFNAS is able to find the promising architectures under
diverse budgets.

0 50 100 150 200 250
Epoch

0

0.1

0.2

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 L
os

s

Architecture Evaluator

(a) Training loss evolution of the archi-
tecture evaluator.

0 1000 2000 3000 4000 5000 6000
Epoch

0

10

20

30

40

R
ew

ar
d

Controller

(b) Reward evolution of PFNAS.

Figure B: Training loss and reward evolution of the architecture evaluator and the controller.

I LATENCY HISTOGRAMS OF SEARCHED ARCHITECTURES

In this section, we show the latency histograms of the searched architectures by OFA-MO and our
PFNAS under 5 latency budgets. We show the results in Figure C. From these figures, our PFNAS is
able to find the architectures satisfy the corresponding budget with higher probability than OFA-MO
under different budgets. As mentioned in Section 4.3 in the paper, even if there exist only a few
architectures whose latency is lower than 80ms, we still produce a lot of architectures satisfying the
budget constraint. These results demonstrate the effectiveness of the proposed method.

J MORE RESULTS ON CPU DEVICES

In this section, we compare PFNAS with state-of-the-art methods on Intel Core i5-7400 CPU under
the latency budgets of 30ms, 35ms, 40ms, 45ms, and 50ms, respectively. We show the results in
Table B. From Table B, PFNAS outperforms state-of-the-art architectures under different latency
budgets. Specifically, given any latency budget, the architectures searched by PFNAS consistently
yield better performance than the considered baseline methods, including OFA-S and OFA-MO.
More critically, our PFNAS only need to search once to produce promising architectures that satisfy
different latency budgets accordingly, while previous methods need to repeat the search process
according to different budgets. These results show the convenience and effectiveness of our PFNAS
on CPU devices.

K MORE RESULTS ON GPU DEVICES

In this section, we compare PFNAS with the state-of-the-art methods on NVIDIA TITAN X GPU.
Given a set of latency budgets {90, 115, 140, 165, 190}, PFNAS only need to search once to produce
different architectures. From Table C, PFNAS yields higher accuracy than other methods with similar
latency budgets. Specifically, PFNAS performs better than OFA-S and OFA-MO under different
latency budgets. Besides, the performance of PFNAS is better than those of hand-crafted methods

4

(a) Search results with T=80ms. (b) Search results with T=110ms. (c) Search results with T=140ms.

(d) Search results with T=170ms. (e) Search results with T=200ms.

Figure C: Comparisons of the search results given different resource budgets on Google Pixel1.

(e.g., ResNet (He et al., 2016) and MobileNetV2 (Sandler et al., 2018)) and those of NAS methods
that perform the search process without computational cost constraints (e.g., DARTS (Liu et al., 2019)
and ENAS (Pham et al., 2018)).

L VISUALIZATION OF THE SEARCHED ARCHITECTURES

In this section, we visualize the architectures searched by PFNAS under different budgets. We show
the searched architectures on mobile phone, CPU, and GPU in Figures D, E, and F, respectively. For
convenience, we use “Architecture-T -Hardware” to represent the searched architecture under the
budge w.r.t. T on a specific hardware platform, e.g., PFNAS-80-Mobile. From these figures, our
PFNAS tends to find the architectures with larger depth, width, and kernel size under a larger budget
constraint. More critically, from Tables 1, B, C, the resultant architectures often have the latency very
close to the considered budget. These results show that our method is able to sufficiently exploit the
given resource budget to find promising architectures.

5

Table B: Comparisons with state-of-the-art architectures on Intel Core i5-7400 CPU. ∗ denotes the
best architecture reported in the original paper. All the models are evaluated on 224× 224 images of
ImageNet. “-” denotes the results that are not reported. We obtain the accuracy without finetuning.

