
10 Appendix333

10.1 Case Studies334

As a common issue in MIS, the general estimators are usually difficult to optimize due to the mini-335

max form. One solution is to choose the discriminator class (Q in our case) to be an RKHS, which336

often leads to a closed-form solution to the inner max and reduces the minimax optimization to a337

single minimization problem [16, 18, 26]. Below we show that this is also the case for our estimator,338

and provide the closed-form expression for the inner maximization when Q is an RKHS.339

Lemma 10.1. Let ⟨., .⟩HK
be the inner-product of HK which satisfies the Reproducible Kernel340

Hilbert Space (RKHS) property. When the function space Q = {q : S ×A → R; ⟨q, q⟩HK
≤ 1},341

the term maxq∈Q Lw(w, β, q)
2 has the following closed-form expression:342

E(s,a,s′)∼µ
(s̃,ã,s̃′)∼µ

[w(s, a) · w(s̃, ã) · β(s, a) · β(s̃, ã) · (K((s, a), (s̃, ã))− 2γEa′∼π(·|s′)[K((s′, a′), (s̃, ã))]

+ γ2Ea′∼π(.s′)
ã′∼π(.s̃′)

[K((s′, a′), (s̃′, ã′))])]− 2(1− γ)E (s,a,s′)∼µ
s̃∼d0,ã∼π(·|s̃)

[w(s, a) · β(s, a) · (K((s, a), (s̃, ã))

− γEa′∼π(.s′)[K((s′, a′), (s̃, ã))]] + (1− γ)2Es∼d0,a∼π(·|s)
s̃∼d0,ã∼π(·|s̃)

[K((s, a), (s̃, ã))].

Furthermore, when we use linear functions to approximate both w and q, the final estimator has a343

closed-form solution344

Lemma 10.2. Consider linear parameterization w(s, a) = ϕ(s, a)Tα, where ϕ ∈ Rd is a feature345

map in Rd and α is the linear coefficients. Similarly let q(s, a) = Ψ(s, a)T ζ where Ψ ∈ Rd. Then,346

assuming that we have an estimate of
dπ
Ptr

µ as β̂, we can empirically estimate ŵ using Equation 8,347

which has a closed-form expression ŵ(s, a) = ϕ(s, a)T α̂, where348

α̂ = (En,(s,a,s′)∼µ[(Ψ(s, a)− γΨ(s′, π)) · ϕ(s, a)T · β̂(s, a)])−1(1− γ)En,s∼d0
[Ψ(s, π)] (10)

provided that the matrix being inverted is non-singular. Here, En is the empirical expectation using349

n-samples.350

Detailed proof for these Lemma can be found in section 10.4 and 10.5 respectively.351

10.2 Q-Function Estimator352

In this section, we show an extension of our idea that can approximate the Q-function in the target353

environment. Similar to we did in the previous section, we now consider the OPE error of a candidate354

function q, that is, |(1−γ)Es∼d0
[q(s, π)]−J(π)|, under the assumption that wPte/Ptr

∈ conv(W):355

|(1− γ)Es∼d0
[q(s, π)]− JPte

(π)| = |E (s,a)∼dπ
Pte

,

r∼R(s,a),s′∼P (s,a)

[q(s, a)− γq(s′, π)]− E(s,a)∼dπ
Ptr

r∼R(s,a)

[WPte/Ptr
· r]|

= |E (s,a)∼µ,
r∼R(s,a),s′∼P (s,a)

[WPte/Ptr
· β · (q(s, a)− γq(s′, π))]− E(s,a)∼dπ

Ptr

r∼R(s,a)

[WPte/Ptr
· r]|

≤ sup
w∈W

|E (s,a)∼µ,
r∼R(s,a),s′∼P (s,a)

[w · β · (q(s, a)− γq(s′, π))]− E(s,a)∼dπ
Ptr

r∼R(s,a)

[w · r]|

=: sup
w∈W

Lq(w, β, q).

(11)

The inequality step uses the assumption that wPte/Ptr
∈ conv(W), and the final expression is a356

valid upper bound on the error of using q for estimating JPte
(π). It is also easy to see that the357

bound is tight because q = Qπ
Pte

satisfies the Bellman equation on all state-action pairs, and hence358

Lq(w, β,Q
π
Pte

) ≡ 0.359
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Using this derivation, we propose the following estimator which will estimate Qπ
Pte

.360

Qπ
Pte

≈ q̂ := argmin
q∈Q

max
w∈W

Lq(w, β, q). (12)

Below we provide the results that parallel Lemmas 10.1 and 10.2 for the Q-function estimator.361

Lemma 10.3. Let ⟨., .⟩HK
be the inner-product of HK which satisfies the Reproducible Kernel362

Hilbert Space (RKHS) property. When the function space W = {w : S × A → R|⟨w,w⟩HK
≤ 1}.363

