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ABSTRACT

Arguably one of the thorniest problems in game theory is that of equilibrium
selection. Specifically, in the presence of multiple equilibria do self-interested
learning dynamics typically select the socially optimal ones? We study a rich class
of continuous-time no-regret dynamics in potential games (PGs). Our class of
dynamics, Q-Replicator Dynamics (QRD), include gradient descent (GD), log-
barrier and replicator dynamics (RD) as special cases. We start by establishing
pointwise convergence of all QRD to Nash equilibria in almost all PGs. In the case
of GD, we show a tight average case performance within a factor of two of optimal,
for a class of symmetric 2× 2 potential games with unbounded Price of Anarchy
(PoA). Despite this positive result, we show that GD is not always the optimal
choice even in this restricted setting. Specifically, GD outperforms RD, if and only
if risk- and payoff-dominance equilibria coincide. Finally, we experimentally show
how these insights extend to all QRD dynamics and that unbounded gaps between
average case performance and PoA analysis are common even in larger settings.

1 INTRODUCTION

Multi-agent learning often occurs on highly non-convex landscapes even when agents have perfectly
aligned or common interests (Bard et al., 2020; Dafoe et al., 2020; 2021). Thus, even if learning
dynamics equilibrate, their fixed points may include saddle points or local optima of poor performance
(Dauphin et al., 2014). A large stream of recent work has made considerable progress in showing
convergence of optimization driven learning dynamics to locally attracting points (Ge et al., 2015;
Lee et al., 2019; Mertikopoulos et al., 2019) or equilibria in cooperative games (Cohen et al., 2017;
Palaiopanos et al., 2017; Anagnostides et al., 2022; Leonardos & Piliouras, 2022).1 However, non-
trivial games routinely possess attracting points of vastly different performance, and this remains true,
even if one restricts attention to refined and highly robust notions of equilibria, such as pure/strict
Nash equilibria (NE) (Kleinberg et al., 2009; Flokas et al., 2020). Accordingly, these convergence
results are not enough to reason about the quality of the learning outcomes.

This challenge, known as the equilibrium selection problem, is arguably one of the thorniest problems
on the intersection of game theory and learning theory with multiple practical manifestation in ML
systems (Dafoe et al., 2020). Standard game-theoretic approaches (Harsanyi, 1973; Harsanyi & Selten,
1988; van Damme, 1987) or worst-case metrics, such as the Price of Anarchy (PoA) Koutsoupias
& Papadimitriou (1999); Christodoulou & Koutsoupias (2005); Roughgarden (2015), offer little

1For convergence to equilibria in competitive games see also (Daskalakis & Panageas, 2018; Bailey &
Piliouras, 2019; Cai et al., 2022).
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insight, often none at all, from a dynamic/learning perspective. The reason is that certain NE may
be reachable only from very small sets of initial conditions. Thus, instead of seeking approximately
optimal performance for (almost) all initial conditions, which is generally impractical, we need to
develop and argue about average performance measures that couple the limit point of the learning
process with the likelihood that such an outcome is reached by the given learning dynamics.

Based on the above, our focus is to study 1) under which conditions can we reliably compare the
performance of standard learning dynamics, such as replicator and gradient descent, in games and 2)
under which conditions can they be shown to be approximately optimal under random initialization
even when the performance gap between different equilibria, i.e., the PoA, is unbounded.

Model and Contributions. To make progress in these directions, we study Q-replicator dynamics
(QRD) in general potential games (PGs). QRD are one of the most general classes of continuous
time, multi-agent learning dynamics that include gradient descent (GD), replicator (RD) and log-
barrier dynamics as special cases (Giannou et al., 2021). On the other hand, PGs are the standard
model of multi-agent coordination and include congestion and identical interests games as important
sub-classes (Wang & Sandholm, 2002; Panait & Luke, 2005; Carroll et al., 2019; Dafoe et al., 2020).

