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Abstract—Electrocardiogram (ECG) interpretation using deep
learning has shown promising results in detecting cardiac rhythm
abnormalities. However, growing evidence suggests that model
performance can vary significantly across demographic sub-
groups, raising concerns about algorithmic fairness in clinical
deployment. In this study, we explore whether incorporating
protected variables—specifically age and sex—into multimodal
contrastive pretraining can reduce downstream performance
disparities. We use a CLIP-style architecture to align ECG
signals with machine-generated rhythm descriptions, training
two variants: one with text alone and one with demographic
augmentation. After pretraining, we evaluate frozen ECG em-
beddings using linear probing on a binary classification task
distinguishing normal from abnormal rhythms. Our results show
that including demographic information during pretraining can
reduce performance gaps across age groups and maintains com-
parable or improved accuracy across sex. These findings highlight
the potential of fairness-aware representation learning to improve
subgroup equity in clinical machine learning applications.

Index Terms—Electrocardiogram, Contrastive Pretraining,
Multimodal Representation Learning, Fairness

I. INTRODUCTION

Deep learning models have demonstrated remarkable accu-
racy in interpreting electrocardiograms (ECGs) for screening
and diagnosing of heart conditions [1]–[3]. With the growth
of these AI-ECG models comes a need to evaluate their
fairness and generalizability. Model performance can vary
with patient demographics: differences in patient age or sex
can influence ECG waveforms and thus potentially affect
algorithm predictions [4]. These findings underscore the risk
that a one-size-fits-all ECG model may inadvertently favor
certain demographics. Evaluating clinical AI tools in such
settings using additional information about the patients to
ensure more equitable outcomes across subgroups is crucial to
prevent exacerbating health disparities and insufficient train-
ing datasets. Multimodal pretraining integrates complementary
patient data alongside ECG signals to help models learn more
robust representations of the ECG signals of the patients.

Multimodal representation learning has been shown to im-
prove model robustness and can reduce the need for large
labeled datasets [5], [6]. Specifically, contrastive multimodal
approaches have shown that pretrained models create more

robust patient representations across modalities, including with
ECG data [7], [8]. Pretraining on paired ECGs and their cor-
responding clinical descriptions, for example, learns more rich
feature representations that capture both electrophysiological
patterns and diagnostic context [9].

However, current AI-ECG representation learning frame-
works typically ignore patient demographics during training;
they treat the data as if one distribution fits all. Performance
can vary substantially across patient subgroups defined by age
and sex [10], [11]. These disparities raise concerns regarding
algorithmic bias and equitable healthcare deployment. This
raises an open research question: how might the inclusion of
protected attributes (like age and sex) in the pretraining stage
influence the learned representations? On one hand, explicitly
incorporating these attributes could allow the model to account
for physiological differences between subgroups. On the other
hand, it could also risk encoding spurious correlations with
demographic factors, possibly exacerbating disparities if the
model over-relies on them. There are currently conflicting
perspectives: some advocate for demographically “neutral”
representations by actively discouraging the encoding of sen-
sitive information (e.g. using contrastive objectives that push
apart representations sharing a protected attribute) [12], while
others note that adding demographic features to models does
not guarantee equitable performance [4].

We investigate the impact of incorporating protected demo-
graphic variables into multimodal pretraining on paired ECGs
and text descriptions by augmenting protected demographic
variables into the texts. We select a binary classification
task of distinguishing sinus rhythm from abnormal rhythms
to evaluate the performance gain and fairness of original
pretrained vs. the augmented one.

We train a contrastive model to align each ECG wave-
form with its textual description; critically, we perform a
comprehensive analysis of the downstream rhythm classi-
fication performance with and without protected attributes
(age and sex) during pretraining. By comparing models
pretrained with and without protected variables, we pro-
vide empirical insights into whether demographic-informed
representation learning mitigates or exacerbates inequities



in model performance. Our code is publicly available at
https://github.com/stmilab/ECGClip-Fair-Eval.

II. RELATED WORK

A. Fairness-Aware Representation Learning

Fair representation learning aims to encode data into la-
tent features that preserve task-relevant information while
removing or obscuring protected attribute effects [13]. Some
approaches formulated this as an optimization to maximize the
predictive utility of the representation while obfuscating sensi-
tive attributes [14]. On the other hand, Lin et al. incorporated
demographic attributes (e.g., age, sex) into model pretraining
to promote fairness [15].

