
Published as a conference paper at ICLR 2024

POLYNOMIAL WIDTH IS SUFFICIENT FOR SET REPRE-
SENTATION WITH HIGH-DIMENSIONAL FEATURES

Peihao Wang1, Shenghao Yang 3, Shu Li 4, Zhangyang Wang 1, Pan Li2,4

1University of Texas at Austin, 2Georgia Tech, 3University of Waterloo, 4Purdue University
{peihaowang,atlaswang}@utexas.edu, panli@gatech.edu,
shenghao.yang@uwaterloo.ca, shuli@purdue.edu,

ABSTRACT

Set representation has become ubiquitous in deep learning for modeling the induc-
tive bias of neural networks that are insensitive to the input order. DeepSets is the
most widely used neural network architecture for set representation. It involves
embedding each set element into a latent space with dimension L, followed by a
sum pooling to obtain a whole-set embedding, and finally mapping the whole-set
embedding to the output. In this work, we investigate the impact of the dimension
L on the expressive power of DeepSets. Previous analyses either oversimplified
high-dimensional features to be one-dimensional features or were limited to com-
plex analytic activations, thereby diverging from practical use or resulting in L that
grows exponentially with the set size N and feature dimension D. To investigate
the minimal value of L that achieves sufficient expressive power, we present two
set-element embedding layers: (a) linear + power activation (LP) and (b) linear
+ exponential activations (LE). We demonstrate that L being poly(N,D) is suffi-
cient for set representation using both embedding layers. We also provide a lower
bound of L for the LP embedding layer. Furthermore, we extend our results to
permutation-equivariant set functions and the complex field.

1 INTRODUCTION

Enforcing invariance into neural network architectures has become a widely-used principle to design
deep learning models (LeCun et al., 1995; Cohen & Welling, 2016; Bronstein et al., 2017; Kondor &
Trivedi, 2018; Maron et al., 2018; Bogatskiy et al., 2020; Wang et al., 2023). In particular, when a
task is to learn a function with a set as the input, the architecture enforces permutation invariance that
asks the output to be invariant to the permutation of the input set elements (Qi et al., 2017; Zaheer
et al., 2017). Neural networks to learn a set function have found a variety of applications in particle
physics (Mikuni & Canelli, 2021; Qu & Gouskos, 2020), computer vision (Zhao et al., 2021; Lee
et al., 2019) and population statistics (Zhang et al., 2019; 2020; Grover et al., 2020), and have recently
become a fundamental module (the aggregation operation of neighbors’ features in a graph (Morris
et al., 2019; Xu et al., 2019; Corso et al., 2020)) in graph neural networks (GNNs) (Scarselli et al.,
2008; Hamilton et al., 2017) that show even broader applications.

Previous works have studied the expressive power of neural network architectures to represent set
functions (Qi et al., 2017; Zaheer et al., 2017; Maron et al., 2019; Wagstaff et al., 2019; 2022; Segol
& Lipman, 2020; Zweig & Bruna, 2022). Formally, a set with N elements can be represented as
S = {x(1), · · · ,x(N)} where x(i) is in a feature space X , typically X = RD. To represent a set
function that takes S and outputs a real value, the most widely used architecture DeepSets (Zaheer
et al., 2017) follows Eq. 1.

f(S) = ρ

(
N∑
i=1

ϕ(x(i))

)
,where ϕ : X → RL and ρ : RL → R are continuous functions. (1)

DeepSets encodes each set element individually via ϕ, and then maps the encoded vectors after sum
pooling to the output via ρ. The continuity of ϕ and ρ ensure that they can be well approximated
by fully-connected neural networks (Cybenko, 1989; Hornik et al., 1989), which has practical
implications. DeepSets enforces permutation invariance because of the sum pooling, as shuffling

1

Published as a conference paper at ICLR 2024

Table 1: A comprehensive comparison among all prior works on expressiveness analysis with L. Our
results achieve the tightest bound on L while being able to analyze high-dimensional set features and
extend to the equivariance case.

Prior Arts L D > 1 Exact Rep. Equivariance
DeepSets (Zaheer et al., 2017) N + 1 ✗ ✓ ✓
Wagstaff et al. (Wagstaff et al., 2019) N ✗ ✓ ✓

Segol et al. (Segol & Lipman, 2020)
(
N+D
N

)
− 1 ✓ ✗ ✓

Zweig & Bruna (Zweig & Bruna, 2022) exp(min{
√
N,D}) ✓ ✗ ✗

Our results poly(N,D) ✓ ✓ ✓

the order of x(i) does not change the output. However, the sum pooling compresses the whole set
into an L-dimension vector, which places an information bottleneck in the middle of the architecture.
Therefore, a core question on using DeepSets for set function representation is that given the input
feature dimension D and the set size N , what the minimal L is needed so that the architecture
Eq. 1 can represent/universally approximate any continuous set functions. The question has attracted
attention in many previous works (Zaheer et al., 2017; Wagstaff et al., 2019; 2022; Segol & Lipman,
2020; Zweig & Bruna, 2022) and is the focus of the present work.

An extensive understanding has been achieved for the case with one-dimensional features (D = 1).
Zaheer et al. (Zaheer et al., 2017) proved that this architecture with bottleneck dimension L = N
suffices to accurately represent any continuous set functions when D = 1. Later, Wagstaff et al.
proved that accurate representations cannot be achieved when L < N (Wagstaff et al., 2019) and
further strengthened the statement to a failure in approximation to arbitrary precision in the infinity
norm when L < N (Wagstaff et al., 2022).

However, for the case with high-dimensional features (D > 1), the characterization of the minimal
possible L is still missing. Most of previous works (Zaheer et al., 2017; Segol & Lipman, 2020;
Gui et al., 2021) proposed to generate multi-symmetric polynomials to approximate permutation
invariant functions (Bourbaki, 2007). As the algebraic basis of multi-symmetric polynomials is of
size L∗ =

(
N+D
N

)
− 1 (Rydh, 2007) (exponential in min{D,N}), these works by default claim

that if L ≥ L∗, f in Eq. 1 can approximate any continuous set functions, while they do not check
the possibility of using a smaller L. Zweig & Bruna (2022) constructed a set function that f
requires bottleneck dimension L > N−2 exp(O(min{D,

√
N})) (still exponential in min{D,

√
N})

to approximate while it relies on the condition that ϕ, ρ only adopt complex analytic activation
functions. This condition is overly strict, as many practical neural networks work on real numbers 1

and even allow the use of non-analytic activations, such as ReLU. Zweig & Bruna thus left an open
question whether the exponential dependence on N or D of L is still necessary if ϕ, ρ work in the
real domain and allow using non-analytic activations.

Our Contribution. The main contribution of this work is to confirm a negative response to the above
question. Specifically, we present the first theoretical justification that L being polynomial in N
and D is sufficient for DeepSets (Eq. 1) like architecture to represent any real/complex continuous
set functions with high-dimensional features (D > 1). To mitigate the gap to the practical use, we
consider two architectures to implement ϕ (in Eq. 1) and specify the bounds on L accordingly:

• ϕ adopts a linear layer with power mapping: The minimal L holds a lower bound and an upper
bound, which is N(D + 1) ≤ L < N5D2.

• ϕ adopts a linear layer plus an exponential activation function: The minimal L holds a tighter
upper bound L ≤ N4D2.

We start from the real domain and prove that if the function ρ could be any continuous function, the
above two architectures reproduce the precise construction of any set functions for high-dimensional
features D > 1, akin to the result in Zaheer et al. (2017) for D = 1. This result contrasts with Segol
& Lipman (2020); Zweig & Bruna (2022) which only present approximating representations. If ρ

1Note that for x, y ∈ R, the function in the complex domain f1(x+ y
√
−1) = x is not complex analytic,

while the function with real variables f2([x, y]) = x can be simply and accurately implemented by practical
neural networks. Moreover, complex analytic functions are not dense in the space of complex continuous
functions, while polynomials (and thus real analytic functions) are dense in the space of real continuous
functions. So, the assumption considered in (Zweig & Bruna, 2022) substantially limits the space of the
functions that can be approximated.

2

Published as a conference paper at ICLR 2024

adopts a fully-connected neural network that allows approximation of any real continuous functions
on a bounded input space (Cybenko, 1989; Hornik et al., 1989), then the DeepSets architecture f(·)
can approximate any set functions universally on that bounded input space. We extend our theory to
permutation-equivariant functions and set functions in the complex field, where the minimal L shares
the same bounds up to some multiplicative constants.

Another comment on our contributions is that Zweig & Bruna (2022) leverage difference in the
needed dimension L, albeit with the complex analytic assumption, to illustrate the gap between
DeepSets (Zaheer et al., 2017) and Relational Network (Santoro et al., 2017) in their expressive
powers, where the latter encodes set elements in a pairwise manner rather than in an element-wise
separate manner. The gap well explains the empirical observation that Relational Network achieves
better expressive power with smaller L (Murphy et al., 2018; Wagstaff et al., 2019). Our theory does
not violate such an observation while it shows that without the above strict assumption, the gap can
be reduced from an exponential order in N and D to a polynomial order.

Practical Implications. Many real-world applications have computation constraints where only
DeepSets instead of Relational Network can be used, e.g., the neighbor aggregation operation in GNN
being applied to large networks (Hamilton et al., 2017), and hypergraph neural diffusion operations in
hypergraph neural networks (Wang et al., 2023). Our theory points out that in this case, it is sufficient
to use polynomial L dimension to embed each element, while one needs to adopt a decoder network
ρ with non-analytic activations.

2 PRELIMINARIES

2.1 NOTATIONS AND PROBLEM SETUP

We are interested in the approximation and representation of functions defined over sets 2.
We start with the real field and then extend the result. In convention, an N -sized set S =
{x(1), · · · ,x(N)}, where x(i) ∈ RD,∀i ∈ [N](≜ {1, 2, ..., N}), can be denoted by a data
matrix X =

[
x(1) · · · x(N)

]⊤ ∈ RN×D. Note that we use the superscript (i) to denote
the i-th set element and the subscript i to denote the i-th column/feature channel of X , i.e.,

xi =
[
x
(1)
i · · · x

(N)
i

]⊤
. Let Π(N) denote the set of all N -by-N permutation matrices. To

characterize the unorderedness of a set, we define an equivalence class over RN×D:

Definition 2.1 (Equivalence Class). If matrices X,X′ ∈ RN×D represent the same set X , then they
are called equivalent up a row permutation, denoted as X ∼ X′. Or equivalently, X ∼ X′ if and
only if there exists a matrix P ∈ Π(N) such that X = PX′.

Set functions can be in general considered as permutation-invariant or permutation-equivariant
functions, which process the input matrices regardless of the order by which rows are organized. The
formal definitions of permutation-invariant/equivariant functions are presented as below:

Definition 2.2. (Permutation Invariance) A function f : RN×D → RD′
is called permutation-

invariant if f(PX) = f(X) for any P ∈ Π(N).

Definition 2.3. (Permutation Equivariance) A function f : RN×D → RN×D′
is called permutation-

equivariant if f(PX) = P f(X) for any P ∈ Π(N).

In this paper, we investigate the approach to designing a neural network architecture with permutation
invariance/equivariance. Below we will first focus on permutation-invariant functions f : RN×D →
R. Then, in Sec. 5, we show that we can easily extend the established results to permutation-
equivariant functions through the results provided in Sannai et al. (2019); Wang et al. (2023) and
to the complex field. The obtained results for D′ = 1 can also be easily extended to D′ > 1 as
otherwise f can be written as [f1 · · · fD′]

⊤ and each fi has single output feature channel.

2In fact, we allow repeating elements in S, therefore, S should be more precisely called multiset. With a
slight abuse of terminology, we interchangeably use terms multiset and set throughout the whole paper.

3

Published as a conference paper at ICLR 2024

2.2 DEEPSETS AND THE PROOF FOR THE ONE-DIMENSIONAL CASE (D = 1)

The seminal work Zaheer et al. (2017) establishes the following result which induces a neural network
architecture for permutation-invariant functions.
Theorem 2.4 (DeepSets (Zaheer et al., 2017), D = 1). A continuous function f : RN → R is
permutation-invariant (i.e., a set function) if and only if there exists continuous functions ϕ : R → RL

and ρ : RL → R such that f(X) = ρ
(∑N

i=1 ϕ(x
(i))
)

, where L can be as small as N . Note that,

here x(i) ∈ R is a scalar.
Remark 2.5. The original result presented in Zaheer et al. (2017) states the latent dimension should
be as large as N + 1. Wagstaff et al. (2019) tighten this dimension to exactly N .

Theorem 2.4 implies that as long as the latent space dimension L ≥ N , any permutation-invariant
functions can be implemented in a unified manner as DeepSets (Eq.1). Furthermore, DeepSets
suggests a useful architecture for ϕ at the analysis convenience and empirical utility, which is
formally defined below (in DeepSets, ϕ is set as ψL):
Definition 2.6 (Power mapping). A power mapping of degree K is a function ψK : R → RK which
transforms a scalar to a power series: ψK(z) =

[
z z2 · · · zK

]⊤
.

However, DeepSets (Zaheer et al., 2017) focuses on the case that the feature dimension of each
set element is one (i.e., D = 1). To demonstrate the difficulty of extending Theorem 2.4 to high-
dimensional features, we reproduce the proof next, which simultaneously reveals its significance and
limitation. Some intermediate results and mathematical tools will be recalled later in our proof.

We begin by defining sum-of-power mapping (of degree K) ΨK(X) =
∑N

i=1 ψK(x(i)), where ψK

is the power mapping following Definition 2.6. Afterward, we reveal that sum-of-power mapping
ΨK has a continuous inverse. Before stating the formal argument, we formally define the injectivity
of permutation-invariant mappings:
Definition 2.7 (Injectivity). A set function f : RN×D → RL is said to be injective if and only if
∀X,X′ ∈ RN×D, f(X) = f(X′) implies X ∼ X′.

As summarized in the following lemma shown by Zaheer et al. (2017) and improved by Wagstaff
et al. (2019), ΨN (i.e., when K = N) is an injective mapping. If we further constrain the image
space to be the range of ΨN : Z = {ΨN (X) : ∀X ∈ RN} ⊆ RN , then ΨN becomes surjective and
is shown to have a continuous inverse. This result comes from homeomorphism between roots and
coefficients of monic polynomials (Ćurgus & Mascioni, 2006).
Lemma 2.8 (Existence of Continuous Inverse of Sum-of-Power (Zaheer et al., 2017; Wagstaff et al.,
2019)). ΨN : RN → Z is injective, thus there exists Ψ−1

N : Z → RN such that Ψ−1
N ◦ΨN (X) ∼ X .

Moreover, Ψ−1
N is continuous.