Architecture Latency (ms) Top-1 Acc. (%) Top-5 Acc. (%) #Params. (M) #MAdds (M)

ENAS (Pham et al., 2018) 66.6 73.8 91.7 5.6 607
DARTS (Liu et al., 2019) 83.9 73.3 91.3 4.7 574

NASNet-A (Zoph et al., 2018) 93.7 74.0 91.6 5.3 564
P-DARTS (Chen et al., 2019) 134.0 75.6 92.6 4.9 577
PC-DARTS (Xu et al., 2020) 99.4 75.8 92.7 5.3 597

MobileNetV2 (1.0×) (Sandler et al., 2018) 28.6 72.0 - 3.4 300
MobileNetV3-Large (1.0×) (Howard et al., 2019) 22.6 75.2 - 5.4 219

MnasNet-A1 (1.0×) (Tan et al., 2019) 26.4 75.2 92.5 3.4 300
FBNet-C (Wu et al., 2019) 25.7 74.9 - 5.5 375

OFA-S-30 29.8 76.9 93.0 5.7 343
OFA-MO-30 29.7 77.5 93.7 6.6 353

PFNAS-30 (Ours) 29.7 77.7 93.7 7.6 335

ProxylessNAS-CPU (Cai et al., 2019) 34.6 75.3 - 4.4 438
MnasNet-A1 (1.4×) (Tan et al., 2019) 34.6 77.2 93.5 6.1 592

OFA (Cai et al., 2020) 34.5 78.1 94.0 8.2 354
OFA-S-35 34.9 77.8 93.8 7.6 406

OFA-MO-35 34.7 78.3 94.0 7.9 478
PFNAS-35 (Ours) 34.5 78.4 94.1 8.4 431

ResNet-18 (He et al., 2016) 38.6 69.8 90.1 11.7 1814
EfficientNet B0 (Tan & Le, 2019) 39.1 77.3 93.5 5.3 390

OFA (Cai et al., 2020) 36.3 78.4 94.1 8.4 388
OFA-S-40 39.5 78.2 94.1 8.2 495

OFA-MO-40 39.3 78.6 94.3 8.3 491
PFNAS-40 (Ours) 39.6 78.6 94.4 9.4 502

MobileNetV2 (1.4×) (Sandler et al., 2018) 42.6 74.7 - 6.9 585
OFA (Cai et al., 2020) 43.2 78.8 94.4 9.1 481

OFA-S-45 45.0 78.3 94.2 8.2 548
OFA-MO-45 43.7 78.8 94.4 9.3 626

PFNAS-45 (Ours) 44.7 79.0 94.5 10.4 620

PONAS-C (Huang & Chu, 2020) 52.2 75.2 - 5.6 376
OFA∗ (Cai et al., 2020) 47.4 78.9 94.5 9.1 511

OFA-S-50 49.8 78.5 94.2 7.5 600
OFA-MO-50 46.7 78.9 94.4 9.1 632

PFNAS-50 (Ours) 48.9 79.1 94.6 10.5 682

6

Table C: Comparisons with state-of-the-art architectures on NVIDIA TITAN X GPU. ∗ denotes the
best architecture reported in the original paper. All the models are evaluated on 224× 224 images of
ImageNet. “-” denotes the results that are not reported. We obtain the accuracy without finetuning.

Architecture Latency (ms) Top-1 Acc. (%) Top-5 Acc. (%) #Params. (M) #MAdds (M)

DARTS (Liu et al., 2019) 82.5 73.3 91.3 4.7 574
P-DARTS (Chen et al., 2019) 86.2 75.6 92.6 4.9 577
PC-DARTS (Xu et al., 2020) 85.3 75.8 92.7 5.3 597
FBNet-A (Wu et al., 2019) 53.3 73.0 - 4.3 249
FBNet-B (Wu et al., 2019) 79.4 74.1 - 4.5 295
FBNet-C (Wu et al., 2019) 89.5 74.9 - 5.5 375

ProxylessNAS-GPU (Cai et al., 2019) 84.7 75.1 - 7.1 463
MobileNetV2 (1.0×) (Sandler et al., 2018) 71.6 72.0 - 3.4 300

OFA-S-90 88.8 76.2 92.9 5.8 320
OFA-MO 89.8 75.4 92.4 4.9 266

PFNAS-90 (Ours) 86.9 77.4 93.6 7.7 310

MobileNetV2 (1.4×) (Sandler et al., 2018) 107.1 74.7 - 6.9 585
ProxylessNAS-CPU (Cai et al., 2019) 102.1 75.3 - 4.4 438
MnasNet-A1 (1.4×) (Tan et al., 2019) 112.9 77.2 93.5 6.1 592

EfficientNet B0 (Tan & Le, 2019) 115.5 77.3 93.5 5.3 390
ENAS (Pham et al., 2018) 110.8 73.8 91.7 5.6 607