The term maxw∈W Lq(w, β, q)
2 has a closed form expression.364

We defer the detailed expression and its proof to Appendix 10.6.365

Lemma 10.4. Let w = ϕ(s, a)Tα where ϕ ∈ Rd is some basis function. Let q(s, a) = Ψ(s, a)T ζ,366

where Ψ(s, a) ∈ Rd. Then, assuming that we have an estimate of
dπ
Ptr

µ as β̂, we can empirically367

estimate q̂ using uniqueness condition similar to Equation 12, which has a closed-form expression368

ŵ(s, a) = Ψ(s, a)T ζ̂, where369

ζ̂ = (Eπ
n,µ[β̂ · (Φ(s, a)Ψ(s, a)T − γΦ(s, a)Ψ(s′, π)]))−1En,(s,a)∼dπ

Ptr
,r∼R(s,a))[Φ(s, a) · r] (13)

where, En is the empirical expectation calculated over n-samples and assuming that the provided370

matrix is non-singular.371

Theorem 10.5. Let β̂ be our estimation of β using [20]. We utilize this β̂ to further optimize for372

ŵn (equation 8) using n samples. In both cases, E(s,a)∼dπ
Ptr

[·] is also approximated with n samples373

from the simulator Ptr. Then, under Assumptions 1 and 2 along with the additional assumption that374

Qπ
Pte

∈ C(Q) with probability at least 1 − δ, We can guarantee the OPE error for q̂n which was375

optimized using equation 12 on n samples.376

|(1− γ)Ed0
[q̂n(s, π)]− JP (π)| ≤

min
q∈Q

max
w∈W

Lq(w, β, q) + 4Rn(W,Q) + 2CW
Rmax

1− γ

√
log( 2δ )

2n

+ CW
Rmax

1− γ
· Õ


√√√√√∥

dπPtr

µ
∥∞

4ERn(F) + CF

√
2 log(2δ )

n




where Rn(F),Rn(W,Q) are the Radamacher complexities of function classes {(x, y) → f(x) −377

log(f(y)) : f ∈ F} and {(s, a, s′) → (w(s, a) · dπ
P ′ (s,a)

µ(s,a) · (q(s, a) − γq(s′, π)) : w ∈ W, q ∈ Q},378

respectively, ∥dπP ′/µ∥∞ := maxs,a d
π
P ′(s, a)/µ(s, a) measures the distribution shift between dπP ′379

and µ, and Õ(·) is the big-Oh notation suppressing logarithmic factors. Under the assumption380

wπ
Ptr/Pte

∈ C(W),381

10.3 Derivation for β-GradientDICE382

We will show a demonstration on finite state-action space. The following identity holds true for383

τ∗ =
dπ
Pte

dπ
Ptr

. Let us assume that we have the diagonal matrix D with diagonal elements being dπPtr
.384

The following identity holds true.385

Dτ∗ = T τ∗ (14)

Where, d0(s, a) = d0(s)π(a|s) and T is the reverse bellman operator386

T y = (1− γ)d0(s, a) + γPT
π Dy

Where, Pπ((s, a), (s
′, a′)) = Pte(s

′|s, a)π(a′|s′) To estimate τ , we can simply run the following387

optimization388

τ := arg min
τ :S×A→R

|Dτ − T τ |2D−1 +
λ

2
((dπPtr

)T τ − 1)
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Here, |y|2Σ = yTΣy. The optimization above can be simplified in form of expectation over dπPtr
.389

E(s,a)∼dπ
Ptr

[(
δ(s, a)

dπtr(s, a)
)2] +

λ

2
((dπPtr

)T τ − 1)

With, δ(s, a) = Dτ − T τ , We can now apply Fenchel Conjugate principle to get the following390

max
f :S×A→R

E(s,a)∼dπ
Ptr

[
δ(s, a)

dπPtr

f(s, a)− 1

2
f(s, a)2] + max

η∈R
(Edπ

Ptr
[ητ(s, a)− η]− η2

2
)

If we simplify the above optimization, we get the following form391

dπPte

dπPte

:= arg min
τ :S×A→R

max
f :S×A→R,η∈R

L(τ, η, f)

= (1− γ)Es0∼d0,a0∼π(·|s0)[f(s0, a0)] + γE (s,a)∼dπ
Ptr

s′∼Pte(·|s,a),a′∼π(·|s′)

[τ(s, a)f(s′, a′)]

− E(s,a)∼dπ
Ptr

[τ(s, a)f(s, a)]− 1

2
E(s,a)∼dπ

Ptr
[f(s, a)2] + λE(s,a)∼dπ

Ptr
[ητ(s, a)− η2/2].