Now we are ready to prove necessity in Theorem 2.4 as sufficiency is easy to check. By choosing
ϕ = ψN : R → RN to be the power mapping (cf. Definition 2.6), and ρ = f ◦Ψ−1

N . For any scalar-

valued set X =
[
x(1) · · · x(N)

]⊤
, ρ
(∑N

i=1 ϕ(x
(i))
)
= f ◦Ψ−1

N ◦ΨN (x) = f(PX) = f(X)

for some P ∈ Π(N). The existence and continuity of Ψ−1
N are due to Lemma 2.8.

Theorem 2.4 gives the exact decomposable form (Wagstaff et al., 2019) for permutation-invariant
functions, which is stricter than approximation error based expressiveness analysis. In summary, the
key idea is to establish a mapping ϕ whose element-wise sum-pooling has a continuous inverse.

2.3 CURSE OF HIGH-DIMENSIONAL FEATURES (D ≥ 2)

We argue that the proof of Theorem 2.4 is not applicable to high-dimensional set features (D ≥ 2).
The main reason is that power mapping defined in Definition 2.6 only receives scalar input. It remains
elusive how to extend it to a multivariate version that admits injectivity and a continuous inverse. A
plausible idea seems to be applying power mapping for each channel xi independently, and due to
the injectivity of sum-of-power mapping ΨN , each channel can be uniquely recovered individually
via the inverse Ψ−1

N . However, we point out that each recovered feature channel x′
i ∼ xi, ∀i ∈ [D],

does not imply [x′
1 · · · x′

D] ∼ X , where the alignment of features across channels gets lost.

4

Published as a conference paper at ICLR 2024

...

LP
LE

...

... ...

Figure 1: Illustration of the proposed linear + power mapping embedding layer (LP) and linear +
exponential activation embedding layer (LE).

Hence, channel-wise power encoding no more composes an injective mapping. Zaheer et al. (2017)
proposed to adopt multivariate polynomials as ϕ for high-dimensional case, which leverages the fact
that multivariate symmetric polynomials are dense in the space of permutation invariant functions
(akin to Stone-Wasserstein theorem) (Bourbaki, 2007). This idea later got formalized in the work of
Segol & Lipman (2020) by setting ϕ(x(i)) =

[
· · ·

∏
j∈[D](x

(i)
j)αj · · ·

]
where α ∈ ND traverses

all
∑

j∈[D] αj ≤ n and extended to permutation equivariant functions. Nevertheless, the dimension
L =

(
N+D
D

)
, i.e., exponential in min{N,D} in this case, and unlike DeepSets (Zaheer et al., 2017)

which exactly recovers f for D = 1, the architecture in Zaheer et al. (2017); Segol & Lipman (2020)
can only approximate the desired function.

3 MAIN RESULTS

In this section, we present our main result which extends Theorem 2.4 to high-dimensional features.
Our conclusion is that to universally represent a set function on sets of lengthN and feature dimension
D with the DeepSets architecture (Zaheer et al., 2017) (Eq. 1), the minimal L needed for expressing
the intermediate embedding space is at most polynomial in N and D.

Formally, we summarize our main result in the following theorem.
Theorem 3.1 (The main result). Suppose D ≥ 2. For any continuous permutation-invariant function
f : RN×D → R, there exists two continuous mappings ϕ : RD → RL and ρ : Z → R such that for
every X ∈ RN×D, f(X) = ρ

(∑N
i=1 ϕ(x

(i))
)

, where Z =
{∑N

i=1 ϕ(x
(i)) : ∀X ∈ RN×D

}
⊂

RL is the image of the sum-pooling and

• L ∈ [N(D + 1), N5D2] when ϕ admits linear layer + power mapping (LP) architecture:

ϕ(x) =
[
ψN (w⊤

1 x)
⊤ · · · ψN (w⊤

Kx)⊤
]

(2)

for some w1, · · · ,wK ∈ RD, and K = L/N .

• L ∈ [ND,N4D2] when ϕ admits linear layer + exponential activation (LE) architecture:

ϕ(x) =
[
exp(v⊤

1 x) · · · exp(v⊤
Lx)

]
(3)

for some v1, · · · ,vL ∈ RD.

The bounds of L depend on the choice of the architecture of ϕ, which are illustrated in Fig. 1. In
the LP setting, we adopt a linear layer that maps each set element into K dimension. Then we apply
a channel-wise power mapping that separately transforms each value in the feature vector into an
N -order power series, and concatenates all the activations together, resulting in a KN dimension
feature. The LP architecture is closer to DeepSets (Zaheer et al., 2017) as they share the power
mapping as the main component. Theorem 3.1 guarantees the existence of ρ and ϕ (in the form of Eq.
2) which satisfy Eq. 1 without the need to set K larger than N4D2 while K ≥ D + 1 is necessary.
Therefore, the total embedding size L = KN is bounded by N5D2 above and N(D + 1) below.
Note that this lower bound is not trivial as ND is the degree of freedom of the input X . No matter
how w1, ...,wK are adopted, one cannot achieve an injective mapping by just using ND dimension.

In the LE architecture, we investigate the utilization of the exponential activation in set representation,
which is also a valid activation function to build deep neural networks (Barron, 1993; Clevert et al.,
2015). Each set entry will be linearly lifted into an L-dimensional space via a group of weights
and then transformed by an element-wise exponential activation. The advantage of the exponential
function is that the upper bound of L is improved to be N4D2. The lower bound ND for the LE

5

Published as a conference paper at ICLR 2024

architecture is a trivial bound due to the degree of freedom of the inputs. Essentially, a linear layer
followed by an exponential function is equivalent to applying monomials onto exponential activations.
If monomial activations are allowed as used in Segol & Lipman (2020), we can also replace the
exponential function with a series of monomial mappings while yielding the same upper bound.
However, in contrast to Segol & Lipman (2020), where exponentially many monomials are required,
our construction of the linear weights enables a mere reliance on bivariate monomials of degree D,
thus reducing the number of needed monomials to O(N2D).
Remark 3.2. Unlike ϕ, the form of ρ cannot be explicitly specified, as it depends on the desired
function f . The complexity of ρ remains unexplored in this paper, which may be high in practice.

Empirical Validation. In Appendix A, we run numerical experiments to verify our argument. Fig.
2 demonstrates the polynomial dependence between the set size, feature dimension, and the minimal
latent embedding dimension to achieve a small approximation error. See more details in Appendix A.

Importance of Continuity. We argue that the requirements of continuity on ρ and ϕ are essential
for our discussion. First, practical neural networks can only provably approximate continuous func-
tions (Cybenko, 1989; Hornik et al., 1989). Moreover, set representation without such requirements
can be straightforward (but likely meaningless in practice). It is known that there exists a discon-
tinuous bijective mapping r : RD → R if D ≥ 2. If we let r map the high-dimensional features to
scalars, then its inverse exists and the same proof of Theorem 2.4 goes through, i.e. let ϕ = ψN ◦ r
and ρ = f ◦ r−1 ◦Ψ−1

N . However, we note both ρ and ϕ lose continuity.

Comparison with Prior Results. Below we highlight the significance of Theorem 3.1. A quick
overview has been listed in Table 1 for illustration. The lower bound in Theorem 3.1 corrects a
natural misconception that the degree of freedom (i.e., L = ND for multi-channel cases) is not
enough for representing the embedding space (Wagstaff et al., 2022). Compared with Zweig &
Bruna’s finding, our result significantly improves this bound on L from exponential to polynomial
by allowing continuous activations that may not be complex analytic. Proof-wise, Zweig & Bruna’s
proof idea is hard to extend to the real domain, while ours applies to both real and complex domains
and equivariant functions. Dym & Gortler (2024); Amir et al. (2024) present significant results that
L can be as small as 2ND + 1. However, the continuity of decoder ρ is not guaranteed when the
domain of f is an open set.

4 PROOF SKETCH

In this section, we introduce the proof techniques of Theorem 3.1, while deferring a full version and
all missing proofs to the appendix. The proof is constructive and mainly consists of three steps below:

1. For the LP architecture, we construct a group of K linear weights w1 · · · ,wK ∈ RD with K ≤
N4D2, while for the LE architecture, we construct a group of L linear weights v1 · · · ,vL ∈ RD

with L ≤ N4D2, such that the summation over the associated embeddings Φ(X) =
∑N

i=1 ϕ(x
(i))

is injective. Moreover, if K ≤ D for LP layer or trivially L < ND for LE layer, such weights do
not exist, which induces the lower bounds.

2. Given the injectivity of both LP and LE layers, we constrain the image spaces to be their ranges
{Φ(X) : X ∈ RN×D}, respectively, and thus, the inverse of the sum-pooling Φ−1 exists.
Furthermore, we show that Φ−1 is continuous.

3. Then the proof of upper bounds can be concluded for both settings by letting ρ = f ◦ Φ−1 since
ρ
(∑N

i=1 ϕ(x
(i))
)
= f ◦ Φ−1 ◦ Φ(X) = f(PX) = f(X) for some P ∈ Π(N).

Next, we elaborate on the construction idea which yields injectivity for both embedding layers in Sec.
4.1 with the notion of anchor. In Sec. 4.2, we prove the continuity of the inverse map for LP and LE
via arguments similar to Ćurgus & Mascioni (2006).

4.1 INJECTIVITY

The high-level ideas of construction and proofs are illustrated in Fig. 3, in which we first construct
an anchor, a mathematical device introduced in Sec. 4.1.1 to induce injectivity, and then mix each

6

Published as a conference paper at ICLR 2024

feature channel with the anchor through coupling schemes specified by LP (Sec. 4.1.2) and LE (Sec.
4.1.3) layers, respectively.

4.1.1 ANCHOR

Constructing an anchor stands at the core of our proof. Formally, we define anchor as below:
Definition 4.1 (Anchor). Consider the data matrix X ∈ RN×D, then a ∈ RN is called an anchor of
X if ai ̸= aj for any i, j ∈ [N] such that x(i) ̸= x(j).

In plain language, by Definition 4.1, two entries in the anchor must be distinctive if the set elements
at the corresponding indices are not equal. As a result, the union alignment property can be derived:
Lemma 4.2 (Union Alignment). Consider two data matrices X,X′ ∈ RN×D, a ∈ RN is an anchor
of X and a′ ∈ RN is an arbitrary vector. If [a xi] ∼ [a′ x′

i] for every i ∈ [D], then X ∼ X′.

The same anchor a will be concatenated with all channels forming a series of two-column matrices.
Once the permutation orbits of each coupled pair intersect, the permutation orbits of two data matrices
also intersect. Our strategy to generate an anchor is through a point-wise linear combination:
Lemma 4.3 (Anchor Construction). There exists a set of weights α1, · · · ,αK1

in general positions
of RD where K1 = N(N − 1)(D − 1)/2 + 1 such that for every data matrix X ∈ RN×D, there
exists j ∈ [K1], Xαj is an anchor of X .

From a geometric perspective, if there are enough weights {αj : j ∈ [K1]} in general positions, at
least one of them will not be orthogonal to the difference between any two columns.

4.1.2 INJECTIVITY OF LP

In this section, we specify ϕ following the definition in Eq. 2. Suppose sum-of-power mapping
ΨN (Xwi) = ΨN (X′wi) for all i ∈ [K], Lemma 2.8 guarantees Xwi ∼ X′wi for all i ∈ [K]. The
main technical challenge is to ensure the alignment among all feature columns. This step combines
the construction of anchors and the following linear coupling scheme that ensures alignments between
all pairwise stackings of feature channels and anchors.
Lemma 4.4 (Linear Coupling). There exists a group of coefficients γ1, · · · , γK2 where K2 =
N(N − 1) + 1 such that the following statement holds: Given any x,x′,y,y′ ∈ RN such that
x ∼ x′ and y ∼ y′, if (x− γky) ∼ (x′ − γky

′) for every k ∈ [K2], then [x y] ∼ [x′ y′].

Construction. Our construction divides the weights {wi, i ∈ [K]} into three groups: {ei : i ∈
[D]}, {αj : j ∈ [K1]}, and {Γi,j,k : i ∈ [D], j ∈ [K1], k ∈ [K2]}. Each block is illustrated in Fig.
3b and outlined as below:

1. Let the first group of weights e1, · · · , eD ∈ RD buffer the original features, where ei is the i-th
canonical basis.

2. Design the second group of linear weights, α1, · · · ,αK1
∈ RD for K1 as large as N(N −

1)(D − 1)/2 + 1, following the specifications in Lemma 4.3. Then, we know at least one of
Xαj , j ∈ [K1] forms an anchor of X .

3. Design a group of weights Γi,j,k for i ∈ [D], j ∈ [K1], k ∈ [K2] with K2 = N(N − 1) + 1
that mixes each original channel xi with each Xαj , j ∈ [K1] by Γi,j,k = ei − γkαj , where
γk,∀k ∈ [K2] is the coefficient defined in Lemma 4.4.

Injectivity. With such configuration, injectivity can be shown by the following steps: First recalling
the injectivity of power mapping (cf. Lemma 2.8), we have:

N∑
n=1

ϕ(x(n)) =

N∑
n=1

ϕ(x′(n)) ⇒ Xwi ∼ X′wi,∀i ∈ [K]. (4)

It is equivalent to expand the RHS of Eq. 4 as: xi ∼ x′
i, Xαj ∼ X′αj , and XΓi,j,k =

(xi − γkXαj) ∼ X′Γi,j∗,k = (x′
i − γkX

′αj) for every i ∈ [D], j ∈ [K1], k ∈ [K2]. By Lemma
4.4, we can further induce:

Xwi ∼ X′wi,∀i ∈ [K] ⇒ [Xαj xi] ∼ [X′αj x′
i] ,∀i ∈ [D], j ∈ [K1] (5)

7

Published as a conference paper at ICLR 2024

According to Lemma 4.3, there must be j∗ ∈ [K1] such that Xαj∗ is an anchor of X . Then by
Lemma 4.2, Eq. 5 implies:

[Xαj∗ xi] ∼ [X′αj∗ x′
i] ,∀i ∈ [D] ⇒ X ∼ X′. (6)

The total required number of weights K = D +K1 +DK1K2 ≤ N4D2, and the embedding length
L = NK ≤ N5D2 as desired.

For completeness, we add the following lemma which implies LP-induced sum-pooling is injective
only if K ≥ D + 1, when D ≥ 2.
Theorem 4.5 (Lower Bound). Consider data matrices X ∈ RN×D where D ≥ 2. If K ≤ D, then
for every w1, · · · ,wK , there exists X′ ∈ RN×D such that X ̸∼ X′ but Xwi ∼ X′wi, ∀i ∈ [K].
Remark 4.6. Theorem 4.5 is significant in that with high-dimensional features, the injectivity is
provably not satisfied when the embedding space has a dimension equal to the degree of freedom.

4.1.3 INJECTIVITY OF LE

In this section, we consider ϕ follows the definition in Eq. 3. Our first observation is that instead of
applying univariate monomials to each linearly mixed channel individually, we can directly employ
bivariate monomials to pair channels with anchors and yield the same alignment results as in LP.
Lemma 4.7 (Monomial Coupling). For any pair of vectors x,y,x′,y′ ∈ RN , if

∑
n∈[N] x

l−k
n yk

n =∑
n∈[N] x

′l−k
n y′k

n for every l ∈ [N], 0 ≤ k ≤ l, then [x y] ∼ [x′ y′].