To analyze the average- and comparative-performance of QRD in PGs, an essential first step is to
establish their convergence to equilibrium points. In our first result, we answer this question affirma-
tively by proving pointwise convergence of all QRD to NE in almost all finite PGs (Theorem 3.2).
Our proof combines recent results from Swenson et al. (2020)2 with standard convergence techniques
in the study of PGs, e.g., Palaiopanos et al. (2017); Mertikopoulos & Sandholm (2016; 2018).

In Section 4, we turn to our main focus of equilibrium selection, we restrict our attention for analytical
tractability to a class of 2-agent, 2-action (2× 2) PGs. Despite its simple representation, this class
retains all complexities of multi-agent learning that we aim to study. Specifically, as we show, there
exist games in this class which have arbitrarily large PoA, i.e., for which the worst-case equilibrium
can be arbitrarily worse than the socially optimal outcome, but for which the Average Price of
Anarchy (APoA) under GD admits a (tight) upper bound of 2 (Theorem 4.8). Despite this positive
news for GD, we also show that, even in this restricted class of games, GD is not always optimal.
Specifically, GD reaches the payoff-dominant, i.e., socially optimal, equilibrium more often than
RD, if and only if, this equilibrium is also risk-dominant (less risky) (Theorem 4.6). To the best of
our knowledge, this provides the first comparison in the performance between two optimal no-regret
dynamics and adds a new dimension to the long literature on the important interplay between risk-
and payoff-dominance in game-theoretic dynamics (Kim, 1996; Schmidt et al., 2003; Sato et al.,
2005; Kaisers & Tuyls, 2011; Kianercy & Galstyan, 2012; Leonardos & Piliouras, 2022; Pangallo
et al., 2022).

Finally, in section 5, we present experiments in larger PGs for which risk- and payoff-dominance can
be properly generalized (diagonal payoff matrices). Such games are, in fact, designed to be as hard as
possible from the perspective of average case performance due to their exponentially large number of
NE and unbounded PoA. However, as our experimental results rather surprisingly indicate, increasing
the size of the game seems to have little to no effect on average-case or relative performance and
the analogues of Theorem 4.6, i.e., comparative performance of RD and GD, and Theorem 4.8, i.e.,
bounded APoA (in fact typically around 1.2), continue to hold.

Related Work The literature on average-case performance is scarce. As exhibited by Panageas &
Piliouras (2016); Zhang & Hofbauer (2015); Pangallo et al. (2022) one of the main reasons is that
regions of attraction are complex geometric manifolds that become mathematically intractable even in
low-dimensional settings. Average performance metrics are first introduced in Panageas & Piliouras
(2016) who is the main precursor to our work. Panageas & Piliouras (2016) focus exclusively on
replicator dynamics and prove pointwise convergence to NE only for the special cases of congestion
games with linear cost functions and network coordination games. Their bounds on APoA only apply
in restricted instances of common interest games (Stag Hunt). Critically, prior to our work it was not
known whether a rigorous comparison between RD and GD is possible in any single game setting.

2Swenson et al. (2020) shows that all NEs in almost all, i.e., in all but a closed set with Lebesgue measure
zero, PGs are regular in the sense of Harsanyi (1973), i.e., they are isolated and highly robust.
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Regarding the technical tools, our approach makes use of two connected, yet fundamentally different,
theories. The first part, i.e., convergence, relies on the theory of Lyapunov analysis and the properties
of dissipative systems, i.e., systems that lose momentum over time till they converge to a steady state
(Haddad & Chellaboina, 2008). This in itself is a standard staple of analyzing learning in potential
games (Kleinberg et al., 2009; Cohen et al., 2017; Anagnostides et al., 2022). By contrast, the second
part, i.e., performance, relies on the existence of invariant functions, a feature most often studied in
conservative systems, that characterize stable and unstable areas in the state space of such systems
(Palaiopanos et al., 2017; Nagarajan et al., 2020). It is important to note that this proof technique is
scalable to higher dimensional settings. The key idea is to identify one or more (in more complex
games) invariants of motion for QRD or other game dynamics. This is arguably a challenging task, but
several recent works showcase that this is a viable proof strategy in rather general settings Balduzzi
et al. (2018); Mertikopoulos et al. (2018); Piliouras & Wang (2021); Paik & Griffin (2023).