To overcome these limitations, researchers have proposed
contrastive learning frameworks that explicitly leverage pro-
tected attributes during representation learning. For exam-
ple, FairEHR-CLP generates synthetic patient counterparts
with varied demographics and uses contrastive objectives to
align patient representations across sensitive attributes, thereby
learning a demographically invariant embedding [16]. Like-
wise, Agarwal et al. [17] introduced Debias-CLR, which trains
contrastive encoders for structured and unstructured modal-
ities while minimizing demographic leakage in the learned
embeddings. Despite these advances, the comparison between
demographic-aware vs demographic-unaware contrastive pre-
training remains underexplored in the context of physiological
signals like ECG and has yet to be evaluated in multimodal
signal–text representation settings.

B. Fairness Evaluation in ECG Models

Most prior studies assess model fairness post hoc by mea-
suring performance disparities across demographic subgroups,
rather than enforcing fairness during training. In the medical
AI literature, evaluations stratified by protected attributes have
repeatedly uncovered uneven model behavior across patient
groups [10]. For example, Kaur et al. [11] found that an ECG
deep learning model for heart failure risk stratification had
declining accuracy with increasing patient age and performed
significantly worse on some intersectional subgroups and
observed that even providing the model with demographic
inputs or training separate models for each subgroup did
not abolish the disparity. Perez-Alday et al. [18] showed
that adding a fairness-driven regularization term to penalize
subgroup performance gaps could mitigate bias in arrhythmia
detection, albeit at the cost of overall accuracy. There is still
a growing need to shift from reactive fairness audits toward
proactive fairness-aware model design and evaluation.

III. METHODS

A. Pretraining with Contrastive Multimodal Learning

We adopt a CLIP-style architecture to learn joint represen-
tations of ECG waveforms and their corresponding textual de-
scriptions. Let xecg be a one-dimensional ECG signal and xtext

be a machine-generated note describing the cardiac rhythm.
The goal of contrastive pretraining is to bring matching

ECG–text pairs closer in the embedding space while pushing
apart non-matching pairs.

Two text variants are used:
• Original: Unmodified note, e.g., “sinus tachycardia”.
• Augmented: Note appended with age and sex, e.g.,

“This ECG belongs to a 75-year-old male with sinus
tachycardia”.

Fig. 1. ECG notes: Original vs Augmented

The ECG encoder is a 1D convolutional transformer with posi-
tional encoding, while the text encoder is a pretrained BERT
model. Both outputs are projected into a shared embedding
space and normalized. We apply a symmetric InfoNCE loss:

Lcontrastive =
1

N

N∑
i=1

[
− log
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i , ztext

i )/τ)∑N
j=1 exp(sim(zecg

i , ztext
j )/τ)

]
where sim denotes cosine similarity, z are projected embed-
dings, and τ is a temperature parameter.

B. Incorporating Protected Variables

In the augmented setup, age and sex are explicitly em-
bedded in the input text (Fig 1). This allows the model to
condition representations on demographic information during
pretraining, enabling it to learn age- and sex-aware alignments
between ECG signals and text. This approach is motivated by
the known physiological variation in ECG morphology across
demographic groups [19].

C. Downstream Task: ECG Rhythm Classification

To evaluate the learned representations, we perform a binary
classification task: normal rhythm (sinus) vs. abnormal (all
other rhythms). We freeze the pretrained encoders and extract
embeddings from the ECG encoder for each sample. These
embeddings are then used as input to a downstream multi-
layer perceptron classifier:

D. Fairness Evaluation

We assess model fairness by stratifying results across two
protected attributes:

• Sex: Male vs. Female
• Age: Young (<60 years) vs. Old (≥60 years)
We compute the F1-score for each subgroup and calculate

the absolute performance gaps between groups to quantify
disparities:

∆gap = |MetricGroup A − MetricGroup B|

We report ∆gap for both metrics across both protected at-
tributes.



IV. EXPERIMENTS

A. Dataset and Preprocessing

We use a subset of the MIMIC-IV ECG dataset, consist-
ing of 795,517 diagnostic ECG signals paired with rhythm
interpretations [20]. We select lead-II and preprocessed it via
bandpass and notch filtering, then resampled to 1,000 time
points. We tokenize notes using BERT’s tokenizer, and append
age/sex metadata for the augmented setup.

We derive labels by mapping each rhythm to a binary
label: “sinus rhythm” is considered normal; all other types
(e.g., atrial fibrillation, bradycardia, tachycardia) are treated
as abnormal.