While we don’t have samples from (s, a, s′) ∼ dπPtr
. We can simply re-weight the term392

E (s,a)∼dπ
Ptr

s′∼Pte(·|s,a),a′∼π(·|s′)

[τ(s, a)f(s′, a′)] with β(s, a) =
dπ
Ptr

µ . This completes the derivation of β-393

GradientDICE.394

dπPte

dπPte

:= arg min
τ :S×A→R

max
f :S×A→R,η∈R

L(τ, η, f)

= (1− γ)Es0∼d0,a0∼π(·|s0)[f(s0, a0)] + γE(s,a,s′)∼µ,a′∼π(·|s′)[β(s, a)τ(s, a)f(s
′, a′)]

− E(s,a)∼dπ
Ptr

[τ(s, a)f(s, a)]− 1

2
E(s,a)∼dπ

Ptr
[f(s, a)2] + λE(s,a)∼dπ

Ptr
[ητ(s, a)− η2/2].

10.4 Proof of Lemma 10.1395

Since Q belongs to the RKHS space. We can use the reproducible property of RKHS to re-write the396

optimization in the following form.397

Lw(w, β, q)
2 = (E(s,a)∼µ,s′∼Pte(s,a)[w(s, a) · β(s, a) · (q(s, a)− γq(s′, π))]− (1− γ)Es∼d0 [q(s, π)])

2

= (E(s,a)∼µ,s′∼Pte(s,a)[w(s, a) · β(s, a) · (⟨q,K((s, a), .), ·⟩HK
− γEa′∼π(.s′)[⟨q,K((s′, a′), .), ·⟩HK

]]

− (1− γ)Es∼d0,a∼π(.|s)[⟨q,K((s, a), .), ·⟩HK
]))2

= max
q∈Q

⟨q, q∗⟩2HK

(15)
Where,398

q∗(·) = Eµ[w(s, a) · β(s, a) · (K((s, a), .)− γEa′∼π(.s′)[K((s′, a′), .)]]− (1− γ)Es∼d0,a∼π(.|s)[K((s, a), .)])
(16)

We go from first line to the second line by exploiting the linear properties of the RKHS func-399

tion space. Given the constraint that Q = {q : S ×A → R; ⟨q, q⟩HK
≤ 1} we can maximise400

maxq L(w, β, q)
2 using Cauchy-Shwartz inequality401

max
q

Lw(w, β, q)
2 = ⟨q∗, q∗⟩2HK

= E(s,a,s′)∼µ
(s̃,ã,s̃′)∼µ

[w(s, a) · w(s̃, ã) · β(s, a) · β(s̃, ã) · (K((s, a), (s̃, ã))− 2γEa′∼π(·|s′)[K((s′, a′), (s̃, ã))]

+ γ2Ea′∼π(.s′)
ã′∼π(.s̃′)

[K((s′, a′), (s̃′, ã′))])]− 2(1− γ)E (s,a,s′)∼µ
s̃∼d0,ã∼π(·|s̃)

[w(s, a) · β(s, a) · (K((s, a), (s̃, ã))

− γEa′∼π(.s′)[K((s′, a′), (s̃, ã))]] + (1− γ)2Es∼d0,a∼π(·|s)
s̃∼d0,ã∼π(·|s̃)

[K((s, a), (s̃, ã))]

This completes the proof.402
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10.5 Proof of Lemma 10.2403

Substituting the functional forms for q(s, a) = Ψ(s, a)T ζ and w(s, a) = ϕ(s, a)Tα we get the404

following expression for Ln,w(w, β̂, q). Where, β̂ is an estimate of
dπ
Ptr

µ405

Ln,w(w, β̂, q) = En,µ[ϕ(s, a)
Tα · β̂(s, a) · (Ψ(s, a)− γΨ(s′, π))T ζ)]− (1− γ)En,d0

[Ψ(s, π)T ζ]

Using the uniqueness condition we derived in equation 6, we can go about finding the value of α by406

equating L(w, β̂, q) to zero.407

En,µ[ϕ(s, a)
Tα · β̂(s, a) · (Ψ(s, a)− γΨ(s′, π))T ζ)]− (1− γ)En,d0 [Ψ(s, π)T ζ] = 0

αTEn,µ[ϕ(s, a) · β̂(s, a) · (Ψ(s, a)− γΨ(s′, π))T )]ζ = (1− γ)En,d0
[Ψ(s, π)T ]ζ

Since the loss is linear in ζ, we can solve for α using the matrix inversion operation.408

α̂ = (En,µ[(Ψ(s, a)− γΨ(s′, π)) · ϕ(s, a)T · β̂])−1(1− γ)En,d0
[Ψ(s, π)]

This completes the proof.409

10.6 Proof of Lemma 10.3410

Consider the loss function supw∈W Lq(w, β, q)
2. Since W is in RKHS space. Using reproducible411

property of RKHS space we can re-write this maximization as follows,412

max
w∈W

Lq(w, β, q)
2 = max

w∈W
(E(s,a)∼µ,s′∼P (s,a),r∼R(s,a)[w(s, a) · β(s, a) · (q(s, a)− γq(s′, π))]− E(s,a)∼dπ

Ptr
,r∼R(s,a)[w(s, a) · r])2

max
w∈W

(E(s,a)∼µ,s′∼P (s,a),r∼R(s,a)[⟨w,K(s, a), ·⟩HK
· β(s, a) · (q(s, a)− γq(s′, π))]− E(s,a)∼dπ

