

Julien Siems

Contributions:

- 1. We extend prior work (Lin et al. (2020)) on dynamic pruning schedule.
- 2. We only consider a weight for pruning if it's no longer receiving Mini-Batch Gradient Signal-To-Noise Ratio.
- 3. We benchmark our approach on different datasets and archs.

Background:

- 1. Mini-Batch Gradient Signal-to-Noise Ratio (Mahsereci et al. (2017))
- Measures reliability of a mini-batch gradient with respect to noise in mini-batch gradient.

$$snr(\theta_k) := \frac{\nabla L^2_{B,k}(\theta)}{\Sigma_{B,kk}(\theta)} = \begin{cases} \end{cases}$$

- 2. Dynamic Pruning with Feedback (Lin et al. (2020)):
- Gradients computed also for pruned weights: • Pruned weights can become unpruned.

Dynamic Pruning of a Neural Network via Gradient Signal-to-Noise Ratio Aaron Klein

during training and lift its limitation of a hand-designed sparsity

reliable gradients. To measure this point, we propose to use the

- Reliable gradient
- Noisy gradient < 1

Increasingly prunes weights based on magnitude during training.

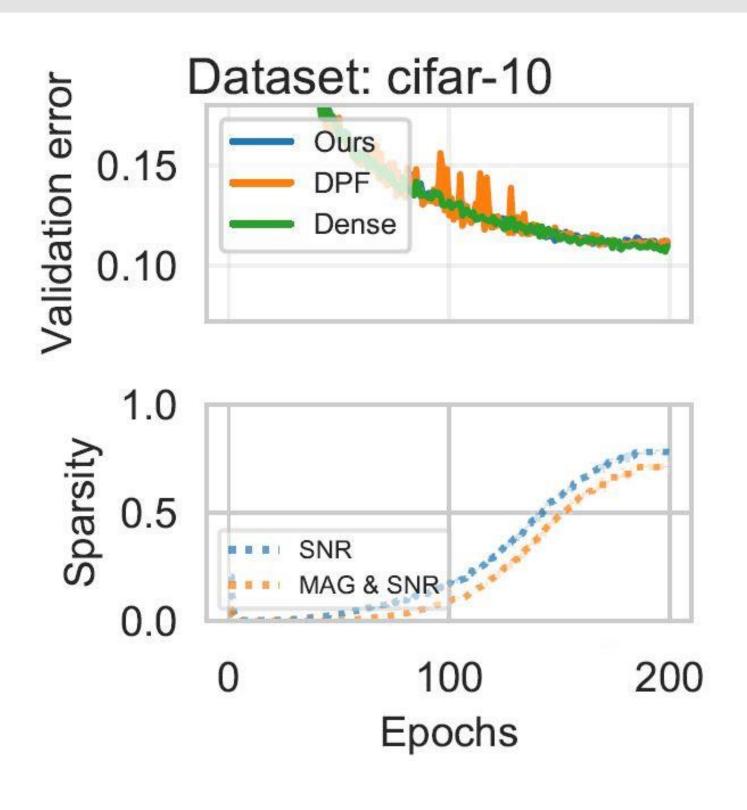
Cedric Archambeau

Algorithm:

Algorithm 1 The detailed training procedure of pruning guided by gradient SNR.

Require: uncompressed model weights $\theta \in \mathbb{R}^d$, prune	
burn-in steps: bin_{steps} , mask: $\mathbf{m} \in \{0, 1\}^d$; training	iterations: 2
1: for $t = 0,, T$ do	
2: if $t > bin_{steps}$ then	⊳ trigger n
3: compute SNR mask $\mathbf{m}_{snr} \leftarrow \{\operatorname{snr}(\theta_t^i) > 1 \mid i \text{ in }$	$ \theta_t $:
4: compute MAG mask $\mathbf{m}_{mag} \leftarrow \{ \theta_t^i > \gamma \mid i \text{ in } $	$\theta_{\mathbf{t}} \}$
5: compute PRUNE mask $\mathbf{m}_{prune} \leftarrow \mathbf{m}_{mag} \wedge \mathbf{m}_{g}$	snr
6: end if	
7: $\hat{\boldsymbol{\theta}}_t \leftarrow \mathbf{m}_{prune} \odot \boldsymbol{\theta}_t$	
8: compute (mini-batch) gradient $\nabla L_{\mathcal{B}}(\hat{\theta})$	\triangleright
9: update $\mathbf{m}_{snr,t}$	
10: $\boldsymbol{\theta}_{t+1} \leftarrow \text{gradient update } \nabla L_{\mathcal{B}}(\hat{\boldsymbol{\theta}}) \text{ to } \boldsymbol{\theta}_t$	\triangleright via
11: end for	
Ensure: $\boldsymbol{\theta}_T$ and $\hat{\boldsymbol{\theta}}_T$	

Experiments:



References:

Mahsereci, Maren, et al. "Early stopping without a validation set." arXiv preprint arXiv:1703.09580 (2017). Tao Lin, et al. "Dynamic Model Pruning with Feedback." International Conference on Learning Representations.

Maren Mahsereci

 $\hat{\theta}$, mask: $\mathbf{m}_{prune} \in \{0,1\}^d$; SNR exp. avg.: γ ,

mask update, by default after $bin_{steps} = 1$ epoch \triangleright let sp_{snr} be the sparsity of the resulting mask $\triangleright \gamma$ cut-off weight mag. acc to sp_{snr} \triangleright only prune, if \mathbf{m}_{mag} and \mathbf{m}_{snr} agree to prune

 \triangleright apply resulting mask \triangleright forward/backward pass with pruned weights $\hat{\theta}_t$ \triangleright update SNR exp mov. avg. per weight a arbitrary optimizer (e.g. SGD with momentum)

• Sparsity depends on dataset and NN.

 Performs on par with DPF and normal dense training, but with less hyperparameters than DPF.

 Pruning hardly influences validation error (unnecessary weights removed)