OFA (Cai et al., 2020) 105.4 78.4 94.1 8.4 388
OFA-S-115 114.9 76.5 93.0 6.1 362
OFA-MO 111.2 78.1 94.0 8.8 431

PFNAS-115 (Ours) 111.2 78.3 94.1 8.9 411

OFA (Cai et al., 2020) 135.7 78.9 94.4 9.1 481
OFA-S-140 139.7 77.8 93.7 7.1 415
OFA-MO 137.2 78.4 94.1 8.8 470

PFNAS-140 (Ours) 138.9 78.6 94.4 9.7 510

ResNet-50 (He et al., 2016) 159.8 76.2 92.9 25.6 4087
OFA∗ (Cai et al., 2020) 145.7 78.9 94.5 9.1 511

OFA-S-165 164.8 77.8 93.8 7.0 479
OFA-MO 162.6 78.8 94.4 10.5 583

PFNAS-165 (Ours) 162.7 78.9 94.4 10.5 582

NASNet-A (Zoph et al., 2018) 162.3 74.0 91.6 5.3 564
DenseNet-121 (Huang et al., 2017) 172.8 75.0 92.3 8.0 2833

PONAS (Huang & Chu, 2020) 182.4 75.2 - 5.6 376
EfficientNet B1 (Tan & Le, 2019) 192.7 79.2 94.5 7.8 700

OFA-S-190 190.0 78.4 94.2 7.5 533
OFA-MO 183.2 78.8 94.5 10.7 652

PFNAS-190 (Ours) 185.5 79.2 94.6 10.4 640

7

M
B4

 3
x3

M
B6

 5
x5

Po
ol

in
g

FC

Co
nv

 3
x3

M
B1

 3
x3

M
B3

 3
x3

M
B4

 3
x3

M
B6

 5
x5

M
B3

 3
x3

M
B6

 3
x3

M
B6

 5
x5

M
B3

 3
x3

M
B3

 5
x5

M
B4

 3
x3

M
B4

 5
x5

M
B4

 3
x3

M
B3

 7
x7

(a) PFNAS-80-Mobile.

M
B6

 5
x5

Po
ol

in
g

FC

Co
nv

 3
x3

M
B1

 3
x3

M
B4

 3
x3

M
B6

 5
x5

M
B6

 7
x7

M
B6

 7
x7

M
B6

 5
x5

M
B4

 3
x3

M
B4

 3
x3

M
B4

 5
x5

M
B3

 5
x5

M
B3

 5
x5

M
B3

 3
x3

M
B6

 5
x5

M
B3

 5
x5

M
B6

 3
x3

M
B6

 5
x5

(b) PFNAS-110-Mobile.

M
B6

 5
x5

Po
ol

in
g

FC

Co
nv

 3
x3

M
B1

 3
x3

M
B6

 3
x3

M
B6

 7
x7

M
B6

 5
x5

M
B6

 5
x5

M
B4

 5
x5

M
B6

 5
x5

M
B6

 5
x5

M
B6

 5
x5

M
B6

 3
x3

M
B3

 3
x3

M
B4

 5
x5

M
B4

 5
x5

M
B4

 5
x5

M
B3

 5
x5

M
B3

 5
x5

M
B4

 5
x5

M
B3

 5
x5

(c) PFNAS-140-Mobile.
M

B6
 5

x5

Po
ol

in
g

FC

Co
nv

 3
x3

M
B1

 3
x3

M
B6

 3
x3

M
B6

 7
x7

M
B6

 5
x5

M
B6

 3
x3

M
B4

 5
x5

M
B6

 7
x7

M
B6

 5
x5

M
B6

 5
x5

M
B6

 5
x5

M
B6

 5
x5

M
B6

 5
x5

M
B6

 5
x5

M
B4

 3
x3

M
B4

 5
x5

M
B6

 5
x5

M
B4

 5
x5

M
B4

 5
x5

M
B4

 5
x5

(d) PFNAS-170-Mobile.

M
B6

 3
x3

Po
ol

in
g

FC

Co
nv

 3
x3

M
B1

 3
x3

M
B6

 3
x3

M
B6

 5
x5

M
B6

 3
x3

M
B6

 3
x3

M
B6

 5
x5

M
B6

 3
x3

M
B6

 5
x5

M
B6

 5
x5

M
B6

 3
x3

M
B6

 7
x7

M
B6

 5
x5

M
B6

 5
x5

M
B4

 5
x5

M
B6

 5
x5

M
B6

 5
x5

M
B6

 5
x5

M
B6

 7
x7

M
B6

 5
x5

M
B6

 5
x5

(e) PFNAS-200-Mobile.