Ptr
,r∼R(s,a)[⟨w,K(s, a), ·⟩HK

· r])2

max
w∈W

⟨w,E(s,a)∼µ,s′∼P (s,a),r∼R(s,a)[K((s, a), ·) · β(s, a) · (q(s, a)− γq(s′, π))]− E(s,a)∼dπ
Ptr

,r∼R(s,a)[K((s, a), ·) · r]⟩HK
)2

max
w∈W

⟨w,w∗⟩2HK
= ⟨w∗, w∗⟩2HK

Where, we use the linear properties of RKHS spaces and then followed by using Cauchy-Shwartz413

inequality, to compute the maximization. Where, w∗ has the following expression.414

w∗(·) = E(s,a)∼µ,s′∼P (s,a),r∼R(s,a)[K((s, a), ·) · β(s, a) · (q(s, a)− γq(s′, π))]− E(s,a)∼dπ
Ptr

,r∼R(s,a)[K((s, a), ·) · r]
The maximization expression thus takes the following form415

⟨w∗, w∗⟩2HK
= E(s,a)∼µ,s′∼P (s,a),r∼R(s,a)

(s̃,ã)∼µ,s̃′∼P (s,a),r∼R(s,a)

[K((s, a), (s̃, ã)) · β(s, a) · β(s̃, ã) ·∆(q, s, a, s′) ·∆(q, s̃, ã, s̃′)]

− 2E (s,a)∼µ,s′∼P (s,a)
(s̃,ã)∼dπ

Ptr
,r̃∼R(s,a),

[K((s, a), (s̃, ã)) · β(s, a) ·∆(q, s, a, s′) · r] + E(s,a)∼dπ
Ptr

,r∼R(s,a)

(s̃,ã)∼dπ
Ptr

,r̃∼R(s,a)

[K((s, a), (s̃, ã)) · r · r̃]

Where, ∆(q, s, a, s′) = q(s, a)− γq(s′, π).416

This completes the proof.417

10.7 Proof of Lemma 10.4418

Substituting the functional forms of q(s, a) = Ψ(s, a)T ζ, w(s, a) = ϕ(s, a)Tα. Also substituting419

the estimate for
dπ
Ptr

µ as β̂. We get the following expression420

Lq,n(w, β̂, q) =

|En,(s,a)∼µ,s′∼P (s,a),r∼R(s,a)[ϕ(s, a)
Tα · β̂(s, a) · (Ψ(s, a)T ζ − γΨ(s′, π)T ζ)]− En,(s,a)∼dπ

Ptr
,r∼R(s,a)[ϕ(s, a)

Tα · r]|

= 0

Where, the equality comes from the uniqueness condition similar to equation 6421

αTEn,(s,a)∼µ,s′∼P (s,a),r∼R(s,a)[ϕ(s, a) · β̂(s, a) · (Ψ(s, a)− γΨ(s′, π))T ]ζ = αTEn,(s,a)∼dπ
Ptr

,r∼R(s,a)[ϕ(s, a) · r]
Since the equations above are linear in α. So it suffices to show that the optimal solution can be422

reached if β is approximated as follows,423

ζ̂ = (En,(s,a)∼µ,s′∼P (s,a),r∼R(s,a)[ϕ(s, a) · β̂(s, a) · (Ψ(s, a)− γΨ(s′, π))T ])−1 · En,(s,a)∼dπ
Ptr

,r∼R(s,a)[ϕ(s, a) · r]
(17)

Where, En,· denotes the empirical approximation of the expectation. This completes the proof.424
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10.8 Proof of Theorem 5.1425

To prove this theorem, we will first require a Lemma that we need to prove first. This is as follows,426

Lemma 10.6. Under Assumptions 1 and 2, suppose we use n samples each from distribution P and427

Q to empirically estimate the ratio of P
Q using equation 2. The estimation error can be bounded with428

probability at least 1− δ as follows:429

∥∥∥∥f̂n − P

Q

∥∥∥∥2
∞

≤ Õ

∥P
Q
∥∞

4ERn(F) +

√
2 log( 1δ )

n

 (18)

Proof. Since, equation 2 is optimized using empirical samples it is an Empirical Risk Minimization430

(ERM) algorithm. We denote the original loss with respect to a function f ∈ F as L(f). Using431

familiar result from learning theory (Corollary 6.1 [28]) with probability at-least 1− δ432

L(f̂n)− L(
P

Q
) ≤ 4ERn(F) + CF

√
2 log(1δ )

n
(19)

With probability at least 1− δ. Where, Rn(F) is the Radamacher complexity of the function class433

{(p, q) → f(q)− log(f(p) : f ∈ F} (20)

Now, let’s turn our attention to the left hand side. Before we end up doing that let’s define the434

estimation error ēn(x) = f̂n(x)− P (x)
Q(x) . Thus, we can re-write the left hand side in terms of ē435

