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We include the proof of Theorem 1 and the formal statement of Theorem 2 (and its proof) in Section 1.
The pseudo-code of algorithms for implementing DLP and the convergence analysis are presented in
Section 2. Complementary results of the experimental study are included in Section 3. Finally, We
also present additional experimental results, including investigations on the effect of different sizes of
the backdoor sample and results on more complex datasets.

1 PROOF

1.1 PROOF OF THEOREM 1

We will rely on the following two lemmas.
Lemma 1. (Boucheron et al., 2005) For any β ∈ Rd, we have with probability at least 1− δ,

|Rn(β)−R(β)| ≤ 2Radn(Hβ) +B

√
log 1

δ

2n
.

Lemma 2. (Boucheron et al., 2005) For any fixed W ∈ Rp, we have with probability at least 1− δ,

|R̃n(W,β)− R̃(W,β)| ≤ 2Radn(GW,β) +B

√
log 1

δ

2n

for any β ∈ Rd.

Back to our main results, we first bound the gap on the normal task.

Invoking Lemma 1, with probability at least 1− δ, we have

R(β̃)−R(β̂) ≤ Rn(β̃)−R(β̂) + 2Radn(Hβ) +B

√
log 1

δ

2n
,

= Rn(β̃) +
nλ

m
R̃n(W̃ , β̃) +

τ

n
Pm(W̃ )− nλ

m
R̃n(W̃ , β̃)

− τ

n
Pm(W̃ )−R(β̂) + 2Radn(Hβ) +B

√
log 1

δ

2n
,

≤ Rn(β̂) +
nλ

m
R̃n(W, β̂) +

τ

n
Pm(W )− nλ

m
R̃n(W̃ , β̃)

− τ

n
Pm(W̃ )−R(β̂) + 2Radn(Hβ) +B

√
log 1

δ

2n
,

(1)

≤ Rn(β̂)−R(β̂) +
nλ

m
R̃n(W, β̂) + 2Radn(Hβ) +B

√
log 1

δ

2n
, (2)

where Eq. (1) holds by definitions of (W̃ , β̃) (minimizer) and Eq. (2) holds by definitions of W .

Invoking Lemma 1 on Rn(β̂)−R(β̂) in Eq. (2) with a union bound, with probability greather than
1− 2δ, we have

R(β̃)−R(β̂) ≤ nλ

m
R̃n(W, β̂) + 4Radn(Hβ) + 2

√
log 1

δ

2n
. (3)
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From the definition of W , there are only m non-negative terms in R̃n(W, β̂) and hence

nλ

m
R̃n(W, β̂) =

nλ

m

1

n

n∑
i=1

1{yi ̸= ỹ}gW (xi)ℓ(fβ̂(xi), yi) ≤
nλ

m

m

n
B = λB, (4)

where B is the uniform upper-bound on the loss function.

Combining Eq. (4) and Eq. (3), the following holds with probability at least 1− 2δ,

R(β̃)−R(β̂) ≤ λB + 4Radn(Hβ) + 2B

√
log 2

δ

n
.

Regarding the gap on the backdoor task, we first rewrite

R̃(W̃ , β̃)− R̃(W, β̄) = R̃(W̃ , β̃) +
m

nλ
Rn(β̃) +

mτ

n2λ
Pm(W̃ )

− mτ

n2λ
Pm(W̃ )− m

nλ
Rn(β̃)− R̃(W, β̄).

(5)

Invoking Lemma 2, with probability at least 1− δ, the followings hold

R̃(W̃ , β̃)− R̃(W, β̄) ≤ R̃n(W̃ , β̃) +
m

nλ
Rn(β̃) +

mτ

n2λ
Pm(W̃ )− mτ

n2λ
Pm(W̃ )− m

nλ
Rn(β̃)

− R̃(W, β̄) + 2Radn(GW,β) +B

√
log 1

δ

2n
,

≤ R̃n(W,β) +
m

nλ
Rn(β) + |mτ

n2λ
Pm(W )− mτ

n2λ
Pm(W̃ )|

− m

nλ
Rn(β̃)− R̃(W, β̄) + 2Radn(GW,β) +B

√
log 1

δ

2n
,

(6)

≤ R̃n(W,β) +
m

nλ
Rn(β) +

2mτ

λ

− R̃(W, β̄) + 2Radn(GW,β) +B

√
log 1

δ

2n
,

(7)

where Eq. (6) holds by the definition of (W̃ , β̃) (minimizer) and Eq. (7) is because Pm(·) is upper
bounded by 2n2.