The second observation is that each term in the RHS of Eq. 3 can be rewritten as a monomial of an
exponential function:

exp(v⊤x) = exp(u⊤ log(exp(Ω⊤x))) =

K1+D∏
k=1

exp(Ωx)uk

k , (7)

where the exponential and the logarithm are taken element-wisely, v = Ωu for some Ω ∈
RD×(K1+D), and u ∈ RK1+D. Recall that K1 is the needed dimension to construct an anchor
as shown in Lemma 4.3. Then, the assignment of v1, · · · ,vL amounts to specifying the exponents
for D power functions within the product. Specifically, we choose v, Ω, u as follows.

Construction. We first reindex and rewrite {vi : i ∈ [L]} as {vi,j,p,q = Ωui,j,p,q : i ∈ [D], j ∈
[K1], p ∈ [N], q ∈ [p + 1]}, where Ω = [e1 · · · eD α1 · · · αK1] ∈ RD×(D+K1) and
ui,j,p,q ∈ RD+K1 are specified as below. In Fig. 3c, we depict the forward pass of an LE layer.

1. The choice of weights Ω follows from the construction of the LP layer, i.e., ei ∈ RD,∀i ∈ [D]
are canonical basis and {αj : ∀j ∈ [K1]} with K1 = N(N − 1)(D − 1)/2 + 1 are drawn
according to Lemma 4.3 so that an anchor is guaranteed to be produced.

2. Design a group of weights U = [· · · ui,j,p,q · · ·] ∈ R(D+K1)×DK1N(N+3)/2 for i ∈ [D], j ∈
[K1], p ∈ [N], q ∈ [p+ 1] such that ui,j,p,q = (q − 1)ei + (p− q + 1)eD+j .

Injectivity. Plugging Ω and U into Eq. 7, we can examine each output dimension of the embedding
layer:

[∑N
n=1 ϕ(x

(n))
]
i,j,p,q

=
∑N

n=1 exp(xi)
q−1
n exp(Xαj)

p−q+1
n . Then by Lemma 4.7:

N∑
n=1

ϕ(x(n)) =

N∑
n=1

ϕ(x′(n)) ⇒ [exp(xi) exp(Xαj)] ∼ [exp(x′
i) exp(X′αj)] , (8)

∀i ∈ [D], j ∈ [K2]. With above implication, the proof can be concluded via the following steps:
Lemma 4.3 guarantees the existence of j∗ ∈ [K2] such that Xwj∗ is an anchor of X , and so is
exp(Xwj∗) due to the strict monotonicity of exp(·); Lemma 4.2 and Eq. 8 together imply:

[exp(xi) exp(Xαj∗)] ∼ [exp(x′
i) exp(X′αj∗)]∀i ∈ [D] ⇒ exp(X) ∼ exp(X′). (9)

And finally, notice that an element-wise function does not affect equivalence under permutation. The
total number of required linear weights is L = DK1(N + 3)N/2 ≤ N4D2, as desired.

8

Published as a conference paper at ICLR 2024

4.2 CONTINUITY

In this section, we show that the LP and LE induced sum-pooling are both homeomorphic. We note
that it is intractable to obtain the closed form of their inverse maps. Notably, the following remarkable
result can get rid of inversing a function explicitly by merely examining the topological relationship
between the domain and image space.
Lemma 4.8. (Theorem 1.2 (Ćurgus & Mascioni, 2006)) Let (X , dX) and (Z, dZ) be two metric
spaces and f : X → Z is a bijection such that (a) each bounded and closed subset of X is compact,
(b) f is continuous, (c) f−1 maps each bounded set in Z into a bounded set in X . Then f−1 is
continuous.

Subsequently, we show the continuity in an informal but more intuitive way while deferring a rigorous
version to the supplementary materials. Denote Φ(X) =

∑
i∈[N] ϕ(x

(i)). To begin with, we set
X = RN×D/ ∼ with metric dX (X,X ′) = minP∈Π(N) ∥X − PX ′∥∞,∞ and Z = {Φ(X)|X ∈
X} ⊆ RL with metric dZ(z, z′) = ∥z − z′∥∞. It is easy to show that X satisfies the conditions (a)
and Φ(X) satisfies (b) for both LP and LE embedding layers. Then it remains to conclude the proof
by verifying the condition (c) for the mapping Z → X , i.e., the inverse of Φ(X). We visualize this
mapping following the chain of implication to show injectivity:

(LP) Φ(X)
Eq. 4−−−→ [· · · PiXwi · · ·] , i ∈ [K]

Eqs. 5 + 6−−−−−→ PX

(LE) Φ(X)︸ ︷︷ ︸
Z

Eq. 8−−−→ exp [Qi,jxi Qi,jaj] , i ∈ [D], j ∈ [K1]︸ ︷︷ ︸
R

Eq. 9−−−→ QX︸︷︷︸
X

,

for some X dependent P , Q ∈ Π(N). Here, Pi ∈ Π(N), i ∈ [K] and Qi,j ∈ Π(N), aj =
Xαj , i ∈ [D], j ∈ [K1]. All the weights have been specified as in Sec. 4.1. According to
homeomorphism between polynomial coefficients and roots (Corollary 3.2 in Ćurgus & Mascioni
(2006)), any bounded set in Z will be mapped into a bounded set in R. Moreover, since elements in
R contain all the columns of X (up to some changes of the entry orders), a bounded set in R also
corresponds to a bounded set in X . Through this line of arguments, we conclude the proof.

5 EXTENSIONS

Permutation Equivariance. Permutation-equivariant functions (cf. Definition 2.3) are considered
as a more general family of set functions. Our main result does not lose generality to this class of
functions. By Lemma 2 of Wang et al. (2023), Theorem 3.1 can be directly extended to permutation-
equivariant functions with the same lower and upper bounds, stated as follows:
Theorem 5.1 (Extension to Equivariance). For any permutation-equivariant function f : RN×D →
RN , there exists continuous functions ϕ : RD → RL and ρ : RD × RL → R such that f(X)j =

ρ
(
x(j),

∑
i∈[N] ϕ(x

(i))
)

for every j ∈ [N], where L ∈ [N(D + 1), N5D2] when ϕ admits LP

architecture, and L ∈ [ND,N4D2] when ϕ admits LE architecture.

Complex Domain. The upper bounds in Theorem 3.1 is also true to complex features up to a constant
scale. When features are defined over CN×D, our primary idea is to divide each channel into two
real feature vectors, and recall Theorem 3.1 to conclude the arguments on an RN×2D input. All of
our proof strategies are still applied. This result directly contrasts to Zweig & Bruna’s work whose
main arguments were established on complex numbers. We show that even moving to the complex
domain, polynomial length of L is still sufficient for the DeepSets architecture (Zaheer et al., 2017).
We state a formal version of the theorem in Appendix I.

6 CONCLUSION

This work investigates how many neurons are needed to model the embedding space for set represen-
tation learning with the DeepSets architecture (Zaheer et al., 2017). Our paper provides an affirmative
answer that polynomial many neurons in the set size and feature dimension are sufficient. Compared
with prior arts, our theory takes high-dimensional features into consideration while significantly
advancing the state-of-the-art results from exponential to polynomial.

Limitations. The tightness of our bounds is not examined in this paper, and the complexity of ρ is
uninvestigated and left for future exploration.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

We would like to thank Dr. Yusu Wang and Dr. Puoya Tabaghi for a meaningful discussion. We
also express our gratitude to Dr. Manolis C. Tsakiris for pointing out useful results in the topics of
unlabeled sensing. P. Li is supported by NSF awards PHY-2117997, IIS-2239565. Z. Wang is in part
supported by US Army Research Office Young Investigator Award W911NF2010240 and the NSF
AI Institute for Foundations of Machine Learning (IFML).

REFERENCES

Tal Amir, Steven Gortler, Ilai Avni, Ravina Ravina, and Nadav Dym. Neural injective functions
for multisets, measures and graphs via a finite witness theorem. Advances in Neural Information
Processing Systems, 36, 2024.

Waïss Azizian and Marc Lelarge. Expressive power of invariant and equivariant graph neural networks.
In ICLR 2021-International Conference on Learning Representations, 2021.

Andrew R Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE
Transactions on Information theory, 39(3):930–945, 1993.

Alexander Bogatskiy, Brandon Anderson, Jan Offermann, Marwah Roussi, David Miller, and Risi
Kondor. Lorentz group equivariant neural network for particle physics. In International Conference
on Machine Learning, pp. 992–1002. PMLR, 2020.

Nicolas Bourbaki. Éléments d’histoire des mathématiques, volume 4. Springer Science & Business
Media, 2007.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric
deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42,
2017.

Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between graph
isomorphism testing and function approximation with gnns. In Advances in Neural Information
Processing Systems, pp. 15868–15876, 2019.

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? volume 33, 2020.

Ziang Chen and Jianfeng Lu. Exact and efficient representation of totally anti-symmetric functions.
arXiv preprint arXiv:2311.05064, 2023.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

Nadav Cohen, Or Sharir, and Amnon Shashua. On the expressive power of deep learning: A tensor
analysis. In Conference on learning theory, pp. 698–728. PMLR, 2016.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International conference
on machine learning, pp. 2990–2999. PMLR, 2016.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. Advances in Neural Information Processing Systems,
33:13260–13271, 2020.

Branko Ćurgus and Vania Mascioni. Roots and polynomials as homeomorphic spaces. Expositiones
Mathematicae, 24(1):81–95, 2006.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

Nadav Dym and Steven J Gortler. Low-dimensional invariant embeddings for universal geometric
learning. Foundations of Computational Mathematics, pp. 1–41, 2024.

10

Published as a conference paper at ICLR 2024

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural networks, 107:3–11, 2018.

Mohammad Fereydounian, Hamed Hassani, and Amin Karbasi. What functions can graph neural
networks generate? arXiv preprint arXiv:2202.08833, 2022.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning (ICML),
2017.

Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon. Stochastic optimization of sorting
networks via continuous relaxations. In International Conference on Learning Representations,
2020.

Shupeng Gui, Xiangliang Zhang, Pan Zhong, Shuang Qiu, Mingrui Wu, Jieping Ye, Zhengdao Wang,
and Ji Liu. Pine: Universal deep embedding for graph nodes via partial permutation invariant set
functions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(2):770–782, 2021.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems, 2017.

Kurt Hornik, Maxwell Stinchcombe, Halbert White, et al. Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5):359–366, 1989.

Daniel J Hsu, Kevin Shi, and Xiaorui Sun. Linear regression without correspondence. Advances in
Neural Information Processing Systems, 30, 2017.

Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks. In
Advances in Neural Information Processing Systems, pp. 7090–7099, 2019.

Joe Kileel, Matthew Trager, and Joan Bruna. On the expressive power of deep polynomial neural
networks. Advances in neural information processing systems, 32, 2019.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations (ICLR), 2017.

Risi Kondor and Shubhendu Trivedi. On the generalization of equivariance and convolution in neural
networks to the action of compact groups. In International Conference on Machine Learning, pp.
2747–2755, 2018.

Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time series. The
handbook of brain theory and neural networks, 3361(10):1995, 1995.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set trans-
former: A framework for attention-based permutation-invariant neural networks. In International
conference on machine learning, pp. 3744–3753. PMLR, 2019.

Shiyu Liang and R Srikant. Why deep neural networks for function approximation? In International
Conference on Learning Representations, 2017.

Andreas Loukas. What graph neural networks cannot learn: depth vs width. In International
Conference on Learning Representations, 2020.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. In International Conference on Learning Representations (ICLR), 2018.

Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant
networks. In International conference on machine learning, pp. 4363–4371. PMLR, 2019.

Vinicius Mikuni and Florencia Canelli. Point cloud transformers applied to collider physics. Machine
Learning: Science and Technology, 2(3):035027, 2021.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In the AAAI Conference on Artificial Intelligence, volume 33, pp. 4602–4609, 2019.

11

Published as a conference paper at ICLR 2024

R. L. Murphy, B. Srinivasan, V. Rao, and B. Ribeiro. Janossy pooling: Learning deep permutation-
invariant functions for variable-size inputs. In International Conference on Learning Representa-
tions (ICLR), 2018.

Liangzu Peng and Manolis C Tsakiris. Linear regression without correspondences via concave
minimization. IEEE Signal Processing Letters, 27:1580–1584, 2020.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 652–660, 2017.

Huilin Qu and Loukas Gouskos. Jet tagging via particle clouds. Physical Review D, 101(5):056019,
2020.

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the
expressive power of deep neural networks. In international conference on machine learning, pp.
2847–2854. PMLR, 2017.

David Rydh. A minimal set of generators for the ring of multisymmetric functions. In Annales de
l’institut Fourier, volume 57, pp. 1741–1769, 2007.

Akiyoshi Sannai, Yuuki Takai, and Matthieu Cordonnier. Universal approximations of permutation
invariant/equivariant functions by deep neural networks. arXiv preprint arXiv:1903.01939, 2019.

Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan Pascanu, Peter
Battaglia, and Timothy Lillicrap. A simple neural network module for relational reasoning.
Advances in neural information processing systems, 30, 2017.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2008.

Nimrod Segol and Yaron Lipman. On universal equivariant set networks. In International Conference
on Learning Representations (ICLR), 2020.

Puoya Tabaghi and Yusu Wang. Universal representation of permutation-invariant functions on
vectors and tensors. arXiv preprint arXiv:2310.13829, 2023.

Manolis Tsakiris and Liangzu Peng. Homomorphic sensing. In International Conference on Machine
Learning, pp. 6335–6344. PMLR, 2019.

Manolis C Tsakiris. Low-rank matrix completion theory via plücker coordinates. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2023.

Manolis C Tsakiris, Liangzu Peng, Aldo Conca, Laurent Kneip, Yuanming Shi, and Hayoung
Choi. An algebraic-geometric approach for linear regression without correspondences. IEEE
Transactions on Information Theory, 66(8):5130–5144, 2020.

Jayakrishnan Unnikrishnan, Saeid Haghighatshoar, and Martin Vetterli. Unlabeled sensing with
random linear measurements. IEEE Transactions on Information Theory, 64(5):3237–3253, 2018.

Edward Wagstaff, Fabian Fuchs, Martin Engelcke, Ingmar Posner, and Michael A Osborne. On the
limitations of representing functions on sets. In International Conference on Machine Learning,
pp. 6487–6494. PMLR, 2019.

Edward Wagstaff, Fabian B Fuchs, Martin Engelcke, Michael A Osborne, and Ingmar Posner.
Universal approximation of functions on sets. Journal of Machine Learning Research, 23(151):
1–56, 2022.

Peihao Wang, Shenghao Yang, Yunyu Liu, Zhangyang Wang, and Pan Li. Equivariant hypergraph
diffusion neural operators. In International Conference on Learning Representations (ICLR), 2023.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

12

Published as a conference paper at ICLR 2024

Yunzhen Yao, Liangzu Peng, and Manolis Tsakiris. Unlabeled principal component analysis. Ad-
vances in Neural Information Processing Systems, 34:30452–30464, 2021.

Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks, 94:
103–114, 2017.

Dmitry Yarotsky. Universal approximations of invariant maps by neural networks. Constructive
Approximation, 55(1):407–474, 2022.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. In Advances in Neural Information Processing Systems (NeurIPS),
2017.

Yan Zhang, Jonathon Hare, and Adam Prugel-Bennett. Deep set prediction networks. Advances in
Neural Information Processing Systems, 32, 2019.

Yan Zhang, Jonathon Hare, and Adam Prügel-Bennett. Fspool: Learning set representations with
featurewise sort pooling. In International Conference on Learning Representations, 2020.

Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. Point transformer. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 16259–16268,
2021.

Ding-Xuan Zhou. Universality of deep convolutional neural networks. Applied and computational
harmonic analysis, 48(2):787–794, 2020.

Aaron Zweig and Joan Bruna. Exponential separations in symmetric neural networks. arXiv preprint
arXiv:2206.01266, 2022.

A NUMERICAL EXPERIMENTS

To verify our theoretical claim, we conducted proof-of-concept experiments. Similar to Wagstaff
et al. (2019), we train a DeepSets with ϕ and ρ parameterized by neural networks to fit a function that
takes the median over a vector-valued set according to the lexicographical order. Specifically, the
input features are sampled from a uniform distribution, ϕ is chosen as one linear layer followed by a
SiLU activation function (Elfwing et al., 2018), and ρ is a two-layer fully-connected network with
ReLU activation. During the experiment, we vary the input size, dimension, and hidden dimension of
ϕ, and record the final training error (RMSE) after the network converges. The critical width L∗ is
taken at the point where RMSE first reaches below 10% above the minimum value for this set size.
The relationship between L∗ and N,D is plotted in Fig. 2. We observe log(L∗) grows linearly with
log(N) and log(D) instead of exponentially, which validates our theoretical claim.

3.0 3.5 4.0 4.5
Input length log(N)

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

Cr
iti

ca
l w

id
th

 lo
g(

L)

D = 8
D = 16
D = 32
D = 64
D = 128

2.0 2.5 3.0 3.5 4.0 4.5
Feature dimension log(D)

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Cr
iti

ca
l w

id
th

 lo
g(

L)

N = 16
N = 32
N = 64
N = 128

Figure 2: The relationship among the critical width L, set size N , and feature dimension D. The
phenomenon that log(L) scales linearly with log(N) and log(D) validates our theory.

13

Published as a conference paper at ICLR 2024

B OTHER RELATED WORK

Most works on neural networks to represent set functions have been discussed extensively in Sec. 1
and 3. Here, we highlight a few concurrent works. One breakthrough by Dym & Gortler (2024); Amir
et al. (2024) provides both upper bound 2ND + 1 and lower bound N(D + 1) on the embedding
dimension for set representation. In their construction, ϕ is chosen as a linear transformation followed
by an arbitrary elementwise analytic function. Their proof of moment injectivity is through extending
the finite-witness theorem to σ-subanalytic functions defined over σ-subanalytic sets. Despite
generalization to a broader scope of invariant structures, their approach fails to show the continuity
of ρ when the targeted function is defined over an open set. Tabaghi & Wang (2023) has recently
improved the upper bound of L from 2ND + 1 to 2ND considering the input feature space is
compact. Whereas, our main claim (Theorem 3.1) guarantees the exact representation over the entire
ambient space. The difficulty of mirroring our proof via Lemma 4.8 perhaps arises from the lack of
explicit form of ϕ - verifying the boundedness of Φ−1 becomes less tractable. Complementary to this
line of work on symmetric functions, Chen & Lu (2023) demonstrates polynomial reliance on N to
exactly represent anti-symmetric functions.

We also review other related works on the expressive power analysis of neural networks. Early works
studied the expressive power of feed-forward neural networks with different activations (Hornik et al.,
1989; Cybenko, 1989). Recent works focused on characterizing the benefits of the expressive power
of deep architectures to explain their empirical success (Yarotsky, 2017; Liang & Srikant, 2017;
Kileel et al., 2019; Cohen et al., 2016; Raghu et al., 2017). Modern neural networks often enforce
some invariance properties into their architectures such as CNNs that capture spatial translation
invariance. The expressive power of invariant neural networks has been analyzed recently in Yarotsky
(2022); Maron et al. (2019); Zhou (2020).

The architectures studied in the above works allow universal approximation of continuous functions
defined on their inputs. However, the family of practically useful architectures that enforce permu-
tation invariance often fail in achieving universal approximation. Graph Neural Networks (GNNs)
enforce permutation invariance and can be viewed as an extension of set neural networks to encode
a set of pair-wise relations instead of a set of individual elements (Scarselli et al., 2008; Gilmer
et al., 2017; Kipf & Welling, 2017; Hamilton et al., 2017). GNNs suffer from limited expressive
power (Xu et al., 2019; Morris et al., 2019; Maron et al., 2018) unless they adopt exponential-order
tensors (Keriven & Peyré, 2019). Hence, previous studies often characterized GNNs’ expressive
power based on their capability of distinguishing non-isomorphic graphs. Only a few works have
ever discussed the function approximation property of GNNs (Chen et al., 2019; 2020; Azizian
& Lelarge, 2021) while these works still miss characterizing such dependence on the depth and
width of the architectures (Loukas, 2020). As practical GNNs commonly adopt the architectures
that combine feed-forward neural networks with set operations (neighborhood aggregation), we
believe the characterization of the needed size for set function approximation studied in Zweig &
Bruna (2022) and this work may provide useful tools to study finer-grained characterizations of the
expressive power of GNNs.

C SOME PRELIMINARY DEFINITIONS AND STATEMENTS

In this section, we begin by stating basic metric spaces, which will be used in the proofs later.
Definition C.1 (Standard Metric). Define (KD, d∞) as the standard metric space, where d∞ :
KD ×KD → R≥0 is the ℓ∞-norm induced distance metric over KD:

d∞(z, z′) = max
i∈[D]

|zi − z′
i|. (10)

Definition C.2 (Product Metric). Consider a metric space (X , dX). We denote the induced product
metric over the product space (XK , dKX) as dKX : XK ×XK → R≥0:

dKX (Z,Z′) = max
i∈[K]

dX (zi, z
′
i), (11)

where Z = [z1 · · · zK] ∈ XK , zi ∈ X ,∀i ∈ [K].

We provide rigorous definitions to specify the topology of the input space of permutation-invariant
functions.

14

Published as a conference paper at ICLR 2024

Definition C.3 (Set Metric). Equipped KN×D with the equivalence relation ∼ (cf. Definition 2.1),
we define metric space (KN×D/ ∼, dΠ), where dΠ : (KN×D/ ∼) × (KN×D/ ∼) → R≥0 is the
optimal transport distance:

dΠ(X,X′) = min
P∈Π(N)

∥PX −X′∥∞,∞ , (12)

and K can be either R or C.
Remark C.4. The ∥·∥∞,∞ norm takes the absolute value of the maximal entry: maxi∈[N],j∈[D] |Xi,j |.
Other topologically equivalent matrix norms also apply.
Lemma C.5. The function dΠ : (KN×D/ ∼) × (KN×D/ ∼) → R≥0 is a distance metric on
KN×D/ ∼.

Proof. Identity, positivity, and symmetry trivially hold for dΠ. It remains to show the triangle
inequality as below: for arbitrary X,X′,X′′ ∈ (KN×D/ ∼, dΠ),

dΠ(X,X′′) = min
P∈Π(N)

∥PX −X′′∥∞,∞ ≤ min
P∈Π(N)

(
∥PX −Q∗X′∥∞,∞ + ∥Q∗X′ −X′′∥∞,∞

)
= min

P∈Π(N)
∥PX −Q∗X′∥∞,∞ + ∥Q∗X′ −X′′∥∞,∞

= dΠ(X,X′) + dΠ(X,X′′),

where Q∗ ∈ argminQ∈Π(N) ∥QX′ −X′′∥∞,∞.

Also we reveal a topological property for (KN×D/ ∼, dΠ) which is essential to show continuity later.
Lemma C.6. Each bounded and closed subset of (KN×D/ ∼, dΠ) is compact.

Proof. Without loss of generality, the proof is done by extending Theorem 2.4 in Ćurgus & Mascioni
(2006) to high-dimensional set elements. Let ϱ : (KN×D, d∞) → (KN×D/ ∼, dΠ) maps a matrix
X to a set whose elements are the rows of X . We notice that ϱ is a continuous mapping due
to its contraction nature: dΠ(ϱ(X), ϱ(X′)) ≤ ∥X − X′∥∞,∞ = d∞(X,X′). Let ϱ−1(Z) =
{X ∈ (KN×D, d∞) : ϱ(X) ∼ Z}. Define T ⊂ (KN×D, d∞) such that ϱ−1(Z) ∩ T has only one
element for every Z ∈ (KN×D/ ∼, dΠ). One example of picking elements for T is to sort every
Z ∈ (KN×D/ ∼, dΠ) in the lexicographical order. Now constraining the domain of ϱ to be T yields
a bijective mapping ϱ|T , and its inverse ϱ|−1

T . We notice that ϱ ◦ ϱ|−1
T induces an identity mapping

over (KN×D/ ∼, dΠ).
Now consider an arbitrary closed and bounded subset S ⊂ (KN×D/ ∼, dΠ). To show S is com-
pact, we demonstrate every sequence {Xk} in S has a convergent subsequence. First observe
that {ϱ|−1

T (Xk)} is also bounded in (KN×D, d∞). This is because ∥ϱ|−1
T (X)∥∞,∞ = dΠ(X,0).

Hence, by Bolzano-Weierstrass Theorem, there exists a subsequence {Xjk} ⊂ {Xk} such that
{ϱ|−1

T (Xjk)} converges to some χ ∈ (KN×D, d∞). As aforementioned, since ϱ is a continuous
mapping, {ϱ ◦ ϱ|−1

T (X)} converges to ϱ(χ) in (KN×D/ ∼, dΠ). Since S is closed, ϱ(χ) ∈ S . This
is limk→∞ Xjk = ϱ(χ), which concludes the proof.

Then we can rephrase the definition of a permutation-invariant function as a proper function mapping
between the two metric spaces: f : (KN×D/ ∼, dΠ) → (KD′

, d∞).

We also recall the definition of injectivity for permutation-invariant functions:

Definition C.7 (Injectivity). A permutation-invariant function f : (KN×D/ ∼, dΠ) → (KD′
, d∞) is

injective if for every X,X′ ∈ KN×D such that f(X) = f(X′), then X ∼ X′.
Definition C.8 (Bijectivity/Invertibility). A permutation-invariant function f : (KN×D/ ∼, dΠ) →
(KD′

, d∞) is bijective or invertible if there exists a function g : (KD′
, d∞) → (KN×D/ ∼, dΠ) such

that for every X ∈ KN×D, g ◦ f(X) ∼ X .

A well-known and useful result in set theory connects injectivity and bijectivity:
Lemma C.9. A function is bijective if and only if it is simultaneously injective and surjective.

15

Published as a conference paper at ICLR 2024

We give an intuitive definition of continuity for permutation-invariant functions via the epsilon-delta
statement:

Definition C.10 (Continuity). A permutation-invariant function f : (KN×D/ ∼, dΠ) → (K, d∞) is
continuous if for arbitrary X ∈ KN×D and ϵ > 0, there exists δ > 0 such that for every X′ ∈ KN×D,
dΠ(X,X′) < δ then d∞(f(X), f(X′)) < ϵ.

Remark C.11. Since dΠ is a distance metric, other equivalent definitions of continuity still applies.

D PROPERTIES OF SUM-OF-POWER MAPPING FOR REAL AND COMPLEX
DOMAINS

In this section, we extend the sum-of-power mapping to both real and complex domains, and explore
their desirable properties that serve as prerequisites for our later proof. The proof techniques are
borrowed from Ćurgus & Mascioni (2006). Below, K can be either R or C.

Definition D.1. Define power mapping: ψN : K → KN , ψN (z) =
[
z z2 · · · zN

]⊤
and

(complex) sum-of-power mapping ΨN : (KN/ ∼, dΠ) → (KN , d∞), ΨN (z) =
∑N

i=1 ψN (zi).

Lemma D.2 (Existence of Continuous Inverse of Complex Sum-of-Power (Ćurgus & Mascioni,
2006)). ΨN is injective, thus the inverse Ψ−1

N : (KN , d∞) → (KN/ ∼, dΠ) exists. Moreover, Ψ−1
N

is continuous.

Lemma D.3 (Corollary 3.2 (Ćurgus & Mascioni, 2006)). Consider a function ζ : (KN , d∞) →
(KN/ ∼, dΠ) that maps the coefficients of a polynomial to its root multi-set. Then for any bounded
subset U ⊂ (KN , d∞), the image ζ(U) = {ζ(z) : z ∈ U} is also bounded.

Remark D.4. The original proof of Lemma D.3 is done for the complex domain. However, it is
naturally true for real numbers because we can constrain the domain of ζ to be real coefficients such
that the corresponding polynomials can fully split over the real domain, and the image to be all the
real roots. Then both domain and image turn out to be a subset of the complex-valued version.

Lemma D.5. Consider the N -degree sum-of-power mapping: ΨN : (KN/ ∼, dΠ) → (KN , d∞),
where ΨN (x) =

∑N
i=1 ψN (xi). Denote the range of ΨN as ZΨN

⊆ KN and its inverse mapping
Ψ−1

N : (ZΨN
, d∞) → (KN/ ∼, dΠ) (existence guaranteed by Lemma D.2). Then for every bounded

set U ⊂ (ZΨN
, d∞), the image Ψ−1

N (U) = {Ψ−1
N (z) : z ∈ U} is also bounded.

Proof. We first show this result when K = C, and naturally extend it to K = R. We borrow the
proof technique from Zaheer et al. (2017) to reveal a polynomial mapping between (ZΨN

, d∞) and
coefficient space of complex polynomials (CN , d∞). For every ξ ∈ (CN/ ∼, dΠ), let z = ΨN (ξ)
and construct a polynomial:

Pξ(x) =

N∏
i=1

(x− ξi) = xN − a1x
N−1 + · · ·+ (−1)N−1aN−1x+ (−1)NaN , (13)

where ξ are the roots of Pξ(x) and the coefficients can be written as elementary symmetric polyno-
mials, i.e.,

an =
∑

1≤j1≤j2≤···≤jn≤N

ξj1ξj2 · · · ξjn ,∀n ∈ [N]. (14)

On the other hand, the elementary symmetric polynomials can be uniquely expressed as a function of
z by Newton-Girard formula:

an =
1

n
det


z1 1 0 0 · · · 0
z2 z1 1 0 · · · 0
...

...
...

...
. . .