2 PRELIMINARIES: GAME-THEORETIC AND BEHAVIORAL MODELS

Game-theoretic model. A multi-agent finite potential game Γ := {N , (Ak, uk)k∈N ,Φ} denotes
the interaction between a set of N := {1, . . . , n} agents. Each agent k ∈ N has a finite set
of actions, Ak, with size |Ak|, and a reward function uk : A → R where A :=

∏
k∈N Ak is

the set of all pure action profiles of Γ. Agents may use mixed actions or choice distributions,
xk = (xk,ak)ak∈Ak

∈ Xk, where xk,ak is the probability with which agent k uses their action
ak ∈ Ak and Xk := {xk ∈ R|Ak| |

∑
ak∈Ak

xk,ak = 1, xk,ak ≥ 0} is the (|Ak| − 1)-dimensional
simplex. Given any mixed-action xk ∈ Xk, we write supp(xk) := {ak ∈ Ak | xk,ak > 0} to
denote the support of action xk, i.e., the set of all pure actions ak ∈ Ak that are selected with
positive probability at xk. Using conventional notation, we also write s = (sk, s−k) ∈ A and
x = (xk, x−k) ∈ X :=

∏
k∈N Xk to denote the joint pure and mixed action profiles of Γ, where s−k

and x−k are the vectors of pure and mixed actions, respectively, of all agents other than k. When
time is relevant, we will use the index t for all the above, e.g., we will write xk(t) for agent k’s
choice distribution at time t ≥ 0. Finally, a function Φ : A → R is called a potential function of
Γ if it satisfies uk(s) − uk(s

′
k, s−k) = Φ(s) − Φ(s′i, s−i), for all k ∈ N and all s, s′ ∈ A. The

agents’ reward functions and the potential function extend naturally to mixed action profiles with
uk(x) = Es∼x[uk(s)] and Φ(x) = Es∼x[Φ(s)].

Regular Nash and restricted equilibria. A Nash equilibrium (NE) of Γ is an action profile x∗ ∈ X
such that uk(x∗) ≥ uk(xk, x

∗
−k), for all k ∈ N and for all x ∈ X . By linearity of expectation,

the above definition is equivalent to: uk(x∗) ≥ uk(ak, x
∗
−k), for all ak ∈ Ak, and all k ∈ N ,

where uk(ak, x∗−k) is the reward of agent k for playing pure action ak against mixed strategies x∗−k
by the remaining agents. Let NE(Γ) denote the set of all NE of Γ. A NE is called symmetric if
x∗1 = . . . = x∗n, and is called fully mixed if supp(x∗) =

∏
k∈N supp(x∗k) = A. A NE is called

regular if it satisfies the following definition.
Definition 2.1 (Regular Nash equilibria (Harsanyi, 1973; Swenson et al., 2020)). A Nash equilibrium,
x∗ ∈ NE(Γ), is called regular if it is (i) quasi-strict, i.e., if for each player k ∈ N , x∗k assigns positive
probability to all best responses of player k against x∗−k, and (ii) second-order non-degenerate, i.e.,
if the Hessian, H(x∗) of the potential function Φ, taken with respect to supp(x∗) is non-singular.

Finally, a restriction, Γ′ := {N , (A′
k, u

′
k)k∈N } of Γ, is a game where A′

k ⊆ Ak and u′k : A′ → R
is the restriction of uk to A′ :=

∏
k∈N A′

k for all k ∈ N . We write RΓ to denote the set of all
restrictions of Γ. An action-profile x ∈ X is called a restricted equilibrium of Γ if it is a Nash
equilibrium of a restriction of Γ, cf. Mertikopoulos & Sandholm (2018). It is easy to see that all
restrictions of a potential game Γ := {N , (Ak, uk)k∈N ,Φ} are also potential games, whose potential
functions are restrictions of Φ to the respective subspace of A.