Invoking Lemma 2 on R̃n(W,β)− R̃(W, β̄) in Eq. (7) with a union bound, with probability greather
than 1− 2δ, we obtain

R̃(W̃ , β̃)− R̃(W, β̄) ≤ 2mτ

λ
+

m

nλ
Rn(β) + 4Radn(GW,β) + 2B

√
log 1

δ

2n
. (8)

For the term Rn(β), we have

m

nλ
Rn(β) =

m

nλ

1

n

n∑
i=1

ℓ(fβ(xi), yi) ≤
m

nλ

Bn

n
=

Bm

nλ
, (9)

where B is the uniform upper-bound on the loss function.

Combining Eq. (8) and Eq. (9), the following holds with probability at least 1− 2δ,

R̃(W̃ , β̃)− R̃(W, β̄) ≤ Bm

nλ
+ 4Radn(GW,β) + 2B

√
log 2

δ

n
+

2mτ

λ
.
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1.2 FORMAL STATEMENTS OF THEOREM 2

We consider linear classifiers of the form fβ(x) = β⊤x for β ∈ Rd, with ∥β∥1 ≤ W1. We assume
∥xi∥∞ ≤ 1 for i = 1, . . . , n. For the loss function, following (Boucheron et al., 2005), we take
ℓ(fβ(X), Y ) = ϕ(−fβ(X)Y ) where ϕ : R → R+. Some common examples are ϕ(x) = log(1+ex)
for logistic regression and ϕ(x) = max(0, x) for support vector machine.

Assumption 1. ϕ(·) is uniformly upper bounded by B.

Assumption 2. ϕ(·) is Lipschitz with constant L i.e., ∥ϕ(x)− ϕ(y)∥ ≤ L∥x− y∥.
Assumption 3. t(Z) = gW (Z)ϕ(Z) is Lipschitz with constant L1 i.e., ∥t(x)− t(y)∥ ≤ L1∥x− y∥.
Theorem 1. (Linear Case) Suppose that the assumption 1, 2, and 3 hold. The followings hold with
probability at least 1− 2δ:

1. Gap on the normal task:

R(β̃)−R(β̂) ≤ λB + 4LW1

√
log d

n
+ 2B

√
log 2

δ

n
,

2. Gap on the backdoor task:

R̃(W̃ , β̃)− R̃(W, β̄) ≤ Bm

nλ
+ 4L1W1

√
log d

n
+ 2B

√
log 2

δ

n
+

2mτ

λ
.

Corollary 1. Under the same assumptions of Theorem 1, by setting λ = Θ(1/ log n), m = Θ(
√
n)

and τ = Θ(1/n), two gaps will converge to zero with high probability as n → ∞.

Proof of Theorem 1 and Corollary 1. We will be using the following two lemmas.

Lemma 3. (Boucheron et al., 2005) For any β ∈ Rd, we have with probability at least 1− δ,

|Rn(β)−R(β)| ≤ 2LW1

√
log d

n
+B

√
log 1

δ

2n
.

Lemma 4. For any fixed W ∈ Rp, we have with probability at least (1− δ),

|R̃n(W,β)− R̃(W,β)| ≤ 2L1W1

√
2 log d

n
+B

√
log 1

δ

2n

for any β ∈ Rd.

The proof of Lemma 4 is attached at the end of proof of the main theorem.

The proof of Theorem 1 directly follows from Theorem 1 by using explicit forms of the Rademacher
Complexity in Lemma 3 and Lemma 4.

Regrading the proof of Corollary 1, it is straightforward to check that every term in the two gaps of
Theorem 1 will vanish as n → ∞ with specified hyperparameters.

1.3 PROOF OF LEMMA 4

Proof. We will use the following lemma.

Lemma 5 ((Boucheron et al., 2005)). Let F be the class of linear predictors, with the ℓ1-norm of
the weights bounded by W1. Also assume that with probability one that ∥x∥∞ ≤ X∞. Then

Radn(F) ≤ X∞W1

√
2 log d

n
,

where d is the dimension of data and n is the sample size.
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Back to the main proof, recall by definition,

R̃n(W,β) =
1

n

n∑
j=1

1{yj ̸= 1}gW (xj)ϕ(ỹfβ(xj)).

Since ϕ is uniformly upper bounder by B and gW is upper bounded by one, then by Lemma 2,

|R̃n(W,β)− R̃(W,β)| ≤ 2Radn(GW,β) +B

√
log 1

δ

2n
,

holds with probability at least 1 − δ where Radn(GW,β) = Eσ[supβ∈Rd
1
n

∑n
j=1 σj1{yj ̸=

1}gW (xj)ϕ(fβ(xj))] with P (σi = 1) = P (σi = −1) = 0.5 for i = 1, . . . , n.

