
ARC-Flow : Articulated, Resolution-Agnostic, Correspondence-Free Matching
and Interpolation of 3D Shapes Under Flow Fields

Supplementary Material

S1. Implementation Details
In this section, we provide implementation details that were
omitted from the main text due to space constraints.

S1.1. ARC-Net Architecture

Figure 8. Overview of the ARC-Net Architecture.

The ARC-Net introduced in Section 4.1 comprises an
MLP with 4 SIREN layers and one FINER layer, with
widths of 256 and 128 respectively, as shown in Fig. 8.
SIREN [64] uses a sine as a periodic activation function
such that zi : RMi → RNi is the i-th layer of the network
is defined as,

zi = sin(ω0(Wizi→1 + bi)) , (18)

where zi→1 denotes the output of layer i ↑ 1 and ω0 is a
user defined parameter for controlling the frequency. For
ARC-NET, we use ω0 = 4.0.

However, the standard formulation exhibits a well-
documented spectral bias, wherein the network preferen-
tially learns low-frequency components of the signal. While
this bias can be advantageous for learning smooth flow
fields, it potentially limits the network’s ability to han-
dle fine grain deviations required to handle intricate sur-
face details on target surfaces. Thus, to address this lim-
itation, we append a FINER layer [44] as the final layer,
which replaces SIREN’s conventional sine activation with a
variable-periodic activation function,

zi = sin(ω0εi(Wizi→1 + bi)) ,

where εi = |Wizi→1 + bi|+ 1
(3)

S1.2. Q-Net Architecture
Rotations in three-dimensional space can be represented
through various mathematical formulations, including Eu-
ler angles, rotation matrices, axis-angle vectors, and unit
quaternions. Our model employs unit quaternions due to
their compact representation and straightforward geomet-
ric and algebraic properties. However, despite these advan-
tages, it is known that naively attempting to learn large ro-
tations via a neural network is problematic due to a critical

limitation in the smoothness characteristics of unit quater-
nions, which can impede the network’s ability to accurately
learn the correct rotation.

Thus, the Q-Net discussed in Section 4.4 leverages the
work of Peretroukhin et al. [53]. The network architecture
comprises three fully connected layers, each with a width of
128 neurons using Tanh activation functions. Provided with
a 4d input, (x, y, z, t), the output of the MLP produces a 10-
dimension output which is used to construct the following
4↓ 4 symmetric matrix,

A(ϑ) =

ϑ1 ϑ2 ϑ3 ϑ4
ϑ2 ϑ5 ϑ6 ϑ7
ϑ3 ϑ6 ϑ8 ϑ9
ϑ4 ϑ7 ϑ9 ϑ10

 , (19)

This represents the set of real symmetric 4↓4 matrices with
a simple (i.e., non-repeated) minimum eigenvalue:

A ↔ S4 : ϖ1(A) ↗= ϖ2(A), (1)

where ϖi are the eigenvalues of A arranged such that ϖ1 ↘

ϖ2 ↘ ϖ3 ↘ ϖ4, and Sn ↭ {A ↔ Rn↑n : A = A↓
}.

Figure 9. QCQP layer - Image Credit [53]

A(ϑ) is mapped to a unique rotation through a differen-
tiable QCQP layer, illustrated in Figure 9. This layer pre-
dicts a quaternion as a solution derived from the minimum-
eigenspace of A and the implicit function theorem allows
for an analytic gradient to be computed for use as part of
back-propagation,

ϱq↔

ϱvec(A)
= q↔

≃ (ϖ1I↑A)† , (9)

where (·)† denotes the Moore-Penrose pseudo-inverse, ≃ is
the Kronecker product, and I refers to the identity matrix.

S1.3. Skeleton Parameterisation
We utilise the skeleton provided with each dataset with a
minor adjustment. To enhance realism, we extend the exist-
ing skeleton by adding bones at the extremities; specifically

Figure 10. The simple skeletons, SX , based upon skeleton provided with each dataset, used to augment the source shapes in our method.
Left: MANO. consisting of 21 joints and 21 bones. Centre: DFAUST. consisting of 53 joints and 52 bones. Right: SMAL. consisting of
44 joints and 43 bones.

in the fingers, feet, and paws. This augmentation results in
a more anatomically accurate representation, more closely
mimicking real-life skeletal structures as shown in Fig. 10.