Figure D: Architectures searched by PFNAS on Google Pixel1 phone.

8

M
B3

 5
x5

M
B4

 7
x7

M
B3

 7
x7

M
B4

 5
x5

M
B4

 5
x5

M
B6

 5
x5

Po
ol

in
g

FC

Co
nv

 3
x3

M
B1

 3
x3

M
B3

 5
x5

M
B4

 5
x5

M
B3

 5
x5

M
B3

 5
x5

M
B6

 3
x3

M
B6

 7
x7

M
B6

 5
x5

(a) PFNAS-30-CPU.

M
B4

 7
x7

M
B6

 5
x5

Po
ol

in
g

FC

Co
nv

 3
x3

M
B1

 3
x3

M
B3

 5
x5

M
B4

 5
x5

M
B6

 5
x5

M
B6

 7
x7

M
B6

 7
x7

M
B4

 3
x3

M
B6

 5
x5

M
B3

 7
x7

M
B6

 5
x5

M
B6

 7
x7

M
B6

 5
x5

M
B6

 7
x7

(b) PFNAS-35-CPU.

M
B4

 5
x5

M
B6

 3
x3

Po
ol

in
g

FC

Co
nv

 3
x3

M
B1

 3
x3

M
B4

 7
x7

M
B6

 5
x5

M
B6

 3
x3

M
B6

 3
x3

M
B4

 3
x3

M
B6

 7
x7

M
B6

 7
x7

M
B4

 5
x5

M
B4

 5
x5

M
B4

 7
x7

M
B6

 5
x5

M
B6

 3
x3

M
B4

 3
x3

M
B4

 7
x7

M
B4

 7
x7

(c) PFNAS-40-CPU.

M
B6

 3
x3

Po
ol

in
g

FC

Co
nv

 3
x3

M
B1

 3
x3

M
B6

 7
x7

M
B6

 7
x7

M
B6

 3
x3

M
B6

 7
x7

M
B6

 7
x7

M
B4

 7
x7

M
B6

 5
x5

M
B6

 3
x3

M
B6

 5
x5

M
B6

 7
x7

M
B6

 7
x7

M
B6

 7
x7

M
B6

 7
x7

M
B6

 7
x7

M
B6

 7
x7

M
B6

 7
x7

(d) PFNAS-45-CPU.

M
B6

 7
x7

Po
ol

in
g

FC

Co
nv

 3
x3

M
B1

 3
x3

M
B6

 7
x7

M
B6

 5
x5

M
B6

 3
x3

M
B6

 7
x7

M
B6

 7
x7

M
B4

 5
x5

M
B6

 7
x7

M
B6

 7
x7

M
B6

 7
x7

M
B6

 5
x5

M
B6

 7
x7

M
B6

 7
x7

M
B6

 7
x7

M
B6

 7
x7

M
B6

 7
x7

M
B6

 7
x7

M
B4

 3
x3

M
B4

 3
x3

(e) PFNAS-50-CPU.

Figure E: Architectures searched by PFNAS on Intel Core i5-7400 CPU.

9

M
B3

 3
x3

M
B3

 3
x3

M
B4

 3
x3

M
B4

 3
x3

M
B6

 3
x3

Po
ol

in
g

FC

Co
nv

 3
x3

M
B1

 3
x3

M
B3

 3
x3

M
B4

 3
x3

M
B3

 5
x5

M
B3

 5
x5

M
B6

 5
x5

M
B6

 3
x3

M
B3

 7
x7

M
B3

 5
x5

M
B3

 7
x7

(a) PFNAS-90-GPU.
M

B4
 5

x5

M
B6

 7
x7

Po
ol

in
g

FC

Co
nv

 3
x3

M
B1

 3
x3

M
B4

 5
x5

M
B6

 3
x3

M
B6

 7
x7

M
B6

 7
x7

M
B6

 5
x5

M
B4

 3
x3

M
B4

 3
x3

M
B4

 3
x3

M
B4

 5
x5

M
B4

 5
x5

M
B3

 3
x3

M
B3

 3
x3

M
B3

 5
x5

M
B4

 5
x5

(b) PFNAS-115-GPU.