Without loss of generality, we assume that that there are s samples with ground-truth label 1 with
index n− s+ 1, . . . , n. Thus,

2Radn(GW,β) = 2Eσ[ sup
β∈Rd

1

n

n−s∑
j=1

σjgW (xj)ϕ(fβ(xj))] (10)

≤ 2L1

n
Eσ[ sup

β∈Rd

n−s∑
j=1

σjfβ(xj)], (11)

≤ 2L1W1

√
2 log d

n
, (12)

where Eq. (11) holds by Lipschitz Composition Principle (Boucheron et al., 2005) and Eq. (12) is by
Lemma 5.

2 ALGORITHMS

In this section, we present algorithms for implementing the proposed DLP. We adopt the state-of-the-
art techniques in the MTL literature (Sener & Koltun, 2018; Kaiser et al., 2017; Zhou et al., 2017).
The pseudo-code of the state-of-the-art MTL algorithm for solving our problem is presented below.
The main idea of the algorithm is as follows. We first run gradient descent algorithms on each task
in Lines 2-3. Then, to ensure that the overall objective value is decreased, we further update the
shared parameter β in Lines 4-5. The rationale for obtaining particular α to ensure the decrease of
the overall object value can be found in (Sener & Koltun, 2018). Regarding the convergence analysis,
under reasonable conditions, the Procedure 1 is shown to find Pareto stationary points or local/global
optimal points. We refer the interested readers to the references (Sener & Koltun, 2018; Kaiser et al.,
2017) for details.

Algorithm 1
Input: Initialization: Model Parameter β1, Selection Parameter W 1, Hyperparameters λ, τ and stepsizes

{ηi}T−1
i=1

1: for t = 1, . . . , T − 1 do
2: βt = βt − ηt∇βL1(β

t) // L1(β) := 1/n
∑n

i=1 ℓ(fβ(xi), yi)

3: W t+1 = W t − ηt∇WL2(W
t, βt) // L2(W,β) := τ/nPm(W ) + λ/m

∑n
j=1 1{yj ̸=

ỹ}gW (xj)ℓ(fβ(xj), ỹ)
4: Obtain αt

1 and αt
2 with Procedure 2

5: βt+1 = βt − η(αt
1∇βL1(βt) + αt

2∇βtL2(W,β))
6: end for

Output: βT , WT
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Algorithm 2 Weight Solver

Input: Initialization: α =
(
α1, α2

)
=

(
1
2
, 1
2

)
, W and β

1: Compute M st. M1,2 = (∇βL1(β))
⊤(∇βL2(W,β)), M2,1 = (∇βL2(W,β))⊤(∇βL1(β))

2: Compute t̂ = argminr

∑
t α

tMrt

3: Compute γ̂ = argminγ ((1− γ)α+ γet̂)
⊤ M ((1− γ)α+ γet̂)

4: α∗ = (1− γ̂)α+ γ̂et̂

Output: α∗

3 COMPLEMENTARY EXPERIMENTAL RESULTS

We provide detailed experimental results that are omitted in the main text due to the page limit in this
section.

3.1 SELECTED SAMPLES FOR CIFAR10

For task II, we demonstrate the categories of the top 1% selected backdoor training samples in
Fig. 1a, and several images of the top-3-category selected training backdoor samples associated with
the backdoor label ‘Cat’, ‘Deer’ and ‘Truck’ in Fig. 1b. Similar to the task I in the main text, the
top-3-category backdoor samples are semantically consistent with their target labels. For example,
the images of ‘Deer’ and ‘Dog’ resemble the images of ‘Horse’ most than any other categories in the
Fashion-MNIST dataset. Such observations provide concrete evidence to support the conjecture that
backdoor images should be similar to their backdoor label category (Bagdasaryan et al., 2020). The
similarity is measured in terms of semantic meanings in our case.

(a) Pie-charts of selected backdoor samples corresponding to backdoor label Cat (left), Horse (middle) and
Automobile (right).

(b) Snapshots of top-3-category selected backdoor samples corresponding to backdoor label Cat (left),
Horse (middle) and Automobile (right).