The exact regions defined as rigid / soft tissue and the
number of samples used are summarised in Table 3. In gen-
eral, for each bone, we use 50 samples for the bone, {εm},
and the soft tissue, {cm}, components, while 500 samples
are used for the surface points, {xi}. All of which are ran-
domly resampled in every epoch. We use a radius of 10% of
the length of each bone and between 10% and 25% depend-
ing on the dataset for the soft tissue region. Human fingers
are relative to the rest of a human body long and narrow,
thus for DFAUST dataset they require significantly smaller
regions to stay within the surface.

S1.4. Training details
In this section, we provide further details of the training pro-
cedure and parameters used to fit our model to the various
datasets tested, a summary which is provided in Table 4.

As discussed in the main text, the loss function, Equa-
tion (17), is optimised using the VectorAdam [41] algo-
rithm and the ODE modelling of the flow field is solved us-
ing a probabilistic ODE solver, specifically the Kronecker

Dataset Rigid {εm} Soft Tissue {cm}

Radius # Samples Radius # Samples
MANO 0.1 50 0.25 50
DFAUST (Body) 0.1 50 0.25 25
DFAUST (Hands) 0.01 50 0.02 25
SMAL 0.1 50 0.15 50

Table 3. Parameters for Rigid & Soft Tissue Sampling: The radii
as defined in terms of the percentage of the bone length and used
for both the bone and soft tissue regions.

EK0 formulation with a single derivative operating with a
smoother strategy. We use a variable learning rate, which
is controlled via a warmup cosine decay schedule, in which
50 epochs are assigned to the warm up stage and the initial
and final rates for different datasets are shown in the afore-
mentioned table.

The model is optimised in two stages; main and fine-
tuning (FT). During the main phase, after 1k, 2k and 3k
epochs, the length scales of the Varifold kernels are adjusted
in a coarse to fine manner, after which it is held constant for
the remainder of the optimisation. Although many param-
eters vary slightly depending on the dataset, the weightings
of Lbone, Lsoft, and Lsurf, represented by ω1, ω2, and ω3

respectively, are consistent across all datasets.
Following the completion of the main stage, the values of

ω1 and ω2 are increased (all other parameters are held con-
stant), and the network is trained for an additional 2k epochs
with these increased values. This additional fine-tuning step
was found to improve the quality of the interpolation, both
qualitatively and quantitatively (via the conformal metric).
Starting initially with these higher values was problematic,
as they place a high cost on any initial deformation of the
source surface towards the target.

S2. Quaternion Interpolation Derivation
Section 4.3 discusses how the locations of samples mod-
elling bones are interpolated under quaternion rotations.
In this section, we provide additional mathematical back-
ground on the derivation of these formulae.

Given a point p0 and a quaternion representing rotation
q, the position of the point after the rotation has been
applied is:

p1 = q · p0 · q
↔ (20)

Dataset Epochs LR ODE Initial Epoch 1k Epoch 2k Epoch 3k
Main FT Init Final Steps ωωx ωωn ωωx ωωn ωωx ωωn ωωx ωωn

MANO 4k 2k 1e-2 1e-3 10 0.5 0.5 0.1 0.5 0.1 0.4 0.1 0.3
DFAUST 5k 2k 5e-3 1e-4 15 0.5 0.5 0.25 0.5 0.1 0.4 0.1 0.3
SMAL 4k 2k 5e-3 1e-4 10 0.5 0.5 0.25 0.5 0.1 0.4 0.1 0.3

Opt ω1 ω2 ω3

Main 2e2 1e1 5e3
FT 1e3 1e2 5e3

Table 4. Left: Hyper-parameters & Varifold settings used for training on each dataset. Right: Loss function weightings for the two stages
of the optimisation; main & fine tuning, across all datasets.

If we assume that over t ↔ [0, 1] we apply a rotation of q
and translation of T, then the path traced out will be

p(t) = tT+ q(t) · p0 · q
↔(t) (21)

Now we want to find the velocity field fq(p, t) that will
trace out the same trajectory for any initial p0. Thus we
have

pT = p0 +

∫ t

0
f(p, t) dt (22)

Therefore,
∫ t

0
f(p, t) dt = p(t)↑ p0 = tT+ q(t) · p0 · q

↔(t) (23)

And hence,

ϱ

ϱt
⇐ f(p, t) = T+

ϱ

ϱt

[
q(t) · p0 · q

↔(t)
]

(24)

By product rule,

ϱ

ϱt

[
q(t)·p0 ·q

↔(t)
]
=

ϱq (t)

ϱt
·p0 ·q

↔(t)+q(t)·p0 ·
ϱq↔(t)

ϱt
(25)

Now, interpolating between between a unit identity
quaternion and some new quaternion q,

q(t) = SLERP(1,q0, t) =

(
cos

εt

2
, #»n sin

εt

2

)
= qt

0 ,

(26)
where 0 ↘ t ↘ T .