Behavioral-learning model. The evolution of agents’ choice distributions in the joint action space,
X , is governed by the q-replicator dynamics (QRD) which are described by the parametric system of
differential equations (equations of motions) ẋ := Vq(x), where Vq : X → R|A| is given by

ẋk,ak = xqk,ak

(
uk(ak, x−k)−

∑
aj∈Ak

xqk,ajuk(aj , x−k)∑
aj∈Ak

xqk,aj

)
, for all k ∈ N , ak ∈ Ak, (QRD)
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for any q ≥ 0. Special cases of the above dynamics are the projection or gradient descent (GD)
dynamics, for q = 0, the (standard) replicator (RD) dynamics, for q = 1, and the log-barrier or
inverse update dynamics, for q = 2 (Mertikopoulos & Sandholm, 2018; Giannou et al., 2021).

3 POINTWISE CONVERGENCE OF QRD TO NASH EQUILIBRIA

Our results consist of two parts. In the first part, which is the subject of this section, we show
convergence of QRD to Nash equilibria in a subclass of potential games we dub Perfectly-Regular
Potential Games (PRPG) that contains almost all finite potential games.

Definition 3.1 (Perfectly-regular potential games). A potential game Γ is called regular if it has only
regular Nash equilibria. A regular potential game is called perfectly-regular potential game (PRPG)
if all its restrictions are regular potential games, i.e., if they only possess regular Nash equilibria.

As we show in Lemma B.2 in the Appendix, almost all finite potential games are PRPGs; this is a
direct generalization of Swenson et al. (2020) who prove that almost all potential games are regular.
The PRPG class contains many widely-studied subclasses of games, e.g., congestion games, or games
with identical reward functions (Wang & Sandholm, 2002; Panait & Luke, 2005; Carroll et al., 2019;
Dafoe et al., 2020). Examples of non-PRPG games are degenerate games with equal payoffs, e.g., a
two-player game with actions A1 = A2 = {a1, a2} and payoffs uk(ai, aj) = 1 for all i, j ∈ Ak and
k = 1, 2. The convergence result of QRD in this class is stated formally in Theorem 3.2.

Theorem 3.2 (Pointwise convergence of QRD to NE in PRPGs). Given any perfectly-regular
potential game (PRPG), Γ, and any interior initial condition x(0) ∈ intX , the q-replicator dynamics,
defined as in equation QRD, converge pointwise to a Nash equilibrium x∗ of Γ for any parameter
q ≥ 0. Furthermore, the set Q(intX ) :=

⋃
x0∈intX {x∗ ∈ X | limt→∞ x(t) = x∗, x(0) = x0}, i.e.,

the set of all limit points of interior initial conditions, is finite.

Importantly, Theorem 3.2 states that QRD converge to some NE for almost all initial conditions
in almost all potentials games. A direct implication is that when reasoning about the quality of
the collective learning outcome in cooperative multi-agent settings, as captured by PRPGs, we can
restrict our attention to NE. This is the subject of the next section. Before proceeding with this, we
provide a sketch of the proof of Theorem 3.2 (cf. Appendix B for the formal proof).

The proof of Theorem 3.2 proceeds in two steps, which utilize that (i) PRPGs have a finite number of
regular equilibria, and (ii) the probability of optimal actions near an equilibrium point is increasing
in time with respect to QRD. In the first step, we prove that for any initial condition, the sequence
of joint action profiles, x(t)t≥0, that is generated by QRD for any q ≥ 0 converges to a restricted
equilibrium of a PRPG, Γ. This relies on the fact that the set of cluster (limit) points of the trajectory—
also called the ω-limit set—is a finite, and in fact, as we show, a single element set for any PRPG.
In turn, this holds because any PRPG provably contains only a finite number of restricted equilibria.
In the second step, we show that any such limit point has to be a NE of Γ. To establish this, we
exclude convergence to restricted equilibria that are not NE of Γ by coupling the structure of PRPGs,
which ensures that there is a finite number of (regular) restricted equilibria, with the nature of QRD
which guarantees that in the vicinity of a limit point, optimal actions, i.e., best responses, need to
be played with increasingly higher probability. As a result, all actions in the support of the limit
choice distribution of each agent must be best responses against the actions of all other agents, which
implies that all points that can be reached by QRD are NE of Γ.