...
zn−1 zn−2 zn−3 zn−4 · · · 1
zn zn−1 zn−2 zn−3 · · · 1

 := Q(z),∀n ∈ [N] (15)

16

Published as a conference paper at ICLR 2024

where the determinant Q(z) is also a polynomial in z. Now we establish the mapping between
(ZΨN

, d∞) and (CN/ ∼, dΠ):

(ZΨN
, d∞)

Q(z)
===⇒ (CN , d∞)︸ ︷︷ ︸

Coefficients

Lemma D.3
======⇒ (CN/ ∼, dΠ)︸ ︷︷ ︸

Roots

. (16)

Then the proof proceeds by observing that for any bounded subset U ⊆ (ZΨN
, d∞), the resulting

A = Q(U) is also bounded in (CN , d∞). Therefore, by Lemma D.3, any bounded coefficient set A
will produce a bounded root multi-set in (CN/ ∼, dΠ).
Now we show Lemma D.3 is also true for real numbers. By Remark D.4, we can constrain the
ambient space of A to be real coefficients whose corresponding polynomials can split over real
numbers, and then the same proof proceed.

Corollary D.6. Consider channel-wise high-dimensional sum-of-power Ψ̂N (X) : (KN×K/ ∼
, dΠ) → (ZK

ΨN
, d∞) defined as below:

Ψ̂N (X) =
[
ΨN (x1)

⊤ · · · ΨN (xK)⊤
]⊤ ∈ (ZK

ΨN
, d∞), (17)

where ZΨN
= {ΨN (x) : x ∈ KN} ⊆ KN is the range of the sum-of-power mapping. Define an

associated mapping Ψ̂N

†
: (ZK

ΨN
, d∞) → (KN/ ∼, dΠ)K:

Ψ̂N

†
(Z) =

[
Ψ−1

N (z1) · · · Ψ−1
N (zK)

]
, (18)

where Z =
[
z⊤
1 · · · z⊤

K

]⊤
, zi ∈ ZΨN

,∀i ∈ [K]. Then the mapping Ψ̂N

†
maps any bounded set

in (ZK
ΨN

, d∞) to a bounded set in (KN/ ∼, dΠ)K .

Proof. Proved by noting that if d∞(zi, z
′
i) ≤ C1 for some zi, z

′
i ∈ (ZΨN

, d∞),∀i ∈ [K] and
a constant C1 ≥ 0, then dΠ(Ψ−1

N (zi),Ψ
−1
N (z′

i)) ≤ C2,∀i ∈ [K] for some constant C2 ≥ 0 by
Lemma D.5. Finally, we have:

dKΠ

(
Ψ̂N

†
(Z) , Ψ̂N

†
(Z′)

)
= max

i∈[K]
dΠ(Ψ

−1
N (zi),Ψ

−1
N (z′

i)) ≤ C2,

which is also bounded above.

E PROOFS FOR THE PROPERTIES OF ANCHOR

The main ingredient of our construction is anchor defined in Definition 4.1. Two key properties of
anchors are restated in Lemma E.1 and E.2 and proved below:
Lemma E.1. Consider the data matrix X ∈ RN×D and a ∈ RN an anchor of X . Then if there
exists P ∈ Π(N) such that Pa = a then Pxi = xi for every i ∈ [D].

Proof. Prove by contradiction. Suppose Pxi ̸= xi for some i ∈ [D], then there exist some p, q ∈ [N]

such that x(p)
i ̸= x

(q)
i while ap = aq. However, this contradicts the definition of an anchor (cf.

Definition 4.1).

Lemma E.2 (Union Alignment, Lemma 4.2). Consider the data matrix X,X′ ∈ RN×D, a ∈ RN

is an anchor of X and a′ ∈ RN is an arbitrary vector. If [a xi] ∼ [a′ x′
i] for every i ∈ [D],

then X ∼ X′.

Proof. According to definition of equivalence, there exists Qi ∈ Π(N) for every i ∈ [D] such that
[a xi] = [Qia

′ Qix
′
i]. Moreover, since [a xi] ∼ [a′ x′

i], it must hold that a ∼ a′, i.e.,
there exists P ∈ Π(N) such that Pa = a′. Combined together, we have that QiPa = a.

Next, we choose Q′
i = P⊤Q⊤

i so Q′
ia = Q′

iQiPa = a. Due to the property of anchors (Lemma
E.1), we have Q′

ixi = xi. Notice that xi = Q′
ixi = P⊤Q⊤

i Qix
′
i = Px′

i. Therefore, we can
conclude the proof as we have found a permutation matrix P that simultaneously aligns xi and x′

i

for every i ∈ [D], i.e., X = [x1 · · · xD] = [Px1 · · · PxD] = PX′.

17

Published as a conference paper at ICLR 2024

Next, we need to examine how many weights are needed to construct an anchor via linear combining
all the existing channels. We restate Lemma 4.3 in Lemma E.4 with more specifications as well as a
simple result from linear algebra (Lemma E.3) to prove it, as below:

Lemma E.3. Consider D linearly independent weight vectors {α1, · · · ,αD ∈ RD}. Then for every
p, q ∈ [N] such that x(p) ̸= x(q), there exists αj , j ∈ [D], such that x(p)⊤αj ̸= x(q)⊤αj .

Proof. This is the basic fact of full-rank linear systems. Prove by contradiction. Suppose for
∀j ∈ [D] we have x(p)⊤αj = x(q)⊤αj . Then we form a linear system: x(p)⊤ [α1 · · · αD] =

x(q)⊤ [α1 · · · αD]. Since α1, · · · ,αD are linearly independent, it yields x(p) = x(q), which
reaches the contradiction.

Lemma E.4 (Anchor Construction). Consider a set of weight vectors {α1, · · · ,αK1
∈ RD} with

K1 = N(N − 1)(D − 1)/2 + 1, of which every D-length subset, i.e., {αj : ∀j ∈ J },∀J ⊆
[K1], |J | = D, is linearly independent, then for every data matrix X ∈ RN×D, there exists
j∗ ∈ [K1], Xαj∗ is an anchor of X .

Proof. Define a set of pairs which an anchor needs to distinguish: I = {(p, q) : x(p) ̸= x(q)} ⊆ [N]2

Consider a D-length subset J ⊆ [K] with |J | = D. Since {αj : ∀j ∈ J } are linear independent,
we assert by Lemma E.3 that for every pair (p, q) ∈ I, there exists j ∈ J , x(p)⊤αj ̸= x(q)⊤αj .
It is equivalent to claim: for every pair (p, q) ∈ I, at most D − 1 many αj , j ∈ [K1] satisfy
x(p)⊤αj = x(q)⊤αj . Based on pigeon-hole principle, as long as K1 ≥ N(N − 1)(D− 1)/2 + 1 =

(D − 1)
(
N
2

)
+ 1 ≥ (D − 1)|I|+ 1, there must exist j∗ ∈ [K1] such that x(p)⊤αj∗ ̸= x(q)⊤αj∗ for

∀(p, q) ∈ I. By Definition 4.1, Xαj∗ generates an anchor.

Proposition E.5. The linear independence condition in Lemma E.4 can be satisfied with probability
one by drawing i.i.d. Gaussian random vectors α1, · · · ,αK1

i.i.d.∼ N (0, I).

Proof. We first note that generating a D × K1 Gaussian random matrix (D ≤ K1) is equivalent
to drawing a matrix with respect to a probability measure defined over M = {X ∈ RD×K :
rank(X) ≤ D}. Since rank-D matrices are dense in M (Tsakiris, 2023; Yao et al., 2021), we can
conclude that for ∀J ⊆ [K1], |J | = D, P({αj : j ∈ J } are linearly independent) = 1. By union
bound, P({αj : j ∈ J } for all J ∈ [K], |J | = D are linearly independent) = 1.

F PROOFS FOR THE LP EMBEDDING LAYER

In this section, we complete the proofs for the LP embedding layer (Eq. 2). First we constructively
show an upper bound that sufficiently achieves injectivity following our discussion in Sec. 4.1.2,
and then prove Theorem 4.5 to reveal a lower bound that is necessary for injectivity. Finally, we
show prove the continuity of the inverse of our constructed LP embedding layer with the techniques
introduced in Sec. 4.2.

F.1 UPPER BOUND FOR INJECTIVITY

To prove the upper bound, we construct an LP embedding layer with L ≤ N5D2 output neurons
such that its induced summation is injective.

We also restate Lemma 4.4 to demonstrate the weight construction for linear coupling:

Lemma F.1 (Linear Coupling, Lemma 4.4). Consider a group of coefficients Γ = {γ1, · · · , γK2
∈ R}

with γi ̸= 0,∀i ∈ [K2], γi ̸= γj ,∀i, j ∈ [K2], and K2 = N(N − 1) + 1 such that for all 4-tuples
(γi, γj , γk, γl) ⊂ Γ, if γi ̸= γj , γi ̸= γk then γi/γj ̸= γk/γl. It must hold that: Given any
x,x′,y,y′ ∈ RN such that x ∼ x′ and y ∼ y′, if (x − γky) ∼ (x′ − γky

′) for every k ∈ [K2],
then [x y] ∼ [x′ y′].

Remark F.2. A handy choice of Γ in Lemma F.1 are prime numbers, which are provably positive,
infinitely many, and not divisible by each other.

18

Published as a conference paper at ICLR 2024

... ...

... ...

... ...

Lemma 4.5
Lemma 4.8Lemma 4.3

... ...

Input Channels

Anchor

Non-Anchor

Output Embedding

Coupling Sum-Pooling

Lemma 4.4

(a)

...

...

(b)

...

(c)

Figure 3: (a) illustrates the overall idea to construct LP and LE embedding layers and prove
their injectivity. In the forward pass, LP and LE will 1) construct an anchor with redundant non-
anchor channels through a linear layer A = [α1 · · · αK1] (Lemma 4.3), 2) and couple each
feature channel with the both anchor and non-anchor channels with the their own coupling schemes,
respectively. To prove injectivity, the implication follows the converse agenda of construction: 1) by
the properties of coupling schemes specified by LP (Lemma 4.4) and LE (Lemma 4.7) layers, we
obtain pairwise equivalence with anchors, 2) and by union alignment lemma (Lemma 4.2), we recover
the global equivalence. (b)(c) depict the detailed construction inside the LP and LE embedding
layers, respectively. LP embedding layer utilizes linear combination plus a power mapping to couple
feature channels with the anchor(s) and non-anchors, while LE adopts a linear combination plus an
exponential mapping, which is essentially an exponential function followed by a bivariate monomial.
The constructed components marked in gray represent the redundant pairs between feature channels
and non-anchor channels, which will not be used in the chain of implication to prove the injectivity.

Proof. We note that x ∼ x′ and y ∼ y′ imply that there exist Px,Py ∈ Π(N) such that Pxx = x′

and Pyy = y′. Also (x− γky) ∼ (x′ − γky
′),∀k ∈ [K2] implies there exists Qk ∈ Π(N),∀k ∈

[K2] such that Qk(x− γky) = x′ − γky
′. Substituting the former to the latter, we can obtain:(

I −Q⊤
k Px

)
x = γk

(
I −Q⊤

k Px

)
y, ∀k ∈ [K2], (19)

where for each k ∈ [K2], Eq. 19 corresponds to N equalities as follows. Here, we let (Z)i denote
the ith column of the matrix Z.

(I −Q⊤
k Px)

⊤
1 x = γk(I −Q⊤

k Px)
⊤
1 y

... (20)

(I −Q⊤
k Px)

⊤
Nx = γk(I −Q⊤

k Px)
⊤
Ny

We compare entries in x = [· · ·xp · · ·]⊤ and for each entry index p ∈ [N], we define a set of non-zero
pairwise differences between xp and other entries in x: D(p)

x = {xp − xq : q ∈ [N], xp ̸= xq}.
Similarly, for y, we define D(p)

y = {yp − yq : q ∈ [N], yp ̸= yq}. We note that for every n ∈ [N],
either option (a) (I −Q⊤

k Px)
⊤
nx = 0 or option (b) (I −Q⊤

k Px)
⊤
nx ∈ D(p)

x for some p ∈ [N] as
(Q⊤

k Px)
⊤
nx is one of the entries of x.

Then, it is sufficient to show there must exist k ∈ [K2] such that all of equations in Eq. 20 are induced
by the option (a) rather than the option (b), i.e.,

∃k∗ ∈ [K2],∀p, n ∈ [N] such that (I −Q⊤
k∗Px)

⊤
nx ̸∈ D(p)

x . (21)

19

Published as a conference paper at ICLR 2024

This is because Eq. 21 implies:

(I −Qk∗Px)
⊤x = 0 ⇒ x = Q⊤

k∗Pxx = Q⊤
k∗x′,

(Since γk ̸= 0,∀k ∈ [K2]) (I −Qk∗Py)
⊤y = 0 ⇒ y = Q⊤

k∗Pyy = Q⊤
k∗y′,

which is [x y] = Q⊤
k∗ [x′ y′].

To show Eq. 21, we construct N bipartite graphs G(p) = (D(p)
x ,D(p)

y , E(p)) for p ∈ [N] where each
α ∈ D(p)

x or each β ∈ D(p)
y is viewed as a node and (α, β) ∈ E(p) gives an edge if α = γkβ for

some k ∈ [K2]. Then we prove the existence of k∗ via seeing a contradiction that does counting the
number of connected pairs (α, β) from two perspectives.

Perspective of D(p)
x . We argue that for ∀p ∈ [N] and arbitrary α1, α2 ∈ D(p)

x , α1 ̸= α2, there
exists at most one β ∈ D(p)

y such that (α1, β) ∈ E(p) and (α2, β) ∈ E(p). Otherwise, suppose there
exists β′ ∈ D(p)

y , β′ ̸= β such that (α1, β
′) ∈ E(p) and (α2, β

′) ∈ E(p). Then we have α1 = γiβ,
α2 = γjβ, α1 = γkβ

′, and α2 = γlβ
′ for some γi, γj , γk, γl ∈ Γ, which is γi/γk = γk/γl. As

α1 ̸= α2, it is obvious that γi ̸= γj . Similarly, we have γi ̸= γk. Altogether, it contradicts our
assumption on Γ. Therefore, |E(p)| ≤ 2max{|D(p)

x |, |D(p)
y |} ≤ 2(N−1). And the total edge number

of all bipartite graphs should be less than 2N(N − 1).

Perspective of Γ. We note that if for some k ∈ [K2] that makes (I −Q⊤
k Px)

⊤
nx ∈ D(p)

x for some
p, n ∈ [N], i.e., (I −Q⊤

k Px)
⊤
nx = γk(I −Q⊤

k Py)
⊤
n y ̸= 0, this γk contributes at least two edges in

the entire bipartite graph, i.e., there being another n′ ∈ [N], (I−Q⊤
k Px)

⊤
n′x = γk(I−Q⊤

k Py)
⊤
n′y ̸=

0. Otherwise, there exists a unique n∗ ∈ [N] such that (I − Q⊤
k Px)

⊤
n∗x ∈ D(p)

x (̸= 0) and
(I −Q⊤

k Px)
⊤
nx = 0 for all n ̸= n∗. This cannot be true because 1⊤(I −Q⊤

k Px)x = 0. By which,
if ∀k ∈ [K2], ∃p, n ∈ [N] such that (I −Q⊤

k Px)
⊤
nx ∈ D(p)

x (i.e., Eq. 21 is always false), then the
total number of edges is at least 2K2 = 2N(N − 1) + 2.

