
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A PROMPTS FOR AUDIO ANNOTATION

Table 4: Prompt templates for hierarchical audio captioning: The first clip uses
first clip system, subsequent clips use other clip system. Every n = 2 clips we
invoke summary system to obtain a running narrative, and once all clips are processed we request
a final video-level audio description.

Variables
first clip system = “### Task:
You are an expert in understanding scenes based on audio features in a video . . . ”
first clip = “Please provide a detailed description of the . . . ”
other clip system = “### Task:
You are an expert audio analyst specializing in . . . ”
other clip = “Please provide a detailed description of the current audio clip . . . ”
summary system = “### Task:
You are an expert at creating comprehensive audio descriptions . . . ”
summary user = “### Clip Descriptions (chronological):
{all clip caption}
Please give me the summary description . . . ”

Generation Loop
for audio in audios:

clips = split into 30s(audio)
for idx, clip in enumerate(clips):

if idx == 0 then
sys msg = first clip system
usr msg = first clip.format(video caption)

else
sys msg = other clip system
usr msg = other clip.format(previous captions,
video caption)

clip caption = GPT-4o Audio(sys msg, usr msg, clip)
captions.append(clip caption)
if need summary then

sys msg = summary system.format(#clips, rand structure)
usr msg = summary user.format(all clip caption=captions)
summary = GPT-4o(sys msg, usr msg)
summaries.append(summary)

Output Format
Each assistant reply must be a JSON dictionary with a single key:
"Clip Level Caption" or "Video Level Audio Description" as required.

B PROMPTS FOR QA GENERATION

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 5: Prompt for generating multimodal QA pairs: For each video, the video-level caption and
its hierarchical audio captions are supplied to GPT-O1. The model is instructed to output a single
question–answer pair whose answer demands joint temporal and semantic reasoning over both visual
and auditory cues.

captions = “
### Video description: {video caption}
### Audio clip captions: {clip caption}
### Audio summary description: {audio caption}

### Task:
Generate 1 QA pair that REQUIRES analyzing BOTH:
1. Visual elements
2. Audio elements
Focus on their TEMPORAL and SEMANTIC relationships. ”
system message = “
### Task: You are an expert in analyzing multimodal content. Based on the provided descriptions of
a scene’s visuals and sounds, generate a single question and answer pair that REQUIRES combining
information from BOTH the video (visual) and the audio (sound events). The question must hinge on
details from both modalities.
### Input: 1. Visual summary (describing the scene, objects, or actions).
2. Audio summary (listing or describing the key sounds, their timing, and context).

### Guidelines:
1. Focus on how the audio and visual elements INTERACT:
- How specific sounds correlate with visible actions or objects
- How audio provides context missing from visuals (or vice versa)
- Their temporal alignment (e.g., a sound occurring exactly when something is seen)

2. Strict requirements:
- Do NOT ask about purely audio-only or purely video-only details
- Do NOT explicitly mention ”audio description” or ”video description” in your question or answer.
- If there is NO meaningful audio-visual interplay (i.e., the audio doesn’t add unique info to the
visuals or vice versa), return:
{”Question”: ”NA”, ”Answer”: ”NA”}

3. Format:
- Return your output as a **JSON object** in a Python dictionary string format.
- It must have the keys ”Question” and ”Answer” only.

### Example: Here’s a sample output for a dash-cam video showing a car turning with an audible
turn-signal click:
{”Question”: ”Does the driver activate the turn signal before turning?”, ”Answer”: ”Yes, the blinking
light is visible and the distinct clicking sound is heard at the moment of the turn.”} ”

for cur video in videos:
sys msg = system message
usr msg = captions.format(
video caption=cur video.video caption,
clip caption=cur video.clip caption,
audio caption=cur video.audio caption)
response = GPT-o1(sys msg,usr msg)

14


	Introduction
	Related Work
	Audio-Visual Data Curation
	Multimodal Large Language Model for Video Understanding
	Supervised Fine-Tuning for Audio-Visual Learning

	SoundInSights 
	Hierarchical Audio Annotations
	Audio-Visual Question Answering
	SoundInSights Benchmark
	Model Structure and Training Strategy

	Experiments
	Implementation Details
	Results
	Ablation Study

	Conclusion
	Prompts for Audio Annotation
	Prompts for QA generation