4 PERFORMANCE OF THE COLLECTIVE LEARNING OUTCOME

Beyond static performance metrics. We next turn our attention to the main challenge of quan-
tifying the quality of the collective learning outcome. To do that, we need to derive appropriate
performance metrics. In static regimes, we can rely on a variety of meaningful metrics, e.g., the
Price of Anarchy (PoA) (Koutsoupias & Papadimitriou, 1999; Christodoulou & Koutsoupias, 2005;
Roughgarden, 2015), which is defined as the ratio between the socially worst NE of the game and
the socially optimal outcome (in terms of the agents’ sum of rewards). However, despite the useful
insights that PoA provides in general games, it is not difficult to find PRPGs in which the PoA fails
to provide any meaningful information about the game. Let us consider the following example:
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Example 4.1 (A simple example of unbounded performance loss). Consider a parametric 2×2-PRPG,
Γw, i.e., a 2-player 2-actions PRPG with identical payoff functions uw,1(s1, s2) = uw,2(s2, s1) =
Aw(s1, s2), where matrix Aw ∈ R2×2 is given by Aw = diag(1, w), with 1 ≤ w.3 The game
Γw has two pure NE, one that corresponds to x1 = (1, 0) and x2 = (1, 0) with social welfare
SW(x) = 1 + 1 = 2, and one that corresponds to x′1 = (0, 1) and x′2 = (0, 1) with social welfare
SW(x′) = w+w = 2w. Since w can take any value larger than 1, the difference in performance can
be arbitrary large with respect to the PoA. Specifically, PoA(Γw) =

SW(x′)
SW(x) = w → ∞ as w → ∞.

While useful in static environments, the PoA metric does not capture the dynamic nature of multi-
agent learning. In particular, it does not provide an answer to the question: How likely is it for the
agents to reach a good or bad outcome given that the multi-agent system converges?

4.1 REGIONS OF ATTRACTION AND AVERAGE PERFORMANCE METRICS

To answer the above question and argue about the collective performance of the game dynamics,
we need to quantify the likelihood of each outcome when the initial conditions of the system are
randomly sampled. A region of attraction of a given outcome formalizes this notion.
Definition 4.2 (Regions of attraction). Let Γ be any game and assume that its joint action profile,
x ∈ X , is evolving according to the equations of motion ẋ = f(x). Then for any x∗ ∈ X , the set
RoAf,Γ(x∗) := {x0 ∈ X | limt→∞ x(t) = x∗, x(0) = x0} is called the region of attraction (RoA)
of x∗ with respect to the dynamics f .

In other words, the RoA of a point x∗ ∈ X is the set of all initial conditions in X for which the
dynamics asymptotically converge to x∗. Note that RoAs do not intersect. If we can determine the
regions of attraction of some game dynamics, then given a certain static performance metric, e.g.,
the social welfare, we can define a corresponding average-performance metric that weighs-in all
possible outcomes, in the sense of limit points, according to their likelihood of occurring with respect
to the given dynamics. In order for this average to be meaningful, a minimum requirement, is that
the dynamics converge for almost all, i.e., all but a measure zero, initial conditions. An Average
Performance Metric (APM), refined from (Panageas & Piliouras, 2016), is defined as follows4:
Definition 4.3 (Average-performance metric). Let Γ be a multi-agent game and assume that its joint
action profile, x ∈ X , is evolving according to the equations of motion ẋ = f(x). Let X0 ⊆ X
be a set of initial conditions such that the set of convergence points Q(X0) is finite. Then, given a
performance metric g : X → R of Γ, the average-performance of the dynamics governed by f in Γ
with respect to the performance metric g and the set of initial condition X0, is given by

APMg,X0
(f,Γ) :=

∑
x∗∈Q(X0)

µ(RoAf,Γ(x∗)) · g(x∗), (APM)

where µ is a probability measure on X0.