B. Training and Evaluation

Contrastive pretraining is performed using the AdamW op-
timizer (learning rate 1e-4, batch size 256) for 100 epochs. For
probing, we train all classifiers using 5-fold cross-validation
on extracted ECG embeddings. We report macro F1-score on
the held-out test set. For subgroup analysis, performance is
measured separately within each age and sex group. All exper-
iments are repeated across both pretraining variants (original
and augmented) to assess the impact of including protected
variables on model fairness and representation quality.

V. RESULT

A. Overall Classification Performance

We evaluate the downstream classification performance of
ECG embeddings using F1-score for the abnormal rhythm
class (Class 1). Figure 2 compares the results for models
pretrained with and without demographic augmentation using
the MLP classifier. Overall, the inclusion of age and sex infor-
mation in pretraining yielded comparable or slightly improved
F1-scores across most subgroups.

B. Effect of Augmentation Across Demographics

When comparing the augmented vs. non-augmented models:
• Overall performance is marginally higher for the aug-

mented model, suggesting a slight benefit in global clas-
sification accuracy.

• Sex breakdown: For female patients, the non-augmented
model performs slightly better. However, for male pa-
tients, the augmented variant leads to higher F1-score,
indicating a potential benefit in male subgroup alignment.

• Age breakdown: Notably, the augmented model im-
proves performance for the 30–60 age group compared
to the non-augmented baseline (0.64 vs. 0.52), while
performance for the ≥60 group is competitive across both
setups.

C. Fairness Implications

The addition of age and sex information during contrastive
pretraining appears to reduce performance gaps in certain
subgroups, particularly across age groups. While not uni-
formly beneficial across all subgroups, the results suggest that
demographic-informed pretraining can help mitigate underper-
formance in younger patients, who are often underrepresented

in cardiac risk models but that the selection of which must be
an informed decision.

D. ECG Latent Embedding

Examining t-SNE plots of ECG embeddings from models
pretrained on original text versus those trained on augmented
text reveals notable differences in cluster density and separa-
tion. Models exposed to augmented text often form more dis-
tinct clusters, reflecting a richer representation of underlying
signal patterns. In contrast, embeddings derived from models
trained solely on the original text can appear more dispersed
or show overlapping clusters.

Fig. 2. F1-score comparison for MLP classifier across demographic groups.
The “Augmented” model includes age and sex in pretraining text; “Non-
Augmented” uses rhythm description only.

Fig. 3. Visualization of the ECG embedding space with original and
augmented ECG text, with each data point color-coded by patient age.

VI. LIMITATIONS AND FUTURE WORK

While our study provides promising insights into fairness-
aware multimodal pretraining for ECG analysis, several lim-
itations remain. First, we focus only on two demographic
attributes—age and sex. Although clinically important, these
variables do not capture the full spectrum of potential bias
factors. Future work should consider additional protected
attributes such as race, ethnicity, and comorbidities, as well as
explore intersectional subgroup analysis. Second, our evalua-
tion relies on linear probing to assess the quality of pretrained



Fig. 4. Visualization of the ECG embedding space with original and
augmented ECG text, with each data point color-coded by patient sex.

representations. While this isolates the effects of pretraining,
clinical models are often fine-tuned end-to-end. It remains an
open question whether fairness improvements persist when
transferred to other clinical tasks. We also aim to extend our
evaluation to additional datasets in future studies. Finally,
while we stratify results by subgroup, our contrastive train-
ing objective does not explicitly enforce fairness constraints.
Future extensions could incorporate fairness-aware loss terms,
adversarial debiasing, or counterfactual contrastive examples
to further mitigate subgroup disparities during representation
learning. These provide opportunities for future research into
equitable, multimodal, and physiologically grounded AI sys-
tems for healthcare.

VII. CONCLUSION

In this work, we investigated whether incorporating pro-
tected demographic attributes—age and sex—during con-
trastive pretraining can improve fairness in downstream ECG
classification tasks. Using a CLIP-style multimodal framework
that aligns ECG signals with rhythm descriptions, we trained
models with and without demographic augmentation. We then
evaluated their performance on abnormal rhythm detection
using frozen embeddings and linear probing classifiers.

Our results show that demographic-aware pretraining can
help reduce performance disparities across subgroups, partic-
ularly in age-based cohorts. The augmented model demon-
strated improved or comparable F1-scores across most groups,
and notably outperformed the baseline in younger patients.
These findings suggest that introducing demographic context
during representation learning can enhance fairness without
compromising overall accuracy.

This work highlights the importance of incorporating fair-
ness considerations early in the model development pipeline.
Rather than relying solely on post hoc evaluation or mitigation,
we show that pretraining strategies can be explicitly designed
to support equitable performance across diverse patient popu-
lations.
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