L(f̂n)− L(
P

Q
) = L(

P

Q
+ ēn)− L(

P

Q
)

=
∑
x∈Ω

Q(x)ēn(x)−
∑
x∈Ω

P (x)log(
ēn(x) +

P (x)
Q(x)

P (x)
Q(x)

)

=
∑
x∈Ω

Q(x)(ēn(x)−
P (x)

Q(x)
log(1 +

ēn(x)
P (x)
Q(x)

))

(21)

Assuming that n is sufficiently large such that | ēng∗ | ≤ 1. We can now use second order Taylor436

approximation for log(1 + x) for |x| < 1437

L(f̂n)− L(
P

Q
) =

∑
x∈Ω

Q(x)(ēn(x)

− P (x)

Q(x)
·

 ēn(x)
P (x)
Q(x)

− 1

2
(
ēn(x)
P (x)
Q(x)

)2)


=

∑
x∈Ω

Q(x)
1

2
(
ēn(x)

2

P (x)
Q(x)

)

(22)

Combining equations 19 with the simplified LHS above, we can bound the error with probability at438

least 1− δ that,439

∑
x∈Ω

Q(x)
1

2
(
ēn(x)

2

P (x)
Q(x)

) ≤ 4ERn(F) + CF

√
2 log(1δ )

n
(23)
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Under assumption 1 and 2 ∃x̃ ∈ Ω such that |ēn(x̃)| = ∥f̂n − P
Q∥∞. Thus, the equation above can440

be re-written as441

1

K
∥ēn∥2∞ ≤ 2

P (x̃)

Q(x̃)

4ERn(F) + CF

√
2 log( 1δ )

n


∥ēn∥2∞ ≤ 2K · ∥P

Q
∥∞

4ERn(F) + CF

√
2 log(1δ )

n

 (24)

Where Q(x̃) = 1
K . The last inequality comes from the fact that P (x̃)

Q(x̃) ≤ supx∈Ω
P (x)
Q(x) = ∥P

Q∥∞.442

This completes the proof.443

Using equation 4 we can upper bound the performance of our estimator as follows,444

|E(s,a)∼dπ
P ,r∼R(s,a)[ŵn · r]− JP (π)| ≤ max

q∈Q
|Lw(ŵn,

dπP
µ

, q)|

ŵn = arg min
w∈W

max
q∈Q

Ln,w(w, β̂, q)
(25)

We also approximate
dπ
Ptr

µ ∼ β̂. This can be written as follows,445

β̂ = argmax
f∈F

1

n

∑
i

ln f(xi)−
1

m

∑
j

f(x̃j) +
λ

2
I(f)2, (26)

where I(f) is some regularization function to improve the statistical and computational stability of446

learning. We can the simplify the RHS of this upper-bound using the following simplification.447

|E(s,a)∼dπ
P′ ,r∼R(s,a)[ŵn · r]− JP (π)| ≤ max

q∈Q
|Lw(ŵn,

dπP ′

µ
, q)|

≤ max
q∈Q

|Lw(ŵn,
dπP ′

µ
, q)| −max

q∈Q
|Ln,w(ŵn,

dπP ′

µ
, q)|+max

q∈Q
|Ln,w(ŵn,

dπP ′

µ
, q)| −max

q∈Q
|Lw(ŵ,

dπP ′

µ
, q)|+

max
q∈Q

|Lw(ŵ,
dπP ′

µ
, q)| −max

q∈Q
|Lw(ŵ, β̂, q)|+max

q∈Q
|Lw(ŵ, β̂, q)| −max

q∈Q
|Lw(ŵ,

dπP ′

µ
, q)|+max

q∈Q
|Lw(ŵ,

dπP ′

µ
, q)|

≤ max
q∈Q

|Lw(ŵn,
dπP ′

µ
, q)| −max

q∈Q
|Ln,w(ŵn,

dπP ′

µ
, q)|+max

q∈Q
|Ln,w(ŵ,

dπP ′

µ
, q)| −max

q∈Q
|Lw(ŵ,

dπP
µ

, q)|

+max
q∈Q

|Lw(ŵ,
dπP ′

µ
, q)| −max

q∈Q
|Lw(ŵ, β̂, q)|+max

q∈Q
|Lw(ŵ, β̂, q)| −max

q∈Q
|Lw(ŵ,

dπP ′

µ
, q)|+max

q∈Q
|Lw(ŵ,

dπP ′

µ
, q)|

≤ 2 max
q∈Q,w∈W

||Lw(ŵn,
dπP ′

µ
, q)| − |Ln(ŵn,

dπP ′

µ
, q)||︸ ︷︷ ︸

T1

+2max
q∈Q

|Lw(ŵ,
dπP ′

µ
, q)− Lw(ŵ, β̂, q)|︸ ︷︷ ︸
T2

+ min
w∈W

max
q∈Q

|Lw(w,
dπPtr

µ
, q)|

Where, ŵ = argminw∈W maxq∈Q |Lw(w, β̂, q)|. Let’s analyse each of the terms above one by448

one. Starting with T1 we get the following,449

T1 = 2 max
q∈Q,w∈W

|Lw(ŵn,
dπP ′

µ
, q)| − |Ln,w(ŵn,

dπP ′

µ
, q)|

≤ 2Rn(W,Q) + CW · CQ

√
log( 2δ )