In other words, APM is the expected optimality of a random initialization of the dynamics in X0 ⊆ X
with respect to some metric g. For instance, if the performance metric g is the social welfare, then the
average-performance metric with respect to g measures the expected social welfare of the system
for any random initialization in X0. The average-performance metric that we are going to use in the
remainder of this section is the Average Price of Anarchy (APoA) (Panageas & Piliouras, 2016). The
APoA is an APM with respect to the social welfare, re-normalised such that the APoA is greater than
or equal to 1, with equality only if (almost) all the initial conditions converge to the socially optimal
outcome of the system. Formally, given a multi-agent game Γ, equations of motion ẋ = f(x) that
describe the evolution of the agents actions in Γ, and a set of initial conditions X0 ⊆ X that consists
of almost all points in X , the APoA is given by

APoA(f,Γ) :=
maxx∈X SW(x)

APMSW,X0(f,Γ)
. (APoA)

3Here, diag(a1, a2) denotes a matrix with a1, a2 on the diagonal and zeros otherwise. Also, we write both
x, y ∈ [0, 1] to denote the mixed choice distributions, (x, 1− x), (y, 1− y), of players 1 and 2, respectively.

4Recall that a probability measure µ on a compact space X is countably-additive function from the powerset
of X to R+ such that µ(X ) = 1 and µ(∅) = 0.
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Notice that a large APoA, like a large PoA, is a negative trait that depends on the game Γ, but,
in contrast to PoA, it also depends on the game dynamics f . In other words, a lower APoA is an
indication of better performance of f in Γ compared to some other dynamics with larger APoA.
Remark 4.4. As we mentioned above, Definition 4.3 does not ensure that an APM is always a
meaningful metric for the system. However, as long as one can prove that (i) the dynamics converge
pointwise to some x∗ ∈ Q(X ) ⊆ NE(Γ) for almost all initial condition x0 ∈ X , and (ii) the set of
limit points, Q(X ), is finite —two conditions that are satisfied by any PRPG that evolves with respect
to some QRD (cf. Theorem 3.2)—the APoA has an intuitive interpretation. Specifically, in this setup,
the APoA is always bounded between the PoA and the Price of Stability (PoS) of the game, i.e., the
ratio between the socially optimal outcome and the socially optimal NE (Roughgarden, 2015).

4.2 THE TAXONOMY OF QRD IN 2× 2 PRPGS

Having established appropriate performance measures and that PRPGs are an appropriate class in
which standard learning dynamics, like QRD, can be compared in terms of performance, in this
section, we perform a complete theoretical analysis of our two motivating questions in the subclass
of symmetric 2 × 2 PRPGs. The main takeaway of this analysis is that if the payoff-dominant
NE requires relatively low risk for the players compared to the other NE of the game, i.e., if it is
risk-dominant, then GD performs better than RD, and vice versa, if the payoff-dominant NE of the
game fails to be the risk-dominant one, RD performs better than GD. To the best of our knowledge,
this is the first rigorous analysis on the relative performance between GD and RD. Concerning our
second question, we establish that if the payoff- and risk-dominant equilibria coincide, the APoA
of GD is upper bounded by 2. It is important to note that the class of symmetric 2× 2 PRPGs is a
non-trivial regime for the comparison of the two dynamics, since PoA is provably unbounded in this
setup, cf. Example 4.1. Omitted materials may be found in Appendix C.