Hereby, we conclude the proof by the contradiction, in which the minimal count of edges 2K2 by
Perspective of Γ already surpasses the maximal number 2N(N − 1) by Perspective of D(p)

x .

We wrap off this section by formally stating and proving the injectivity statement of the LP layer.
Theorem F.3. Suppose ϕ : RD → RL admits the form of Eq. 2,

ϕ(x) =
[
ψN (w⊤

1 x)
⊤ · · · ψN (w⊤

Kx)⊤
]
, (22)

where ψN is the power mapping of degree N , L = KN ≤ N5D2, K = D +K1 +DK1K2 and
W = [e1 · · · eD α1 · · · αK1 · · · Γi,j,k · · ·] is constructed as follows:

1. Let the first group of weights e1, · · · , eD ∈ RD buffer the original features, where ei represents
the i-th canonical basis.

2. Choose the second group of linear weights, α1, · · · ,αK1 ∈ RD forK1 as large asN(N−1)(D−
1)/2 + 1, such that the conditions in Lemma E.4 are satisfied.

3. Design the third group of weights Γi,j,k for i ∈ [D], j ∈ [K1], k ∈ [K2] where Γi,j,k = ei − γkαj ,
K2 = N(N − 1)+ 1, and γk, k ∈ [K2] are chosen such that conditions in Lemma F.1 are satisfied.

Then
∑N

i=1 ϕ(x
(i)) is injective (cf. Definition C.7).

Proof. Suppose
∑N

n=1 ϕ(x
(n)) =

∑N
n=1 ϕ(x

′(n)) for some X,X′ ∈ RN×D. Due to the injectivity
property of sum-of-power mapping (cf. Lemma D.2):

N∑
n=1

ϕ
(
x(n)

)
=

N∑
n=1

ϕ
(
x′(n)

)
⇒Xei ∼ X′ei,∀i ∈ [D],Xαi ∼ X′αi,∀i ∈ [K1], (23)

XΓi,j,k ∼ X′Γi,j,k,∀i ∈ [D], j ∈ [K1], k ∈ [K2].

20

Published as a conference paper at ICLR 2024

By Lemma E.4, it is guaranteed that there exists j∗ ∈ [K1] such that Xαj∗ is an anchor, and
according to Eq. 23, we have Xαj∗ ∼ X′αj∗ . By Lemma F.1, we induce:

Xei ∼ X′ei,∀i ∈ [D],Xαj∗ ∼ X′αj∗ ,XΓi,j,k ∼ X′Γi,j,k,∀i ∈ [D], j ∈ [K1], k ∈ [K2]

⇒ [Xαj∗ xi] ∼ [X′αj∗ x′
i] ,∀i ∈ [D]. (24)

Since Xαj∗ is an anchor, by union alignment (Lemma E.2), we have:

[Xαj∗ xi] ∼ [X′αj∗ x′
i] ,∀i ∈ [D] ⇒ X ∼ X′. (25)

Here K = D +K1 +DK1K2 ≤ N4D2, thus L = KN ≤ N5D2, which concludes the proof.

F.2 CONTINUITY

Next, we show that under the construction of Theorem F.3, the inverse of
∑N

i=1 ϕ(x
(i)) is continuous.

The main idea is to check the three conditions provided in Lemma 4.8.
Theorem F.4. Suppose ϕ admits the form of Eq. 22 and follows the construction in Theorem F.3,
then the inverse of LP-induced sum-pooling

∑N
n=1 ϕ(x

(n)) is continuous.

Proof. The proof is done by invoking Lemma 4.8. First of all, the inverse of Φ(X) =
∑N

i=1 ϕ(x
(i)),

denoted as Φ−1, exists due to Theorem F.3. By Lemma C.6, any closed and bounded subset
of (RN×D/ ∼, dΠ) is compact. Trivially, Φ(X) is continuous. Then it remains to show the
condition (c) in Lemma 4.8. Same with Corollary D.6 while focusing on the real domain, let
ZΨN

= {ΨN (x) : x ∈ RN} ⊆ RN be the range of sum-of-power mapping, and define ZΦ =
{Φ(X) : X ∈ RN×D} ⊆ ZK

ΨN
be the range of Φ, which is also a subset of ZK

ΨN
. We decompose

Φ−1 = π ◦ Ψ̂N

†
into two mappings following the similar idea of proving its existence:

(ZΦ, d∞)
Ψ̂N

†

−−−→ R ⊆ (RN/ ∼, dΠ)K
π−→ (RN×D/ ∼, dΠ) ,

where Φ̂N

†
is defined in Eq. 18 (Corollary D.6), R is the image of Z under Φ̂N

†
, and π exists due

to union alignment (i.e., Eqs. 24 and 25 in Theorem F.3). Also according to our construction in
Theorem F.3, for any Z ∈ R, consider its first D columns produced by {ei = ei,∀i ∈ D}, we know
that zi ∼ π(Z)i for every i ∈ [D]. Therefore, ∀Z,Z′ ∈ R such that dKΠ (Z,Z′) ≤ C for some
constant C > 0 in terms of the product metric dKΠ (cf. Definition C.2), the inequality holds:

dΠ(π(Z), π(Z′)) ≤ max
i∈[D]

dΠ(zi, z
′
i) ≤ dKΠ (Z,Z′) ≤ C, (26)

which implies π maps every bounded set in R to a bounded set in (RN×D/ ∼, dΠ). Now we conclude
the proof by the following chain of argument:

S ⊆ (ZΦ, d∞) is bounded
Corollary D.6
=======⇒ Ψ̂N

†
(S) is bounded

Eq. 26
===⇒ π ◦ Ψ̂N

†
(S) is bounded.

F.3 LOWER BOUND FOR INJECTIVITY

In this section, we prove Theorem 4.5 which shows that K ≥ D + 1 is necessary for injectivity of
LP-induced sum-pooling when D ≥ 2. Our argument mainly generalizes Lemma 2 of Tsakiris &
Peng (2019) to our equivalence class. To proceed our argument, we define the linear subspace V by
vectorizing [Xw1 · · · XwK] as below:

V :=


Xw1

...
XwK

 : X ∈ RN×D

 = R


(w

⊤
1 ⊗ IN)

...
(w⊤

K ⊗ IN)


 , (27)

where R(Z) denotes the column space of Z and ⊗ is the Kronecker product. V is a linear subspace
of RNK with dimension at most RND, characterized by w1, · · · ,wK ∈ RD. For the sake of
notation simplicity, we denote Π(N)⊗K = {diag(Q1, · · · ,QK) : ∀Q1, · · · ,QK ∈ Π(N)}, and
IK ⊗ Π(N) = {IK ⊗ Q : ∀Q ∈ Π(N)}. Next, we define the notion of unique recoverability
(Tsakiris & Peng, 2019) as below:

21

Published as a conference paper at ICLR 2024

Definition F.5 (Unique Recoverability). The subspace V is called uniquely recoverable under
Q ∈ Π(N)⊗K if whenever x,x′ ∈ V satisfy Qx = x′, there exists P ∈ IK ⊗Π(N), Px = x′.

Subsequently, we derive a necessary condition for the unique recoverability:
Lemma F.6. A linear subspace V ⊆ RNK is uniquely recoverable under Q ∈ Π(N)⊗K only if
there exists P ∈ IK ⊗ Π(N), Q(V) ∩ V ⊆ EQP⊤,λ=1, where EQP⊤,λ denotes the eigenspace
corresponding to the eigenvalue λ.

Proof. It is sufficient to prove that Q(V)∩V ⊆
⋃

P∈IK⊗Π(K) EQP⊤,λ=1. This is because the LHS is
a subspace and the RHS is a union of subspaces. When a subspace is a subset of a union of subspaces,
such a subspace must be a subset of one of the subspaces, i.e., Q(V)∩V ⊆

⋃
P∈IK⊗Π(K) EQP⊤,λ=1

implies there exists P ∈ IK ⊗Π(K) such that Q(V) ∩ V ⊆ EQP⊤,λ=1.

Next, we prove Q(V) ∩ V ⊆
⋃

P∈IK⊗Π(K) EQP⊤,λ=1 by contradiction. Suppose there exists
x ∈ Q(V) ∩ V but x /∈

⋃
P∈IK⊗Π(K) EQP⊤,λ=1. Or equivalently, there exists x′ ∈ V and

x = Qx′, while for ∀P ∈ IK ⊗ Π(N), x ̸= QP⊤x. This implies Q⊤x = x′ ̸= Px for
∀P ∈ IK ⊗ Π(N). However, this contradicts the fact that V ⊆ RNK is uniquely recoverable (cf.
Definition F.5).

We also introduce a useful Lemma F.7 that gets rid of the discussion on Q in the inclusion:
Lemma F.7. Suppose V ⊆ RN is a linear subspace, and T is a linear mapping. T (V)∩V∩ET ,λ = 0
if and only if V ∩ ET ,λ = 0.

Proof. The sufficiency is straightforward. The necessity is shown by contradiction: Suppose V ∩
ET ,λ ̸= 0, then there exists x ∈ V ∩ ET ,λ such that x ̸= 0. Then Tx = λx implies x ∈ T (V).
Hence, x ∈ T (V) ∩ V ∩ ET ,λ which reaches the contradiction.

Now we are ready to present the proof of Theorem 4.5, restated below:
Theorem F.8 (Lower Bound, Theorem 4.5). Consider data matrices X ∈ RN×D where D ≥ 2.
If K ≤ D, then for every w1, · · · ,wK , there exists X′ ∈ RN×D such that X ̸∼ X′ but Xwi ∼
X′wi for every i ∈ [K].

Proof. Proved by contrapositive. First notice that, ∀X,X′ ∈ RN×D,Xwi ∼ X′wi,∀i ∈ [K] ⇒
X ∼ X′ holds if and only if dimV = ND and V is uniquely recoverable under all possible
Q ∈ Π(N)⊗K . By Lemma F.6, for every Q ∈ Π(N)⊗K , there exists P ∈ IK ⊗ Π(N) such that
Q(V) ∩ V ⊂ EQP⊤,λ=1. This is Q(V) ∩ V ∩ EQP⊤,λ = 0 for all λ ̸= 1. By Lemma F.7, we have
V ∩ EQP⊤,λ = 0 for all λ ̸= 1. Then proof is concluded by discussing the dimension of ambient
space RNK such that an ND-dimensional subspace V can reside. To ensure V ∩ EQP⊤,λ = 0 for
all λ ̸= 1, it is necessary that dimV ≤ minλ̸=1 codim EQP⊤,λ for every Q ∈ Π(N)⊗K and its
associated P ∈ IK ⊗Π(N). Relaxing the dependence between Q and P , we derive the inequality:

ND = dimV ≤ min
Q∈Π(N)⊗K

max
P∈IK⊗Π(N)

min
λ ̸=1

codim EQP⊤,λ ≤ NK − 1, (28)

where the last inequality considers the scenario where every non-one eigenspace is one-dimensional,
which is achievable when K ≥ 2. Hence, we can bound K ≥ (ND + 1)/N , i.e., K ≥ D + 1.

G PROOFS FOR LE EMBEDDING LAYER

In this section, we present the complete proof for the LE embedding layer following Sec. 4.1.3.

G.1 UPPER BOUND FOR INJECTIVITY

To prove the upper bound, we construct an LE embedding layer with L ≤ N4D2 output neurons
such that its induced sum-pooling is injective. The main construction idea is to couple every channel
and anchor with the real and imaginary components of complex numbers and invoke the injectiviy of
sum-of-power mapping over the complex domain to show the invertibility.

22

Published as a conference paper at ICLR 2024

With Lemma D.2, we can prove Lemma 4.7 restated and proved as below:

Lemma G.1. For any pair of vectors x,y ∈ RN ,x′,y′ ∈ RN , if
∑

i∈[N] x
l−k
i yk

i =∑
i∈[N] x

′l−k
i y′k

i for every l, k ∈ [N] such that 0 ≤ k ≤ l, then [x y] ∼ [x′ y′].

Proof. If for any pair of vectors x,y ∈ RN ,x′,y′ ∈ RN such that
∑

i∈[N] x
l−k
i yk

i =∑
i∈[N] x

′l−k
i y′k

i for every l, k ∈ [N], 0 ≤ k ≤ l, then for ∀l ∈ [N],

N∑
i=1

ψN (xi + yi

√
−1)l =

N∑
i=1

(xi + yi

√
−1)l (29)

=

N∑
i=1

l∑
k=0

(
√
−1)kxl−k

i yk
i =

l∑
k=0

(
√
−1)k

(
N∑
i=1

xl−k
i yk

i

)
(30)

=

l∑
k=0

(
√
−1)k

(
N∑
i=1

x′l−k
i y′k

i

)
=

N∑
i=1

l∑
k=0

(
√
−1)kx′l−k

i y′k
i (31)

=

N∑
i=1

(x′
i + y′

i

√
−1)l =

N∑
i=1

ψN (x′
i + y′

i

√
−1)l, (32)

in which we reorganize terms in the summation and apply the given condition to establish equality
between Eq. 30 and 31. ψN denotes the complex power mapping of degree N (cf. Definition D.1).
Consider Eq. 32 for every l ∈ [N], we can yield:

ΨN

(
x+ y

√
−1
)
= ΨN

(
x′ + y′√−1

)
,

where ΨN is the sum-of-power mapping (cf. Definition D.1). Then by Lemma D.2, we have
(x+ y

√
−1) ∼ (x′ + y′√−1), which is equivalent to the statement [x y] ∼ [x′ y′].

Lemma G.2. Suppose f : R → R is an injective function. We denote f(X) as applying f element-
wisely to entries in X , i.e., f(X)i,j = f(Xi,j),∀i ∈ [N], j ∈ [D]. Then for any X,X′ ∈ RN×D,
f(X) ∼ f(X′) implies X ∼ X′.

Proof. Since f(X) ∼ f(X′), there exists P ∈ Π(N) such that f(X) = P f(X′). Notice that
element-wise functions are permutation-equivariant, then f(X) = f(PX′). Since f is injective, we
conclude the proof by applying its inverse f−1 to both sides.

Lemma G.3. Suppose f : R → R is an injective function. We denote f(X) as applying f element-
wisely to entries in X , i.e., f(X)i,j = f(Xi,j),∀i ∈ [N], j ∈ [D]. For any X ∈ RN×D, if a is an
anchor of X (cf. Definition 4.1), then f(a) is also an anchor of f(X).