2n
w.p at-least 1− δ

2

(27)

Where, the upper bound follows from [29]. Note that Rn(W,Q) is the Radamacher Complexity450

for the following function class451

{(s, a, s′) → w(s, a)
dπPtr

(s, a)

µ(s, a)
(q(s, a)− γq(s′, π)) : w ∈ W, q ∈ Q} (28)
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For the term T2 we can simplify the expression as follows,452

T2 = 2max
q∈Q

|Lw(ŵ,
dπPte

µ
, q)− Lw(ŵ, β̂, q)|

= max
q∈Q

|E(s,a,s′)∼µ[(β̂ − dπP ′

µ
) · ŵ(s, a) · (q(s, a)− γq(s′, π))]|

= max
q∈Q

|E(s,a,s′)∼µ[ε(s, a) · ŵ(s, a) · (q(s, a)− γq(s′, π))]|. ≤ 2CQ · CW∥ε∥∞

(29)

Here, we assume that ε(s, a) = β̂− dπ
P ′
µ .Combining equations 27, 29 along with equation 24 we get453

the following upper-bound with at-least 1− δ454

|E(s,a)∼dπ
P ,r∼R(s,a)[ŵn · r]− JP (π)| ≤ max

q∈Q
|Lw(ŵ,

dπPtr

µ
, q)|+ 4γCW · CQ · ∥ε∥∞ + 2Rn(W,Q) + CW · CQ

√
log( 2δ )

2n
(30)

Using Lemma 10.6 we can bound ∥ε∥∞ with probability 1− δ
2 as follows,455

|E(s,a)∼dπ
P ,r∼R(s,a)[ŵn · r]− JP (π)| ≤ min

w∈W
max
q∈Q

|Lw(w,
dπPtr

µ
, q)|

+ 4CW · CQ ·

√√√√√2K · ∥
dπPtr

µ
∥∞

4ERn(F) + CF

√
2 log(2δ )

n

+ 4Rn(W,Q) + 2CW · CQ

√
log( 2δ )

2n

(31)

This completes the proof.456

457

10.9 Proof of Theorem 10.5458

Using equation 11, we can bound the performance of the q estimator as follows,459

|(1− γ)Ed0 [q̂n(s, π)]− JP (π)| ≤ max
w∈W

|Lq(w,
dπPte

µ
, q̂n)|

≤ max
w∈W

|Lq(w,
dπPte

µ
, q̂n)| − max

w∈W
|Ln,q(w,

dπPte

µ
, q̂n)|+ max

w∈W
|Ln,q(w,

dπPte

µ
, q̂n)| − max

w∈W
|Lq(w,

dπPtr

µ
, q̂)|

+ max
w∈W

|Lq(w,
dπPtr

µ
, q̂)| − max

w∈W
|Lq(w, β̂, q̂)|+ max

w∈W
|Lq(w, β̂, q̂)| − max

w∈W
|Lq(w,

dπPtr

µ
, q̂)|+ max

w∈W
|Lq(w,

dπPtr

µ
, q̂)|

≤ max
w∈W

|Lq(w,
dπPte

µ
, q̂n)| − max

w∈W
|Ln,q(w,

dπPte

µ
, q̂n)|+ max

w∈W
|Ln,q(w,

dπP
µ

, q̂n)| − max
w∈W

|Lq(w,
dπPtr

µ
, q̂n)|

+ max
w∈W

|Lq(w,
dπPtr

µ
, q̂)| − max

w∈W
|Lq(w, β̂, q̂)|+ max

w∈W
|Lq(w, β̂, q̂)| − max

w∈W
|Lq(w,

dπPtr

µ
, q̂)|+ max

w∈W
|Lq(w,

dπPtr

µ
, q̂)|

≤ 2 max
q∈Q,w∈W

|Lq(w,
dπPte

µ
, q)− Ln,q(w,

dπPte

µ
, q)|︸ ︷︷ ︸

T1

+2 max
w∈W

|Lq(w,
dπPtr

µ
, q̂)− Lq(w, β̂, q̂)|︸ ︷︷ ︸
T2

+min
q∈Q

max
w∈W

Lq(w,
dπPtr

µ
, q)

(32)

Where, q̂ = argminq∈Q maxq∈W |Lq(w, β̂, q)|. Lets analyse each of these terms T1, T2 separately.460

For T1 we get the following,461

T1 = 2 max
q∈Q,w∈W

|Lq(w,
dπPte

µ
, q)− Ln,q(w,

dπPte

µ
, q)|

≤ 2Rn(W,Q) + CW · Rmax

1− γ

√
log( 2δ )