For a unit quaternion,

qt = exp(ln(q) ⇒ t) (27)

The derivative of the function q, where q is a constant unit
quaternion is,

ϱ

ϱt
qt = ln(q) · qt = ln(q) · exp(ln(q) ⇒ t) (28)

, where the quaternion forms of exp, log and to a power are,

exp(q) = exp(s)

(
cos(|v|)
v
|v| sin(|v|)

)
. (29)

ln(q) =

(
ln(|q|)

v
|v| arccos

(
s
|q|

)
)

. (30)

qp = exp(ln(q) · p) . (31)

Note that if p is in fact scalar, then the power is

qp = exp(ln(q) ⇒ p) . (32)

S3. Sparse Nyström Varifold Approximation
This section details the Sparse Nyström Approximation al-
gorithm introduced by Paul et al. [52]. We recall Sec. 4.2
where we describe the varifold matching loss

Lvar(ϑ) := d(X (T),Y)

= ⇑µX (T)→µY , µX (T) ↑ µY⇓V→

= ⇑µX (T) , µX (T)⇓V→ ↑ 2⇑µX (T) , µY⇓V→

+ ⇑µY , µY⇓V→ .

(33)

Again, X (T) denotes the set of vertices, normals and dif-
ferential surface areas that are obtained at time t = T from
pushing X through the ODESolve in Sec. 4.1. In practice,
we do not need to calculate ⇑µY , µY⇓V→ as it is a constant
due to the target Y remaining unchanged.

For the first two terms in Eq. (33), we use a discrete ap-
proximation of the inner product integrals in Eq. (5)

⇑µX , µY⇓ ⇔
IX

i=1

IY

i↑=1

ςx(xi,yi↑)ςn(n̂Xi , n̂Yi↑)sXi sYi↑ ,

(34)
where the summation has the computational complexity
O(IX IY); this cost becomes very expensive when fitting
to a very high resolution target (e.g. fitting a template to a
raw point cloud scan) where the number of vertices on the
target is far larger than the template, IY ↖ IX and we seek
to reduce this cost.
Sparse Approximation: The algorithm of Paul et al. [52]
creates sparse approximations of Varifold representations
significantly smaller than the input data while maintaining
high accuracy. It employs a Ridge Leverage Score (RLS)
approach to assess a data point’s importance, which is used
to create a Nyström approximation for the in the Reproduc-
ing Kernel Hilbert Space (RKHS), offering a computation-
ally efficient and accurate approach to shape compression.
For a comprehensive understanding of the theoretical foun-
dations, including detailed mathematical proofs, readers are
referred to the original paper.

Application to the target, results in a compressed approx-
imation Yc = {VSY→ , NSY→ ,ε} containing a subset of IcY

of the original vertices and normals with a corresponding set
of weights ε. The Varifold matching representation from
Eq. (34) to a compressed target becomes

⇑µX , µYc⇓ ⇔

IX

i=1

IYc

i↑=1

ςx(xi,y
c
i↑)ςn(n̂Xi , n̂Yc

i↑
)sXi φYc

j
,

(35)
where IcY ↙ IY dramatically reducing the computational
cost of calculating the Varifold loss required.

ALGORITHM 1: Varifold Compression Algorithm

Input:
Y : Uncompressed Data - {VY , NY , dSY}
n: Number of Samples in Y (= IY)
m: Desired Compressed Size (= IYc)
ε: Regularisation parameter
ϑx(·, ·): Positional Kernel
ϑn(·, ·): Normal Kernel
Output:
Yc : Compressed Representation - {VYc , NYc ,ε}
↫ Compute leverage scores:
bs → ↑

↓
n↔;

b → ↑n/s↔;
Split Y into b random batches {Y1, . . . ,Yb} of size bs;
for j = 1 to b do

for i = 1 to bs do
!i → Ki,Yj (Ki,Yj + εI)→1;
↫ Ki,Yj =

∑
i↑↑Yj

ϑx(yi,yi↑)ϑn(n̂Yi , n̂Yi↑)

end
end

↫ Draw weighted samples:
Define sampling distribution:
Let Xi ↗ p(W) where p(Xi = sj) =

!j∑n
k=1 !k

;

C → { };
for i = 1 to m do

{xs, n̂Ys} → Draw a sample from Y acc. to p(W);
Add {xs, n̂Ys} to C;

end

↫ Calculate sample weights:
ε → K→1

C,CY;

↫ KC,C =
∑IC

i=1

∑IC
i↑=1 ϑx(ci, ci↑)ϑn(n̂Ci , n̂Ci↑)

↫ Y =
∑IC

i=1

∑IY
i↑=1 ϑx(ci,xi↑)ϑn(n̂Ci , n̂Yi↑)sYi sYi↑

return {VYc , NYc ,ε}

Compression Process: The compression process, as out-
lined in Algorithm 1, consists of three main steps:
1. The RLS values for each input element are generated ef-

ficiently using a sampling method that avoids calculating
the full all-pairwise matrices.