Proof. Proved by contradiction. Suppose f(a) is not an anchor of f(X). Then there exists i, j ∈ [N],
f(x(i)) ̸= f(x(j)) while f(ai) = f(aj). Since f is injective, then f(x(i)) ̸= f(x(j)) implies
x(i) ̸= x(j), whereas f(ai) = f(aj) induces ai = aj . This leads to a contradiction.

Now we are ready to prove the injectiviy of the LE layer.

Theorem G.4. Suppose ϕ : RD → RL admits the form of Eq. 3:

ϕ(x) =
[
exp(v⊤

1 x) · · · exp(v⊤
Lx)

]
, (33)

where L = DK1N(N +3)/2 ≤ N4D2, V = [· · · vi,j,p,q · · ·] ∈ RD×L, i ∈ [D], j ∈ [K1], p ∈
[N], q ∈ [p+ 1], are constructed as follows:

1. Define a group of weights e1, · · · , eD ∈ RDss, where ei is the i-th canonical basis.

2. Choose another group of linear weights, α1, · · · ,αK1
∈ RD for K1 as large as N(N − 1)(D −

1)/2 + 1, such that the conditions in Lemma E.4 are satisfied.

23

Published as a conference paper at ICLR 2024

3. Design the weight matrix as vi,j,p,q ∈ RD for i ∈ [D], j ∈ [K1], p ∈ [N], q ∈ [p + 1] such that
vi,j,p,q = (q − 1)ei + (p− q + 1)αj .

Then
∑N

i=1 ϕ(x
(i)) is injective (cf. Definition C.7).

Proof. First of all, we count the number of weight vectors {vi,j,p,q} where i ∈ [D], j ∈ [K1], p ∈
[N], q ∈ [p+ 1]: L = DK1

∑N
p=1(p+ 1) = DK1(N + 3)N/2 ≤ N4D2, as desired.

Let Ω = [e1 · · · eD α1 · · · αK1] ∈ RD×(D+K1), and ui,j,p,q = (q − 1)ei + (p − q +
1)ej+D ∈ RD+K1 , then we can rewrite vi,j,p,q = Ωui,j,p,q for every i ∈ [D], j ∈ [K1], p ∈
[N], q ∈ [p+ 1]. Then, for x ∈ RD, we can cast Eq. 33 into:

ϕ(x) =
[
· · · exp(u⊤

i,j,p,qΩ
⊤x) · · ·

]
=
[
· · · exp(u⊤

i,j,p,q log(exp(Ω
⊤x))) · · ·

]
, (34)

where log(·) and exp(·) operate on vectors element-wisely. By the arithmetic rule of exponential and
logarithm, we can rewrite for ∀i ∈ [D], j ∈ [K1], p ∈ [N], q ∈ [p+ 1]

ϕ(x)i,j,p,q = exp(u⊤
i,j,p,q log(exp(Ω

⊤x))) =

D+K1∏
k=1

[
exp

(
Ω⊤x

)
k

](ui,j,p,q)k (35)

= exp(e⊤i x)
q−1 exp(α⊤

j x)
p−q+1 = exp(xi)

q−1 exp(α⊤
j x)

p−q+1. (36)

Then for X,X′ ∈ RN×D, we have:∑
n∈[N]

ϕ
(
x(n)

)
=
∑

n∈[N]

ϕ
(
x′(n)

)
(37)

⇕ (38)∑
n∈[N]

exp(xi)
q−1
n exp (Xαj)

p−q+1
n =

∑
n∈[N]

exp(x′
i)

q−1
n exp (X′αj)

p−q+1

n , (39)

∀i ∈ [D], j ∈ [K1], p ∈ [N], q ∈ [p+ 1].

By Lemma G.1, we obtain that [exp(Xαj) exp(xi)] ∼ [exp(X′αj) exp(x′
i)] for ∀i ∈ [D], j ∈

[K1]. By Lemma E.4, there exists j∗ ∈ [K1] such that Xαj∗ is an anchor of X . By Lemma G.3,
exp(Xαj∗) is also an anchor of exp(X). By union alignment (Lemma E.2), we have:

[exp (Xαj∗) exp(xi)] ∼ [exp (X′αj∗) exp(x′
i)] ,∀i ∈ [D] ⇒ exp(X) ∼ exp(X′). (40)

Finally, we conclude the proof by Lemma G.2:

exp(X) ∼ exp(X′) ⇒ X ∼ X′. (41)

G.2 CONTINUITY

The proof idea of continuity for LE layer shares the similar spirit with the LP layer, but involves
additional steps. This is because we cannot directly achieve the end-to-end boundedness for condition
(c) in Lemma 4.8 if decomposing the inverse map of the sum-pooling, following the proof idea of
injectivity (cf. Theorem G.4), since the last step (Eq. 41) requires taking logarithm over exp(X)
while logarithm does not preserve boundedness.

Theorem G.5. Suppose ϕ admits the form of Eq. 33 and follows the construction in Theorem G.4,
then the inverse of LE-induced sum-pooling

∑N
n=1 ϕ(x

(n)) is continuous.

Proof. Our proof requires the following mathematical tool to help rewrite ϕ. First, following the
construction in Theorem G.4 and by Eq. 34, we can rewrite ϕ(x) as:

ϕ(x) =
[
· · · exp(u⊤

i,j,p,q log(exp(Ω
⊤x))) · · ·

]
, (42)

24

Published as a conference paper at ICLR 2024

where Ω = [ID A], and A = [α1 · · · αK1]. Define ϕ̂ : RD
>0 → RL as below:

ϕ̂(x) =

[
· · · exp

(
u⊤
i,j,p,q log

([
x

exp(A⊤ log(x))

]))
· · ·
]
. (43)

Notice that ϕ(x) = ϕ̂ ◦ exp(x). Recall Φ(X) =
∑N

i=1 ϕ(x
(i)) and define Φ̂ : RD

>0 → RL as
Φ̂(X) =

∑N
i=1 ϕ̂(x

(i)), and then Φ(X) = Φ̂(exp(X)). The proof can be concluded by two steps:
1) notice that Φ̂ has a continuous inverse Φ̂−1 by Lemma G.6 and G.7, and then 2) show that the
continuous inverse of Φ exists by letting Φ−1(X) = log ◦Φ̂−1(X).

Lemma G.6. Consider ϕ̂ : RD
>0 → RL as defined in Eq. 43, Theorem G.5, then Φ̂(X) =∑N

i=1 ϕ̂(x
(i)) is injective.

Proof. We use the fact that ϕ̂(x) = ϕ ◦ log(x), and borrow the same proof from Theorem G.4:∑
n∈[N]

ϕ̂
(
x(n)

)
=
∑

n∈[N]

ϕ̂
(
x′(n)

)
(44)

⇕∑
n∈[N]

(xi)
q−1
n exp (log(X)αj)

p−q+1
n =

∑
n∈[N]

(x′
i)

q−1
n exp (log(X′)αj)

p−q+1

n , (45)

∀i ∈ [D], j ∈ [K1], p ∈ [N], q ∈ [p+ 1].

By Lemma G.1, we obtain that [exp(log(X)αj) xi] ∼ [exp(log(X′)αj) x′
i] for ∀i ∈ [D], j ∈

[K1]. By Lemma E.4, there exists j∗ ∈ [K1] such that log(X)αj∗ is an anchor of log(X). By
Lemma G.3, exp(log(X)αj∗) is also an anchor of X . By union alignment (Lemma E.2):

[exp (log(X)αj∗) xi] ∼ [exp (log(X′)αj∗) x′
i] ,∀i ∈ [D] ⇒ X ∼ X′. (46)

Lemma G.7. Consider ϕ̂ : RD
>0 → RL and Φ̂(X) =

∑N
i=1 ϕ̂(x

(i)) as defined in Eq. 43, Theorem
G.5. Let ZΦ̂ = {Φ̂(X) : X ∈ RN×D

>0 } ⊆ RL. Note that ZΦ̂ = ZΦ(≜ {Φ(X) : X ∈ RN×D}).
Then Φ̂ : RN×D

>0 → ZΦ̂ has inverse Φ̂−1, which is continuous.

Proof. Since we constrain the image of Φ̂ to be the range, Φ̂ becomes surjective. Then invertibility is
simply induced by injectivity (Lemma G.6).

Now it remains to show Φ̂−1 is continuous, which is done by verifying three conditions in Lemma
4.8. By Lemma C.6, any closed and bounded subset of (RN×D

>0 / ∼, dΠ) is compact. Obviously,
Φ̂(X) is continuous. And for condition (c) in Lemma 4.8, we will decompose Φ̂−1 into a series
bounded mappings following the clue of proving its existence, similar to Theorem F.4. Recall
each element in Φ̂(X) has the form

∑
n∈[N](xi)

q−1
n exp (log(X)αj)

p−q+1
n for some i ∈ [D], j ∈

[K1], p ∈ [N], q ∈ [p + 1] (cf. Eq. 45 in Lemma G.6). Hence, by Eq. 30 shown in Lemma G.1,
Φ̂ can be transformed into a sum-of-power mapping (cf. Definition D.1) via a (complex-valued)
linear mapping: ΨN (xi + exp(log(X)αj)

√
−1) = Υi,jΦ̂(X), where Υi,j ∈ CN×L for every

i ∈ [D], j ∈ [K1]. Let K = DK1 and concatenate Υi,j : Υ = [· · · Υi,j · · ·] ∈ CNK×L. Recall
ZΨN

= {ΨN (x) : x ∈ CN} ⊆ CN denotes the range of the sum-of-power mapping.

Then we leverage the following decomposition to demonstrate the end-to-end boundedness:

(ZΦ̂, d∞)
Υ−→ O ⊆ (ZK

ΨN
, d∞)

Ψ̂N
†

−−−→ R ⊆ (CN/ ∼, dΠ)K
π−→ (RN×D

>0 / ∼, dΠ) ,

where Ψ̂N

†
is defined in Eq. 18 (Corollary D.6), O, R are ranges of Υ and Ψ̂N

†
, respectively, and π

exists due to union alignment (cf. Eq. 46 and Lemma E.2). Therefore, for any Z ∈ R , there exists
X ∈ (RN×D

>0 / ∼, dΠ) such that π(Z) ∼ X . We denote Z = [· · · zi,j · · ·] ,∀i ∈ [D], j ∈ [K1].

25

Published as a conference paper at ICLR 2024

In the meanwhile, according to our construction of Ψ̂N

†
,Υ, Φ̂, we demonstrate the relationship

between Z and π(Z) ∼ X:

zi,j ∼ Ψ̂N

† [
ΥΦ̂(X)

]
i,j

∼ Ψ−1
N

[
Υi,jΦ̂(X)

]
∼
(
xi + exp(log(X)αj)

√
−1
)

(47)

∀i ∈ [D], j ∈ [K1],

With this relationship, now we consider ∀Z,Z′ ∈ R such that dKΠ (Z,Z′) ≤ C for some constant
C > 0 and the product metric dKΠ (cf. Definition C.2), we have inequality:

dΠ(π(Z), π(Z′)) = dΠ(π(Z)i∗ , π(Z
′)i∗) ≤ max

j∈[K1]
dΠ(zi∗,j , z

′
i∗,j) ≤ dKΠ (Z,Z′) ≤ C, (48)

where i∗ ∈ [D] is the column which ℓ∞,∞-norm takes value at (cf. Definition C.3). Eq. 48 implies π
maps every bounded set in R to a bounded set in (RN×D/ ∼, dΠ). Now we conclude the proof by
the following chain of argument:

S ⊆ (ZΦ̂, d∞) is bounded
(∗)
==⇒ Υ(S) is bounded

Corollary D.6
=======⇒

Ψ̂N

†
◦Υ(S) is bounded

Eq. 48
===⇒ π ◦ Ψ̂N

†
◦Υ(S) is bounded,

where (∗) holds due to that Υ is a finite-dimensional linear mapping.

H EXTENSION TO PERMUTATION EQUIVARIANCE

In this section, we prove Theorem 5.1, the extension of Theorem 3.1 to equivariant functions,
following the similar arguments with Wang et al. (2023):
Lemma H.1 (Wang et al. (2023); Sannai et al. (2019)). f : RN×D → RN is a permutation-
equivariant function if and only if there is a function τ : RN×D → R that is permutation invariant to
the last N − 1 entries, such that f(Z)i = τ(z(i), z(i+1), · · · , z(N), · · · , z(i−1)︸ ︷︷ ︸

N−1

) for any i ∈ [N].

Proof. (Sufficiency) Define π : [N] → [N] be an index mapping associated with the permutation
matrix P ∈ Π(N) such that PZ =

[
z(π(1)), · · · , z(π(N))

]⊤
. Then we have:

f
(
z(π(1)), · · · , z(π(N))

)
i
= τ

(
z(π(i)), z(π(i+1)), · · · , z(π(N)), · · · , z(π(i−1))

)
.

Since τ(·) is invariant to the last N − 1 entries, it can shown that:

f(PZ)i = τ
(
z(π(i)), z(π(i+1)), · · · , z(π(N)), · · · , z(π(i−1))

)
= f(Z)π(i).

(Necessity) Given a permutation-equivariant function f : RN×D → RN , we first expand
it to the following form: f(Z)i = τi(z

(1), · · · , z(N)). Permutation-equivariance means
τπ(i)(z

(1), · · · , z(N)) = τi(z
π(1), · · · , zπ(N)) for any permutation mapping π. Suppose given

an index i ∈ [N], consider any permutation π : [N] → [N] such that π(i) = i. Then, we have:

τi

(
z(1), · · · , z(i), · · · , z(N)

)
= τπ(i)

(
z(1), · · · , z(i), · · · , z(N)

)
= τi

(
z(π(1)), · · · , zi, · · · , z(π(N))

)
,

which implies τi : RN×D → R must be invariant to the N − 1 elements other than the i-th element.
Now, consider a permutation π where π(1) = i. Then we have:

τi

(
z(1), z(2), · · · , z(N)

)
= τπ(1)

(
z(1), z(2), · · · , z(N)

)
= τ1

(
z(π(1)), z(π(2)), · · · , z(π(N))

)
= τ1

(
z(i), z(i+1), · · · , z(N), · · · , z(i−1)

)
,

where the last equality is due to the invariance to N − 1 elements, stated beforehand. This implies
two results. First, for all i, τi(z(1), z(2), · · · , z(i), · · · , z(N)),∀i ∈ [N] should be written in terms
of τ1(z(i), z(i+1), · · · , z(N), · · · , z(i−1)). Moreover, τ1 is permutation invariant to its last N − 1
entries. Therefore, we just need to set τ = τ1 and broadcast it accordingly to all entries. We conclude
the proof.

26

Published as a conference paper at ICLR 2024

Lemma H.2. Consider a continuous permutation-equivariant f : (RN×D, dΠ) → (RN , d∞) and
an associated τ : (RD, d∞) × (R(N−1)×D, dΠ) → R as specified in Lemma H.1, i.e., f(Z)i =
τ(z(i), z(i+1), · · · , z(N), · · · , z(i−1)) for any Z ∈ (RN×D, dΠ) and i ∈ [N]. Then τ is continuous.