2n
w.p at-least 1− δ

2

(33)
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Where, the upper bound follows from [29]. Note that Rn(W,Q) is the Radamacher Complexity462

for the following function class463

{(s, a, s′) → w(s, a)
dπPtr

(s, a)

µ(s, a)
(q(s, a)− γq(s′, π)) : w ∈ W, q ∈ Q} (34)

For the term T2 we can simplify the expression as follows,464

T2 = 2 max
w∈W

|Lq(w,
dπPtr

µ
, q̂)− Lq(w, β̂, q̂)|

= max
w∈W

|E(s,a,s′)∼µ[(β̂ − dπP ′

µ
) · w(s, a) · (q̂(s, a)− γq̂(s′, π)]|

≤ 2CW
Rmax

1− γ
∥ε∥∞

(35)

Combining equation 33 and 35 along with equation 24 we can bound the error in evaluation as465

follows,466

|(1− γ)Ed0
[q̂n(s, π)]− JP (π)| ≤ min

q∈Q
max
w∈W

Lq(w,
dπ

µ
, q) + 2Rn(W,Q) + 4CW · Rmax

1− γ

√
log( 2δ )

2n

+ 2CW
Rmax

1− γ

√√√√√2K · ∥
dπPtr

µ
∥∞

4ERn(F) + CF

√
2 log( 2δ )

n


w.p at-least 1− δ

(36)

This completes the proof467

10.10 Additional Experimental Details and Additional Results468

Experiment Setup We conduct experiments on both Sim2Sim and Sim2Real environments. For469

Sim2Sim experiments we demonstrate our results over a range of different types of environments470

like Tabular (Taxi), Discrete-control (cartpole) and continuous control (Reacher and Halfcheetah).471

For the Sim2Sim experiments over a diverse set of simulation and the real world environments like472

gravity, arm-length, friction and maximum torque. For all the experiments we mention here, we473

will first generate an offline data which was collected using known behavior policy µ. For the sake474

of these experiments, behavior policy are parameterized by a factor δ which basically dictates the475

amount of noise added to a pre-trained model. We similarly parameterise the target policy target476

policy by α. We experiment over different pairs of training and test environments. We typically477

keep the simulation environment fixed and vary the test environment. We call the key parametric478

difference between the training and the test environment as the Sim2Real gap. Detailed information479

for each set of experiments is provided below.480

Learning β: We parameterize β as two-layered neural network with ReLU activation layers for481

intermediate layers. We experimented with two different kinds of final activation layer, squared and482

tanh. We observed that tanh layer scaled to go from 0 to 10 worked best for these set of experiments.483

Learning w: For most of our experiments on β-DICE we use the framework of GradientDICE. Gra-484

dientDICE algorithms are typically two layered neural networks which use orthogonal initialisation.485

Inner activation is ReLU and the final activation layer is linear.486

Baselines We compare with the following baselines:487

• Simulator: This is the baseline of trusting the simulator’s evaluation and not using data488

from the test environment.489

• Model-free MIS: We include DualDICE, GradientDICE, GenDICE [21, 23, 22] as state-490

of-the-art baselines for model-free MIS, which only uses data from the test environment491

and does not use simulator information.492

18



• Residual dynamics: We fit a model for OPE from test-environment data with the simulator493

as the “base” prediction and only learn a correction term.494

• DR-DICE [24]: the previous baselines ignore some of the available information (e.g.,495

model-free MIS does not use simulator information) or use them in a naı̈ve manner. There-496

fore, we additionally include a doubly-robust (DR) MIS estimator [24] that can organically497

blend the model information with the test-environment data.498

Taxi Environment: Taxi environment has 500 states and 6 discrete actions. For these set of499

experiments the simulator environment involves deterministic transition between two states. For500

the real world environment, we experiment with environments where the transition is deterministic501

with probability (1− τ) and random with probability τ . With τ being the Sim2Real gap. To collect502

data, we use a behavior policy that chooses optimal action (which was learnt using Q-learning) with503

probability 1− δ and a random action with probability δ. Target policies are similarly parameterised504

but with α. In figure 3 we demonstrate the performance of β-DICE for α = 0.1. In these set505

of experiments, we evaluate performance of β-DICE over 3 different types of behavior policies506

δ = {0.2, 0.3, .0.4} and three different sets of target policies α = {0.01, 0.1, 0.2}. For two sets507

of behavior and target policy, we also show the effect of sim gap on evaluation error. We observe508

that evaluation error increases with increasing sim2sim gap. For these set of experiments we used a509

discounting factor γ = 0.9 and limited our offline trajectory collection to 150 timesteps. Learning510

rate for β is 1e-4, the learning rate for w is 1e-4. We observe that β-DICE is able to outperform the511

state-of-the-art MIS baseline comfortably.512

Cartpole Environment: For discrete control problems, we choose the Cartpole environment513