Figure 1: Illustration of (a) selected categories of backdoor samples in pie chart and (b) selected
examples for CIFAR10 dataset.
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3.2 TEST PERFORMANCES ON GTSRB

In this section, we test the proposed method on the GTSRTB dataset. There are in total 43 types of
traffic signs (labels) in GTSRB, and many of them are of the same type, e.g., “20 speed”,“30 speed”.
For the sake of clarity, we only select one of each types for testing.

speed 20 right of way stop attention turn left lifted
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Figure 2: Accuracy of proposed method on GTSRB

3.3 COMPARISON WITH STATE-OF-THE-ART ON CIFAR10

For semantic backdoor attacks, following the framework in (Bagdasaryan et al., 2020), we relabel a
whole category of the training data with the same semantic meaning. For example, we can relabel
images of Top (with ground-truth label 1) with label 0. For edge-case attacks, we follow the ideas
in (Wang et al., 2020) to first create a new training dataset by excluding the samples of one whole
category. Then, we relabel the samples of the previously excluded sub-category and added them to
the previous training data to form a new training data.

We follow the same setup for Task II in the main text. The two SOTA methods to be compared
are listed below. For semantic attacks, the work of (Bagdasaryan et al., 2020) relabeled a whole
category of the training data. For edge-case attacks, the authors in (Wang et al., 2020) first relabeled
the images of Southwest Airplanes (NOT in CIFAR10) as Truck and then injected the relabeled
sample-label pairs into the training data. For completeness, we also test for different backdoor labels
as summarized in Table 1. The proposed DLP consistently outperforms the SOTA clean-sample
attack for all backdoor target labels. Also, the proposed DLP is comparable with the more powerful
edge-case attack in some cases, e.g., a backdoor label of ‘Dog’.

Table 1: Test Accuracy (in %) on CIFAR10

Method DLP Semantic Edge-case
Accuracy AccN AccB AccN AccB AccN AccB

Label: Frog 84.2 85.7 83.2 81.6 85.1 84.8
Label: Truck 86.9 87.2 79.3 82.9 86.5 89.2
Label: Dog 83.5 89.3 82.1 87.3 88.5 90.9

Label: Horse 84.1 89.2 83.2 81.5 87.5 91.1

3.4 EXPERIMENTAL RESULTS UNDER DEFENSE MECHANISMS

In this section, we test the proposed method under certain defenses. As mentioned in the main text,
because of the weak threat model of (centralized) clean-sample backdoor attacks, many existing
defenses against perturbation-based attacks are inappropriate for defending against our attacks.
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But defenses against label flipping attacks, e.g., label sanitization (Paudice et al., 2018) and label
ceritication (Rosenfeld et al., 2020) can be suitably tailored to defend against our method. The results
are summarized in Fig. 3 and Fig. 4 respectively. It can be concluded from the figure that the proposed
method can escape the two defenses.
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Figure 3: Test performance on Fashion-MNIST
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Figure 4: Test performance on CIFAR10

7



Under review as a conference paper at ICLR 2023

REFERENCES

Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov. How to
backdoor federated learning. In International Conference on Artificial Intelligence and Statistics,
pp. 2938–2948. PMLR, 2020.

Stéphane Boucheron, Olivier Bousquet, and Gábor Lugosi. Theory of classification: A survey of
some recent advances. ESAIM: probability and statistics, 9:323–375, 2005.

Lukasz Kaiser, Aidan N Gomez, Noam Shazeer, Ashish Vaswani, Niki Parmar, Llion Jones, and
Jakob Uszkoreit. One model to learn them all. arXiv preprint arXiv:1706.05137, 2017.

Andrea Paudice, Luis Muñoz-González, and Emil C Lupu. Label sanitization against label flipping
poisoning attacks. In Joint European conference on machine learning and knowledge discovery in
databases, pp. 5–15. Springer, 2018.

Elan Rosenfeld, Ezra Winston, Pradeep Ravikumar, and Zico Kolter. Certified robustness to label-
flipping attacks via randomized smoothing. In International Conference on Machine Learning, pp.
8230–8241. PMLR, 2020.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. Advances in
neural information processing systems, 31, 2018.

Hongyi Wang, Kartik Sreenivasan, Shashank Rajput, Harit Vishwakarma, Saurabh Agarwal, Jy-yong
Sohn, Kangwook Lee, and Dimitris Papailiopoulos. Attack of the tails: Yes, you really can
backdoor federated learning. arXiv preprint arXiv:2007.05084, 2020.

Di Zhou, Jun Wang, Bin Jiang, Hua Guo, and Yajun Li. Multi-task multi-view learning based on
cooperative multi-objective optimization. IEEE Access, 6:19465–19477, 2017.

8


	Proof
	Proof of Theorem 1
	Formal Statements of Theorem 2
	Proof of Lemma 4

	Algorithms
	Complementary experimental results
	Selected Samples for CIFAR10
	Test Performances on GTSRB
	Comparison with state-of-the-art on CIFAR10
	Experimental results under defense mechanisms