Representation of symmetric 2 × 2 PRPGs. We begin this section by showing that any 2 × 2
symmetric PRPG is equivalent to a game Γw,β as defined in Lemma 4.5. The only non-generic
games that are excluded from this reformulation are dominance-solvable games whose analysis is
trivial and, therefore, outside of our scope. To proceed with the formal statement of Lemma 4.5,
recall that a NE, x∗, of a symmetric potential game, Γ, is called payoff-dominant, if uk(x∗) ≥ uk(x

′)
for all x′ ∈ NE(Γ), and it is called risk-dominant, if x∗ is unilaterally optimal against the uniform
distribution of the rest of the agents (Harsanyi & Selten, 1988).
Lemma 4.5. Any 2× 2 symmetric PRPG, Γ, with payoff functions u1(s1, s2) = u2(s2, s1) can be
equivalently represented by a game Γw,β with payoff functions uw,β,1(s1, s2) = uw,β,2(s2, s1) =

Aw,β,s1,s2 , where the matrix Aw,β ∈ R2×2 is given by Aw,β =

(
1 0
β w

)
, for β ≤ 1 ≤ w. The game

Γw,β has the same NE as the original game, Γ, retains its payoff- and risk-dominance properties,
and preserves the limiting behavior of any QRD in Γ. Accordingly, each game Γw,β has three NE,
two pure at x = y = 0 and x = y = 1, with social welfare SW(0, 0) = 2w and SW(1, 1) = 2,
respectively, as well as one fully-mixed NE at x∗ = y∗ = α := w/(w + 1− β).

We are going to refer to the first pure-NE of Γw as xw. Note that xw is payoff-dominant for any Γw,β ,
and it is also risk-dominant whenever w > 1− β, or equivalently, whenever α > 0.5.

Replicator dynamics (RD) versus gradient descent (GD). The first result of this section is that
whenever the risk- and payoff-dominant equilibria of Γw,β coincide, i.e., α ≥ 0.5, then the gradient
descent (GD) dynamics, i.e., the 0-replicator dynamics, perform better (or equally in the generic case
α = 0.5) on average than the standard replicator dynamics (RD) with respect to the social welfare
of their outcomes, i.e., they yield a smaller APoA. In any other instance of these games, i.e., for
α < 0.5, the RD perform better than GD with respect to the same metric.
Theorem 4.6 ( Comparative Performance of RD and GD in 2× 2 PRPGs). Consider an arbitrary
2×2 symmetric PRPG, which, without any loss of generality, can be represented as an instance Γw,β ,
and let V0, V1 denote the equations of motion of the 0-replicator, i.e., gradient descent dynamics, and
1-replicator, i.e., replicator dynamics, respectively, cf. equation QRD. Then, it holds that

APMSW,intX (V0,Γw,β) ≥ APMSW,intX (V1,Γw,β), (1)
if and only if the payoff-dominant equilibrium is also risk-dominant. Equality obtains only when
α = 0.5, i.e., when w = 1− β.
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Figure 1: The invariant function, Ψq(x, y), for all x, y ∈ [0, 1]2 (cf. Lemma 4.7) in the game Γw,β for w = 2,
β = 0, and q = 0 (gradient descent), q = 1 (standard replicator), q = 2 (log-barrier), and q = 20. The invariant
function becomes steep at the boundary as q increases, taking both arbitrarily large negative (dark) and positive
(light) values in the vicinity of the NE. The contour lines at zero, highlighted as solid blue and dashed red lines
on the surfaces, correspond to the stable, Ψq,Stable(x, y) = 0, and unstable, x− y = 0, manifolds, respectively.

Theorem 4.6 demonstrates that the riskiness of the socially optimal equilibrium is decisive in
characterising the relative performance of the GD and RD. In particular, as stated in Theorem 4.6, the
expected social welfare is optimized by GD whenever risk and payoff-dominant equilibria coincide
and is optimized by RD when risk and payoff-dominant equilibria differ. From a practical perspective,
Theorem 4.6 provides a concrete recommendation on the optimal behavior of the agents (GD versus
RD) based solely on the properties of the underlying game. However, it also suggests that even in
low-dimensional, 2 × 2 potential games, there is not a uniform recommendation, and the optimal
behavior largely depends on the features of the underlying game. As it turns out, in this case, the
decisive feature is the riskiness of the payoff-dominant equilibrium (see also Appendix C).

