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1. BACKGROUND ON INVERSE PROBLEMS

• Reconstruct image x∗ ∈ X from noisy observation (data)
yδ = Ax∗ + noise ∈ Y.
I A : X→ Y is the forward operator.
I ‖noise‖ 6 δ
• Inverse problems are ill-posed, i.e., A is either non-invertible or

poorly conditioned.
• Variational regularization:

xλ ∈ arg min
x∈X

1
2
‖yδ − Ax‖2

2 + λψθ(x) (1)

I {ψθ}θ∈Θ is a convex regularizer.

• ψθ-minimizing solution:

x† ∈ arg min
x∈X

ψθ(x) subject to Ax = y0 (2)

• Variational source condition: is satisfied if there exists some
w† ∈ Y such that A∗w† ∈ ∂ψθ(x†).
• Bregman distance:

Dψθ(x1, x2) :=
{
ψθ(x1) −ψθ(x2) − 〈u, x1 − x2〉

∣∣u ∈ ∂ψθ(x2)
}

• Convergence rate [1]: If the source condition holds, then for
each minimizer xλ of (1), there exists d ∈ Dψθ(xλ, x†) such that

d 6 λ
‖w†‖2

2
+
δ2

2 λ
. (3)

Therefore, choosing λ ∝ δ leads to an O(δ) convergence rate of
the variational reconstruction xλ to x†.

2. PARAMETRIZING THE REGULARIZER

• ψθ is taken to be an input-convex neural network (ICNN) [2, 3].

• ψθ is constructed recursively by taking non-negative sums of
convex functions (starting from affine), and then applying a
(point-wise) monotonically-increasing convex activation.
• The filter weights in the orange layers need to be > 0, whereas

the blue layers can have any real-valued filters.
• The activation functions are taken to be leaky-ReLU with

negative slope 0.2 (convex and monotone).

3. LEARNING THE REGULARIZER

• Main idea: If A is invertible, source condition dictates that for any
solution x of (1), the following holds:

`sc(x; θ) = ‖(A∗)−1∇xψθ(x)‖ <∞
• The smaller the quantity `sc(x; θ) is, the more suitable x would be

as a variational solution.
I Encourages the ground-truth images to the solution of the resulting

variational problem.

• For non-invertible A, replace the inverse with the Moore-Penrose
pseudo-inverse.
• Training loss:

L(θ) =
1
n

n∑
i=1

ψθ(xi) −
1
n

n∑
i=1

ψθ(zi) + λgpLgp(θ) + λscLsc(θ) (4)

I xi: ensemble of clean images
I zi = A†yδi : ensemble of noisy images
I Lgp: soft gradient penalty to enforce 1-Lipschitz bound on ψθ
• Can solve the variational problem with the learned regularizer via

sub-gradient or Bregman iterations [4].

4. NUMERICAL EXAMPLES: DENOISING

• λsc = 2.0, λgp = 10.0
• The average PSNR and SSIM over 100 randomly chosen test

images:
1. noisy: 13.93± 0.13 dB, 0.51± 0.08
2. ACR-SC (GD): 22.72± 0.64, 0.77± 0.04
3. ACR-SC (Bregman): 20.29± 0.88, 0.86± 0.03

• Took λ = 25 for the Bregman technique and λ = 5 for vanilla
gradient-descent.
• Bregman iterations perform better in terms of recovering the

contrast while yielding effective denoising.

5. CT RECONSTRUCTION EXPERIMENTS

• Experiments on Mayo-clinic low-dose CT data (2016):
1. Extracted 2D slices of size 512× 512 from 3D scans.
2. Trained on 9 patients (2250 slices), evaluated on one (128 slices).
3. Parallel-beam projection, 200 angles, 400 lines/angle, Gaussian noise with
σe = 2.0 (25 dB of signal-to-noise ratio in the data space).

4. No. of learnable parameters in ψθ: 590928.
5. λsc = 2.0 and λgp = 5.0, trained for 10 epochs, batch-size was four. Adam

optimizer with η,β1,β2 = 10−5, 0.90, 0.99.

(a) ground-truth (b) FBP: 21.19, 0.22 (c) TV: 29.85, 0.79 (d) U-net: 34.42, 0.90

(e) LPD: 35.76, 0.92 (f) AR: 33.52, 0.86 (g) ACR: 31.24, 0.86 (h) ACR-SC: 30.93, 0.85

• ACR-SC is only marginally inferior to ACR, while it still
outperforms classical model-based methods such as
total-variation (TV).

6. SUMMARY

• Developed a novel training loss for learning a data-driven convex
regularizer satisfying the source condition.
• Unsupervised learning, no paired data needed.
• Possible to derive convergence rate estimates for the resulting

variational problem.
• Theoretical grounding for Bregman iterations.
• Enforcing the source condition does not lead to any significant

drop in reconstruction quality.
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Schönlieb, “Learned convex regularizers for inverse problems,”
arXiv:2008.02839v2, 2021.

4. M. Benning and M. Burger, “Modern regularization methods for inverse
problems,” Acta Numerica, 2018.