M
B4

 5
x5

M
B6

 7
x7

Po
ol

in
g

FC

Co
nv

 3
x3

M
B1

 3
x3

M
B6

 3
x3

M
B6

 7
x7

M
B6

 5
x5

M
B6

 5
x5

M
B6

 5
x5

M
B4

 3
x3

M
B4

 5
x5

M
B4

 5
x5

M
B6

 5
x5

M
B6

 5
x5

M
B4

 7
x7

M
B4

 5
x5

M
B3

 3
x3

M
B6

 7
x7

M
B6

 5
x5

(c) PFNAS-140-GPU.

M
B6

 7
x7

Po
ol

in
g

FC

Co
nv

 3
x3

M
B1

 3
x3

M
B6

 7
x7

M
B6

 7
x7

M
B6

 7
x7

M
B6

 5
x5

M
B6

 7
x7

M
B4

 3
x3

M
B6

 5
x5

M
B6

 5
x5

M
B6

 7
x7

M
B6

 5
x5

M
B6

 5
x5

M
B6

 7
x7

M
B6

 5
x5

M
B6

 7
x7

M
B6

 5
x5

M
B4

 7
x7

M
B3

 3
x3

(d) PFNAS-165-GPU.

M
B6

 3
x3

Po
ol

in
g

FC

Co
nv

 3
x3

M
B1

 3
x3

M
B6

 7
x7

M
B6

 7
x7

M
B6

 7
x7

M
B6

 5
x5

M
B6

 7
x7

M
B4

 3
x3

M
B6

 7
x7

M
B6

 5
x5

M
B6

 7
x7

M
B6

 5
x5

M
B6

 3
x3

M
B6

 5
x5

M
B6

 3
x3

M
B6

 7
x7

M
B6

 7
x7

M
B4

 3
x3

M
B4

 3
x3

M
B6

 5
x5

(e) PFNAS-190-GPU.

Figure F: Architectures searched by PFNAS on NVIDIA TITAN X GPU.

10

REFERENCES

Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and Greg
Hullender. Learning to rank using gradient descent. In International Conference on Machine
Learning, pp. 89–96, 2005.

Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search on target task
and hardware. In International Conference on Learning Representations, 2019.

Han Cai, Chuang Gan, and Song Han. Once for all: Train one network and specialize it for efficient
deployment. In International Conference on Learning Representations, 2020.

Wei Chen, Tie-Yan Liu, Yanyan Lan, Zhi-Ming Ma, and Hang Li. Ranking measures and loss
functions in learning to rank. In Advances in Neural Information Processing Systems, pp. 315–323,
2009.

Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture search: Bridging
the depth gap between search and evaluation. In Proceedings of the IEEE International Conference
on Computer Vision, pp. 1294–1303, 2019.

Yoav Freund, Raj Iyer, Robert E Schapire, and Yoram Singer. An efficient boosting algorithm for
combining preferences. Journal of Machine Learning Research, 4(Nov):933–969, 2003.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In
Proceedings of the IEEE International Conference on Computer Vision, pp. 1314–1324, 2019.

Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolutional networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2261–2269,
2017.

Sian-Yao Huang and Wei-Ta Chu. Ponas: Progressive one-shot neural architecture search for very
efficient deployment. arXiv preprint arXiv:2003.05112, 2020.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In
International Conference on Learning Representations, 2019.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
International Conference on Machine Learning, pp. 807–814, 2010.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search
via parameter sharing. In International Conference on Machine Learning, pp. 4095–4104, 2018.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4510–4520, 2018.

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In International Conference on Machine Learning, pp. 6105–6114, 2019.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 2820–2828, 2019.

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design via
differentiable neural architecture search. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 10734–10742, 2019.

11

Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong.
Pc-darts: Partial channel connections for memory-efficient differentiable architecture search. In
International Conference on Learning Representations, 2020.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. In International
Conference on Learning Representations, 2017.

Barret Zoph, V. Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 8697–8710, 2018.

12

	Derivations of the objective function
	More discussions on the pairwise ranking loss
	Search space size analysis
	Model design of architecture evaluator and controller
	More details on constraint representation method
	More training and evaluation details
	Effect of K on the search performance of PFNAS
	Training curves of PFNAS
	Latency histograms of searched architectures
	More results on CPU devices
	More results on GPU devices
	Visualization of the searched architectures