Proof. Define dτ (Z,Z′) = max{d∞(z(1), z′(1)), dΠ([z
(2) · · · z(N)]⊤, [z′(2) · · · z′(N)

]⊤)} as the
corresponding product metric of (RD, d∞)× (R(N−1)×D, dΠ). Fix arbitrary Z ∈ RN×D and ϵ > 0.
Since f is continuous, by Definiton C.10, there exists δ > 0 such that for every Z′ ∈ RN×D

satisfying dΠ(Z,Z′) < δ, we have d∞(f(Z), f(Z′)) < ϵ. Then for the same δ, consider every
Z′ ∈ RN×D, but under the dτ metric, such that dτ (Z,Z′) < δ. We note that:

dΠ(Z,Z
′) = min

Q∈Π(N)
∥QZ −Z′∥∞,∞ ≤ min

Q∈Π(N−1)

∥∥∥∥[1 Q

]
Z −Z′

∥∥∥∥
∞,∞

= dτ (Z,Z
′) < δ.

Therefore, using the fact d∞(τ(Z), τ(Z′)) ≤ d∞(f(Z), f(Z′)) < ϵ, we conclude the proof.

The following result, restated from Theorem 5.1, can be derived from Theorem 3.1, equipped with
Lemma H.1 and H.2.

Theorem H.3 (Extension to Equivariance, Theorem 5.1). For any permutation-equivariant function
f : RN×D → RN , there exists continuous functions ϕ : RD → RL and ρ : RD × RL → R such
that f(X)j = ρ

(
x(j),

∑
i∈[N] ϕ(x

(i))
)

for every j ∈ [N], where L ∈ [N(D + 1), N5D2] when ϕ

admits LP architecture, and L ∈ [ND,N4D2] when ϕ admits LE architecture.

Proof. Sufficiency can be shown by verifying the equivariance. We conclude the proof by showing the
necessity with Lemma H.1. First we rewrite any permutation equivariant function f(x(1), · · · ,x(N)) :
RN×D → RN as:

f
(
x(1), · · · ,x(N)

)
i
= τ

(
x(i),x(i+1), · · · ,x(N), · · · ,x(i−1)

)
, (49)

where τ : RN×D → R is invariant to the last N − 1 elements, according to Lemma H.1. By Lemma
H.2, the continuity of f suggests τ is also continuous. Given ϕ with either LP or LE architectures,
Φ(X) =

∑N
i=1 ϕ(x

(i)) ∈ RL is injective and has continuous inverse if:

• for some L ∈ [N(D + 1), N5D2] when ϕ admits LP architecture (by Theorem F.3 and F.4).

• for some L ∈ [ND,N4D2] when ϕ admits LE architecture (by Theorem G.4 and G.5).

Let ZΦ = {
∑

i ϕ(x
(i)) : X ∈ RN×D} ⊆ RL be the range of the sum-pooling Φ, and define mapping

ρ : RD ×ZΦ → R taking the form of ρ(x, z) = τ(x,Φ−1(z − ϕ(x))). It is straightforward to see
that ρ as a composition of continuous mappings, is also continuous. Finally, we show that function τ
can be written in terms of ρ by its invariance to last N − 1 elements, which concludes the proof:

τ
(
x(i),x(i+1), · · · ,x(N), · · · ,x(i−1)

)
= τ

(
x(i),Φ−1 ◦ Φ(x(i+1), · · · ,x(N), · · · ,x(i−1))

)
= τ

(
x(i),Φ−1

(
Φ
(
x(1), · · · ,x(N)

)
− ϕ(x(i))

))
= ρ

(
x(i),

N∑
i=1

ϕ(x(i))

)

I EXTENSION TO COMPLEX NUMBERS

In this section, we formally introduce the nature extension of our Theorem 3.1 to the complex
numbers:

27

Published as a conference paper at ICLR 2024

Corollary I.1 (Extension to Complex Domain). For any permutation-invariant function f :
CN×D → C, there exists continuous functions ϕ : CD → RL and ρ : RL → C such that
f(X) = ρ

(∑
i∈[N] ϕ(x

(i))
)

for every j ∈ [N], where L ∈ [2N(D + 1), 4N5D2] when ϕ admits

LP architecture, and L ∈ [2ND, 4N4D2] when ϕ admits LE architecture.

Proof. We let ϕ first map complex features x(i) ∈ CD,∀i ∈ [N] to real features x̃(i) =[
ℜ(x(i))⊤ ℑ(x(i))⊤

]
∈ R2D,∀i ∈ [N] by divide the real and imaginary parts into separate

channels, then utilize either LP or LE embedding layer to map x̃(i) to the latent space. The upper
bounds of desired latent space dimension are scaled by 4 for both architectures due to the quadratic
dependence on D. Then the same proofs of Theorems F.3, F.4, G.4, and G.5 applies.

It is also straightforward to extend this result to the permutation-equivariant case:
Corollary I.2. For any permutation-equivariant function f : CN×D → CN , there exists continuous
functions ϕ : CD → RL and ρ : RD × RL → C such that f(X)j = ρ

(
x(j),

∑
i∈[N] ϕ(x

(i))
)

for

every j ∈ [N] for every j ∈ [N], where L ∈ [2N(D + 1), 4N5D2] when ϕ admits LP architecture,
and L ∈ [2ND, 4N4D2] when ϕ admits LE architecture.

Proof. Combine the proof of Corollary I.1 with Theorem H.3.

J THEORETICAL CONNECTION TO UNLABELED SENSING

Unlabeled sensing (Unnikrishnan et al., 2018), also known as linear regression without correspon-
dence (Hsu et al., 2017; Tsakiris & Peng, 2019; Tsakiris et al., 2020; Peng & Tsakiris, 2020), solves
x ∈ RN in the following linear system:

y = PAx or min
x,P

∥y − PAx∥22, (50)

where A ∈ RM×N is a given measurement matrix, P ∈ Π(M) is an unknown permutation, and
y ∈ RM is the measured data. The results in Unnikrishnan et al. (2018); Tsakiris & Peng (2019)
show that as long as A is over-determinant (M ≥ 2N), such problem is well-posed (i.e., has a unique
solution) for almost all cases. Unlabeled sensing shares the similar structure with our LP embedding
layers in which a linear layer lifts the feature space to a higher-dimensional ambient space, ensuring
the solvability of alignment across each channel. Specifically, as revealed in Theorem F.3, showing
the injectivity of the LP layer is to establish the argument:

Xwi ∼ X′wi,∀i ∈ [K] ⇒ X ∼ X′, (51)

for arbitrary X,X′ ∈ RN×D, constructed weights wi, i ∈ [K], and large enough K. Whereas, to
show the well-posedness of unlabeled sensing, it is to show the following statement (Tsakiris & Peng,
2019):

Ax ∼ Ax′ ⇒ x = x′, (52)

for sufficiently many measurements M . We note that our bijectivity is defined between the set and
embedding spaces, which allows a change of order in the results and differs from exact recovery of
unknown variables expected in unlabeled sensing.

In fact, the well-posedness of unlabeled PCA (Yao et al., 2021), studying low-rank matrix completion
with shuffle perturbations, shares the identical definition with our set function injectivity. We rephrase
it as below:

xi ∼ x′
i,∀i ∈ [N],X,X′ ∈ M ⇒ X ∼ X′, (53)

where M = {X ∈ RM×N : rank(X) < r} is a set of low-rank matrices, and xi denotes the i-th
column of X . Based on Theorem 1 in Yao et al. (2021), we can obtain the following results:
Lemma J.1. Suppose M = {X ∈ RN×K : rank(X) ≤ r} with r < min{N,K}. Then there
exists an open dense set U ⊂ M such that for every X,X′ ∈ U such that xi ∼ x′

i,∀i ∈ [K], then
X ∼ X′.

28

Published as a conference paper at ICLR 2024

Proof. According to Theorem 1 in Yao et al. (2021), there exists a Zariski-open dense set U ⊂ M
such that: for every X ∈ U and Pi ∈ Π(N),∀i ∈ [K], rank([P1x1 · · · PKxK]) ≥ r. And
moreover, rank([P1x1 · · · PKxK]) = r if and only if P1 = · · · = PK = P ∈ Π(N).

For every X,X′ ∈ U such that xi ∼ x′
i,∀i ∈ [K], if X ̸∼ X′, then either rank(X) > r or

rank(X′) > r. This contradicts the fact that X,X′ ∈ U ⊂ M.

As a result, we can establish the injectivity of an LP layer restricted to a dense set.
Theorem J.2. Assume D < N . Suppose ϕ : RD → RL takes the form of an LP embedding layer
(Eq. 3):

ϕ(x) =
[
ψN (w⊤

1 x)
⊤ · · · ψN (w⊤

Kx)⊤
]
, (54)

where K = D+1, L = NK = N(D+1), and W = [e1 · · · eD w] ∈ RD×K . There exists a
open dense subset V ⊆ RN×D such that for any X,X′ ∈ V ,

∑
n∈[N] ϕ(x

(n)) =
∑

n∈[N] ϕ(x
′(n))

implies X ∼ X′.

Proof. Define M = {X ∈ RN×K : rank(X) ≤ D}. Since W has full row rank, then τ(X) =
XW : RN×D → M is surjective. Let V = {X ∈ RN×D : τ(X) ∈ U} be the preimage
of U under τ . Since U is open dense in M, then V is open dense in RN×D. So far we have
found an open dense set V such that for all X,X′ ∈ V , XW ,X′W ∈ U . By Lemma D.2,∑

n∈[N] ϕ(x
(n)) =

∑
n∈[N] ϕ(x

′(n)) implies Xwi ∼ X′wi for ever i ∈ [K]. By Lemma J.1, it
can induce XW ∼ X′W , and namely X ∼ X′.

Theorem J.2 gives a much tighter upper bound on the dimension of the embedding space, which is
bilinear in N and D. However, it is noteworthy that this result is subject to the scenario where the
input feature dimension is smaller than the set length, and the feature space is restricted to a dense
subset of the ambient space. Moreover, it is intractable to establish the continuity over such dense
set. Our Theorem F.3 dismisses this denseness condition, serving as a stronger results in considering
all possible inputs. This indicates Theorem F.3 could potentially bring new insights into the field of
unlabeled sensing, which may be of an independent interest.

K REMARK ON AN ERROR IN PROPOSITION 3.10 IN FEREYDOUNIAN ET AL.
(2022)

Fereydounian et al. examine the expressiveness of GNNs with a mathematical tool summarized in
Proposition 3.10, which in turn seems to indicate a much tighter upper bound ND2 for the size of
the embedding space for set representation. However, as we will show later, their proof might be
deficient, or at least incomplete in the assumptions.

We rephrase their Proposition 3.10 in our language as below:
Claim K.1 (An incorrect claim). Suppose ϕ : RD → RL where L = N2D takes the following form:

ϕ(x)i,j,l =

 ℜ
(
(xi + xj

√
−1)l

)
, i > j

ℑ
(
(xi + xj

√
−1)l

)
, i ≤ j

, (55)

for every i, j ∈ [D], l ∈ [N]. Then
∑

n∈[N] ϕ(x
(n)) is injective.

The authors’ proof technique can be illustrated via the following chain of arguments: for every
X,X′ ∈ RN×D,∑

n∈[N]

ϕ(x(n)) =
∑

n∈[N]

ϕ(x′(n))
Lemma D.2
======⇒ (xi + xj

√
−1) ∼ (x′

i + x′
j

√
−1),∀i, j ∈ [D] (56)

=⇒ [xi xj] ∼ [x′
i x′

j] ,∀i, j ∈ [D]
(∗)
==⇒ X ∼ X′. (57)

While the first two steps is correct, the last implication (∗) is not true in general unless one of
xi, i ∈ [D] happens to be an anchor of X . We formally disprove this argument below.

29

Published as a conference paper at ICLR 2024

Consider X,X′ ∈ RN×D and let Pi = {P ∈ Π(N) : Px′
i = xi}. Then [xi xj] ∼ [x′

i x′
j]

for every i, j ∈ [D] is equivalent to saying Pi ∩ Pj ̸= ∅,∀i, j ∈ [D]. While X ∼ X′ is identical
to
⋂

i∈[D] Pi ̸= ∅. It is well-known that intersection between each pair of sets is non-empty cannot
necessarily imply the intersection among all sets is non-empty, i.e., Pi ∩ Pj ̸= ∅,∀i, j ∈ [D] ̸⇒⋂

i∈[D] Pi ̸= ∅, which disproves this result.

This also reveals the significance of the our defined anchor. Suppose xi∗ for some i∗ ∈ [D] is an
anchor of X . Then by Lemma E.2,

⋂
i∈[D] Pi = Pi∗ . Thus Pi∗ ∩ Pj ̸= ∅ for every j ∈ [D] implies

Pi∗ ̸= ∅, which essentially says
⋂

i∈[D] Pi ̸= ∅.

Specifically, we can construct a counter-example. Suppose X = [x1 x2 x3] ,X′ =
[x′

1 x′
2 x′

3] take values as below,

x1 = x′
1 =

112
2

 ,x2 = x′
2 =

121
2

 ,x3 =

122
1

 ,x′
3 =

211
2

 , (58)

and we can see: 1 1
1 2
2 1
2 2

 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


1 1
1 2
2 1
2 2

⇒ [x1 x2] ∼ [x′
1 x′

2] , (59)

1 1
1 2
2 2
2 1

 =

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


1 2
1 1
2 1
2 2

⇒ [x1 x3] ∼ [x′
1 x′

3] , (60)

1 1
2 2
1 2
2 1

 =

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


1 2
2 1
1 1
2 2

⇒ [x2 x3] ∼ [x′
2 x′

3] . (61)

However, notice that:1 1 1
1 2 2
2 1 2
2 2 1

 ̸∼

1 1 2
1 2 1
2 1 1
2 2 2

⇒ X = [x1 x2 x3] ̸∼ X′ = [x′
1 x′

2 x′
3] , (62)

which contradicts the implication (∗) in Claim K.1.

30

	Introduction
	Preliminaries
	Notations and Problem Setup
	DeepSets and The Proof for the One-Dimensional Case (D=1)
	Curse of High-dimensional Features (D 2)

	Main Results
	Proof Sketch
	Injectivity
	Anchor
	Injectivity of LP
	Injectivity of LE

	Continuity

	Extensions
	Conclusion
	Numerical Experiments
	Other Related Work
	Some Preliminary Definitions and Statements
	Properties of Sum-of-Power Mapping for Real and Complex Domains
	Proofs for the Properties of Anchor
	Proofs for the LP Embedding Layer
	Upper Bound for Injectivity
	Continuity
	Lower Bound for Injectivity

	Proofs for LE Embedding Layer
	Upper Bound for Injectivity
	Continuity

	Extension to Permutation Equivariance
	Extension to Complex Numbers
	Theoretical Connection to Unlabeled Sensing
	Remark on An Error in Proposition 3.10 in fereydounian2022functions