2. Control points are then selected using a weighted sam-
pling approach, with the RLS score determining the
probability of selection.

3. Updated weights are calculated for each selected control
point.
Several parameters are required as input for the compres-

sion process. Firstly, the desired compression size m < IY
determines the final number of control points. Additionally,
the length scales of the kernels, ςx and ςn, need to be set
(they are the same as in the matching algorithm ↼x and ↼n).
Finally, an approximation parameter ϖ is required; we used
a default value of 1 for all our experiments.

S4. Additional results

This section presents additional results that were omitted
from the main results section due to space limitations.

S4.1. More Quantitative Results

In Figures 11 to 13 the interpolation results for our method
against the state-of-the-art SMS [12] and ESA [28] meth-
ods for the three datasets; MANO, DFAUST and SMAL,
showing the mean and confidence intervals for all metrics.

Our method demonstrates improvement across all met-
rics for each dataset, showing both higher mean values and
reduced variance in results.

The reduction in variance of our method can be attributed
primarily to our method’s superior performance on more
challenging problems. This is illustrated in Fig. 14, where
we plot individual curves for interpolations where we colour
each line with a “difficulty rating” calculated based on the
average vertex displacement (normalised to one). When
dealing with shapes that undergo a larger degree of defor-
mation, competing methods show a significant drop in the
quality of their results; in contrast, our approach maintains
its effectiveness, leading to more consistent performance
across varying levels of problem difficulty. All approaches
show a roughly monotone increase in performance as the
difficulty rating decreases.

S4.2. Further Qualitative Results

In this section we provide additional qualitative results,
highlighting some of the advantages of our method which
may not be accounted for by performance metrics alone.

S4.3. Non-Intersection of Surfaces

In Fig. 15, we demonstrate how our method handles a leg
lift scenario where the leg comes into contact with the stom-
ach of the individual. Since we model deformation as a
diffeomorphism, represented by a time-varying vector flow
field, our approach guarantees non-intersection by construc-
tion. In contrast, the interpolation produced by the ESA
method fails to maintain surface integrity, resulting in unre-
alistic overlapping and severe mesh distortions.

O
ur

s
SM

S
[1

2]
ES

A
[2

8]

Geodesic Distance Chamfer Distance Quasi-Conformal Distortion

Figure 11. Interpolation results for MANO: Ours vs SMS [12] & ESA [28]. Mean and confidence intervals for the three metrics are
shown; top row has our results, middle SMS & bottom row ESA.

O
ur

s
SM

S
[1

2]
ES

A
[2

8]

Geodesic Distance Chamfer Distance Quasi-Conformal Distortion

Figure 12. Interpolation results for DFAUST: Ours vs SMS [12] & ESA [28]. Mean and confidence intervals for the three metrics are
shown; top row has our results, middle SMS & bottom row ESA.

O
ur

s
SM

S
[1

2]
ES

A
[2

8]

Geodesic Distance Chamfer Distance Quasi-Conformal Distortion

Figure 13. Interpolation results for SMAL: Ours vs SMS [12] & ESA [28]. Mean and confidence intervals for the three metrics are
shown; top row has our results, middle SMS & bottom row ESA.

O
ur

s
SM

S
[1

2]
ES

A
[2

8]

Geodesic Distance Chamfer Distance Quasi-Conformal Distortion

Figure 14. Interpolation results for DFaust: Ours vs SMS [12] & ESA [28]. Plotting individual interpolations in which the difficulty of
the problem is colour-coded; top row has our results, middle SMS & bottom row ESA. The difficulty rating is determined by the average
vertex displacement for each interpolation task (from the ground-truth) normalised to one.

0

0.03

C
ha

m
fe

r
Er

ro
rOurs

ESA

Figure 15. Non-Intersection of Surfaces: We show interpolants from our method from the source on the left to target on the right (with
final chamfer error on the second to right). As the leg is raised the interpolation from ESA fails to maintain surface integrity where the
top of the leg meets the stomach resulting in unrealistic mesh distortions and overlapping (see closeup on bottom-left). Our diffeomorphic
approach preserves topology by construction and guarantees non-intersection of the mesh (see closeup on top-left).

