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A PROMPTS FOR AUDIO ANNOTATION

Table 4: Prompt templates for hierarchical audio captioning: The first clip uses
first clip system, subsequent clips use other clip system. Every n = 2 clips we
invoke summary system to obtain a running narrative, and once all clips are processed we request
a final video-level audio description.

Variables
first clip system = “### Task:
You are an expert in understanding scenes based on audio features in a video . . . ”
first clip = “Please provide a detailed description of the . . . ”
other clip system = “### Task:
You are an expert audio analyst specializing in . . . ”
other clip = “Please provide a detailed description of the current audio clip . . . ”
summary system = “### Task:
You are an expert at creating comprehensive audio descriptions . . . ”
summary user = “### Clip Descriptions (chronological):
{all clip caption}
Please give me the summary description . . . ”

Generation Loop
for audio in audios:

clips = split into 30s(audio)
for idx, clip in enumerate(clips):

if idx == 0 then
sys msg = first clip system
usr msg = first clip.format(video caption)

else
sys msg = other clip system
usr msg = other clip.format(previous captions,
video caption)

clip caption = GPT-4o Audio(sys msg, usr msg, clip)
captions.append(clip caption)
if need summary then

sys msg = summary system.format(#clips, rand structure)
usr msg = summary user.format(all clip caption=captions)
summary = GPT-4o(sys msg, usr msg)
summaries.append(summary)

Output Format
Each assistant reply must be a JSON dictionary with a single key:
"Clip Level Caption" or "Video Level Audio Description" as required.

B PROMPTS FOR QA GENERATION
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Table 5: Prompt for generating multimodal QA pairs: For each video, the video-level caption and
its hierarchical audio captions are supplied to GPT-O1. The model is instructed to output a single
question–answer pair whose answer demands joint temporal and semantic reasoning over both visual
and auditory cues.

captions = “
### Video description: {video caption}
### Audio clip captions: {clip caption}
### Audio summary description: {audio caption}

### Task:
Generate 1 QA pair that REQUIRES analyzing BOTH:
1. Visual elements
2. Audio elements
Focus on their TEMPORAL and SEMANTIC relationships. ”
system message = “
### Task: You are an expert in analyzing multimodal content. Based on the provided descriptions of
a scene’s visuals and sounds, generate a single question and answer pair that REQUIRES combining
information from BOTH the video (visual) and the audio (sound events). The question must hinge on
details from both modalities.
### Input: 1. Visual summary (describing the scene, objects, or actions).
2. Audio summary (listing or describing the key sounds, their timing, and context).

### Guidelines:
1. Focus on how the audio and visual elements INTERACT:
- How specific sounds correlate with visible actions or objects
- How audio provides context missing from visuals (or vice versa)
- Their temporal alignment (e.g., a sound occurring exactly when something is seen)

2. Strict requirements:
- Do NOT ask about purely audio-only or purely video-only details
- Do NOT explicitly mention ”audio description” or ”video description” in your question or answer.
- If there is NO meaningful audio-visual interplay (i.e., the audio doesn’t add unique info to the
visuals or vice versa), return:
{”Question”: ”NA”, ”Answer”: ”NA”}

3. Format:
- Return your output as a **JSON object** in a Python dictionary string format.
- It must have the keys ”Question” and ”Answer” only.

### Example: Here’s a sample output for a dash-cam video showing a car turning with an audible
turn-signal click:
{”Question”: ”Does the driver activate the turn signal before turning?”, ”Answer”: ”Yes, the blinking
light is visible and the distinct clicking sound is heard at the moment of the turn.”} ”

for cur video in videos:
sys msg = system message
usr msg = captions.format(
video caption=cur video.video caption,
clip caption=cur video.clip caption,
audio caption=cur video.audio caption)
response = GPT-o1(sys msg,usr msg)
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