[30]. For the simulator we choose cartpole environment with gravity equals to 10m/s2. For514

the test environment, we choose gravity to be (τ)m/s2. With τ being the Sim2Sim gap. Our515

behavior policy is chosen to be a mixture of optimal policy (which was trained using Cross Entropy516

method) π∗ and a uniformly random policy U such that µ = (1 − δ)π∗ + (δ)U . Our target517

policy is similarly parameterised by α. We demonstrate results over different sets of behavior518

policies δ = {0.4, 0.5, 0.6} and evaluate performance over a set of α = {0.2, 0.5, 0.8} and simreal519

gap τ = {5, 10, 20}m/s2. In figures 2a and 4 (with additional baselines), we demonstrate our520

experiments over different sets of behavior policies and target policies and observe that our method521

is more than capable of improving upon state-of-the-art baseline with information from simulation.522

Our discounting factor γ = 0.99 and timesteps is limited to 200. Learning rate for β is 1e-4 and523

learning rate for w is 1e-2.524

Reacher Environment: For continuous control, we experiment with RoboschoolReacher envi-525

ronment. For these set of environments, we choose training environment as the one where the526

length of both links are 0.1 m. The test environment is chosen to be one, where the length of both527

the links is (0.1 + τ)m. We choose behavior policy as the addition of an optimal policy plus a528

zero mean normal policy whose standard deviation is δ. For our experiments, δ = {0.4, 0.5, 0.6},529

α = {0.0, 0.1, 0.2} and τ = {−0.5,−0.25, 0.0, 0.25}m. In figures 2b and 5, we demonstrate our530

experiments over different sets of behavior policies and target policies and observe that our method531

is more than capable of improving upon state-of-the-art baseline with information from simulation.532

In figure 2b and 5a, we also demonstrate the effect of β-DICE with sim2sim gap over two sets of533

(δ, α). Our discounting factor γ = 0.99 and timesteps is limited to 150. Learning rate for β is 1e-4534

and learning rate for w is 3e-3.535

HalfCheetah Environment: For continuous control, we experiment with RoboschoolCheetah536

environment. For these set of environments, we choose training environment as the one where537

the maximum torque to the joints is 0.9. The test environment is chosen to be one, where the538

length of both the links is 0.9 + τ N.m We choose behavior policy as the addition of an optimal539

policy with zero mean normal policy whose standard deviation is δ. For behavior policy the delta540

is taken to be δ = {0.4, 0.5, 0.6} and the target policy is taken to be α = {0.0, 0.1, 0.2}. Due to541

limited computation, we experimented only with τ = 0.4Nm. In figures 6, we demonstrate our542

experiments over different sets of behavior policies and target policies and observe that our method543

is more than capable of improving upon state-of-the-art baseline with information from simulation.544
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Our discounting factor γ = 0.99 and timesteps is limited to 150. Learning rate for β,w is 1e-4.545

546
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(a) α = 0.01

(b) α = 0.1

(c) α = 0.2

Figure 3: Each of the above figure demonstrates the effect of evaluation over varying behavior
policies δ = {0.2, 0.3, 0.4} on a fixed target policy using β-DICE for the taxi environment. For
these set of experiments the training environment is the default transition parameters, while the test
environment has τ = 0.1. In (a), (b), (c) the target policies that we use are α = {0.01, 0.1, 0.2}.
Additionally for (a), (b) (RHS) we also show the effect of varying sim2real gap on target policy
evaluation using β-DICE (while keeping δ, α fixed).
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(a) α = 0.5

(b) α = 0.8

Figure 4: Each of the above figure demonstrates the effect of evaluation over varying behavior
policies δ = {0.6, 0.7, 0.8} on a fixed target policy using β-DICE for the cartpole environment. For
these set of experiments the training environment has gravity = 10m/s2, while the test environment
has gravity = 15.0m/s2. In (a), (b) the target policies that we use are α = {0.5, 0.8}. Additionally
for (a), (RHS) we also show the effect of varying sim2real gap on target policy evaluation using
β-DICE (while keeping δ, α fixed).
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(a) α = 0.1

(b) α = 0.2

Figure 5: Each of the above figure demonstrates the effect of evaluation over varying behavior
policies δ = {0.4, 0.5, 0.6} on a fixed target policy using β-DICE for the reacher environment. For
these set of experiments the training environment has length = 0.1m, while the test environment has
length = 0.075m. In (a), (b) the target policies that we use are α = {0.1, 0.2}. Additionally for (a),
(RHS) we also show the effect of varying sim2real gap on target policy evaluation using β-DICE
(while keeping δ, α fixed).
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(a) α = 0.0

(b) α = 0.1

(c) α = 0.2

Figure 6: Each of the above figure demonstrates the effect of evaluation over varying behavior poli-
cies δ = {0.4, 0.5, 0.6} on a fixed target policy using β-DICE for the half cheetah environment. For
these set of experiments the training environment has length = 0.9Nm, while the test environment
has length = 1.3Nm. In (a), (b), (c) the target policies that we use are α = {0.0, 0.1, 0.2}
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