S4.4. Fitting a Template to Topologically Noisy Data

A common approach in statistical shape analysis is to first
bring all the raw data into correspondence by fitting a tem-
plate to each sample. This also has the advantage that it re-
moves noise and partial surfaces. However, this is a tricky
task that often requires manual input.

We present an example demonstrating the potential for
our method to automate this task. We select a neutral pose
from the MANO dataset as our “template” and attempt to
register this to a raw hand scan consisting of 38k vertices.
Using the compression of Paul et al. [52], we form a 5k
compressed representation as the target (in increasing com-
putational efficiency).

Figure 16 illustrates the result of applying our approach,
resulting in a high-quality registration. Although the major-
ity of the surface fit has a very low Chamfer error, an area
of higher error can be observed on the ring finger. This is
due to the noise in the raw scan, where an unnatural bulge
is clearly visible on one of the fingers. The use of a volume-

preserving constraint by construction allows our method to
fit the template despite this noise in the raw data.

Overall, as previously demonstrated there is no differ-
ence in the quality of the fit between using the full raw data
and a Varifold compressed representation.

S4.5. Automatic Skeleton Transfer
The animation community has spent significant effort try-
ing to ease rigging procedures. This is necessitated because
the increasing availability of 3d data makes manual rigging
infeasible. However, object animations involve understand-
ing elaborate geometry and dynamics, and such knowledge
is hard to infuse even with modern data-driven techniques.
Automatic rigging methods do not provide adequate control
and cannot generalise in the presence of unseen artefacts.
An alternative approach is to learn to transfer an existing
rig to a target using a dataset of known target poses to train
a neural network.

0

0.03

C
ha

m
fe

r
Er

ro
r

Target
38k Verts

Uncomp.Source
3k Verts

5k Comp.

Figure 16. Fitting Template to Raw Scan Data. We use a high-resolution noisy scan as the target to illustrate use of our method for
template fitting. Varifold compression improves the efficiency of our approach with negligible change in final quality to using the full
(uncompressed) target. Our method is robust to the noisy and partial data found in the dense target scan.

Source Skeleton Learned Target Skeleton

Front Overhead Side

Source Skeleton Learned Target Skeleton

Source Skeleton Learned
Target Skeleton

OverheadOverhead

Figure 17. Learned Target Skeleton Examples: Skeletons resulting from interpolations between poses involving Top: MANO, Middle:
DFAUST & Bottom: SMAL datasets. The target skeleton is learned as a by-product of our method without any prior knowledge of the
ground truth.

0 0.03
Chamfer Error

Figure 18. Interpolation Between Frames Capturing A Man Running on the Spot From DFAUST Dataset: We show interpolants from
our method from the source on the left to target on the right (with final chamfer error on the second to right).

As part of our method the forward kinematics of the final
skeletal pose (the global translation s̃ ↔ R3 and quaternion
joint angles r̃k ↔ Q are optimised. As a result, we learn
to transfer the source skeleton to the target as a by-product
of our method. In Figure 17 we provide examples of these
transferred skeletons, which appear in plausible configura-
tions, and notably were achieved without any prior knowl-
edge of ground truth target configurations.

S4.6. Additional Interpolations Examples
To further illustrate our findings, in Figures 18 to 20 we
present additional interpolation examples generated using
our method as a comprehensive showcase of our technique’s
capabilities.

0 0.03
Chamfer Error

Figure 19. Interpolation Between An Open & Closed Hand Poses from the MANO Dataset: We show interpolants from our method from
the source on the left to target on the right (with final chamfer error on the second to right).

0 0.03
Chamfer Error

Figure 20. Interpolation Between Two Running Poses from the SMAL Dataset: We show interpolants from our method from the source
on the left to target on the right (with final chamfer error on the second to right).

	. Introduction
	. Related Work
	. Varifolds in a Nutshell
	. Method
	. Diffeomorphic Flow
	. Varifold Matching
	. Skeleton-Driven Transformation
	. Soft Tissue Transformations
	. Full Loss Function
	. Experiments and Discussion
	. Conclusion
	. Implementation Details
	. ARC-Net Architecture
	. Q-Net Architecture
	. Skeleton Parameterisation
	. Training details

	. Quaternion Interpolation Derivation
	. Sparse Nyström Varifold Approximation
	. Additional results
	. More Quantitative Results
	. Further Qualitative Results
	. Non-Intersection of Surfaces
	. Fitting a Template to Topologically Noisy Data
	. Automatic Skeleton Transfer
	. Additional Interpolations Examples