Invariant functions. Technically, the proof of Theorem 4.6 (see Appendix C) proceeds with a
first order analysis of the manifolds that separate the regions of attractions of the two pure equilibria
for the different dynamics. This approach leverages the constants of motion or invariant functions
(Nagarajan et al., 2020), i.e., quantities that remain constant along the trajectories of the learning
dynamics. The rationale is that if we can identify such a function, then, by finding its value at the
unique mixed equilibrium α of the game, we can determine all initial conditions that asymptotically
converge to it: these will be all points at the same level set of the invariant function. The manifold, i.e.,
the geometric locus of all the points that converge to the equilibrium, formally, the stable manifold of
α, is the one that separates the regions of attractions of the two pure NE of the game. Because of this
property, we may also refer to the stable manifold of the mixed NE as the separatrix (Panageas &
Piliouras, 2016). Note that, since the dynamics are also backward-invariant (Panageas & Piliouras,
2016; Mertikopoulos & Sandholm, 2018), their level-set will also contain a set of initial conditions
that converge to it when moving backward in time. These points constitute the unstable manifold of
α. In Lemma 4.7, we identify such an invariant for all QRD.
Lemma 4.7 (Invariant functions of QRD in 2 × 2 symmetric PRPGs). Given a 2 × 2 symmetric
PRPG, Γw,β , whose agents evolve with respect to the q-replicator dynamics, QRD, the separable
function Ψq : (0, 1)

2 → R, with Ψq(x, y) := ψq(x)− ψq(y), and ψq : (0, 1) → R given by

ψq(x) =


x2−q + (1− x)2−q − 1

2− q
+

1− αx1−q − (1− α)(1− x)1−q

1− q
, q ̸= 1, 2,

α ln(x) + (1− α) ln(1− x), q = 1,

ln(x) + ln(1− x) +
α

x
+

1− α

1− x
, q = 2,

(2)

remains constant along any trajectory {x(t), y(t)}t≥0 of the system. The function Ψq(x) is continuous
with respect to the parameter q at, both, q = 1 and q = 2, since limq→1 Ψq(x) = Ψ1(x) and
limq→2 Ψq(x) = Ψ2(x) for all x ∈ (0, 1).

Monotonicity of RoAs for all QRD. A rigorous extension of Theorem 4.6 to all QRD is prevented
by the difficulty to obtain an analytical form of the separatrix for all q ∈ (0, 1). However, by
visualizing the RoAs for all QRD in this range, we obtain empirical evidence that the RoA is
monotonically increasing in q.

In Figure 1, we visualize the invariant function, Ψq(x, y), for x, y ∈ (0, 1)2 defined in Lemma 4.7
for various values of q ∈ [0, 20]. From the panels of Figure 1, it is also evident that Ψq(x, y) acts as a
handy tool to visualize the regions of attraction of the two pure NE of the game. Namely, at the unique
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mixed NE, i.e., at x = y = α, the invariant function, Ψq , is equal to 0. The same holds for any point
(x, y) ∈ (0, 1)2 with x = y. Thus, we can factorize Ψq(x, y) as Ψq(x, y) = Ψq,Stable(x, y) · (x− y)
where Ψq,Stable(x, y) = 0 is precisely the geometric locus of all points (x, y) ∈ (0, 1)2 such that
limt→∞ x(t) = α, and y = x is the geometric locus of all points such limt→−∞ x(t) = α. These
two manifolds constitute the stable and unstable manifolds of the q-replicator dynamics.

Figure 2: Stable manifold (separatrix) for all different
values of q ∈ [0, 10] (from blue to brown) in the Γw,β

game for w = 2 and β = 0. The manifolds for q = 0,
q = 1, and q = 2 are shown in shades of black for
reference (cf. Figure 5). The region of attraction of
the payoff-dominant equilibrium (bottom-left corner)
shrinks as q increases.

If we stack the stable manifolds (solid blue lines
in Figure 1), it becomes evident that the region
of attraction of the payoff-dominant and risk-
dominant equilibrium grows as q decreases to
0. This is depicted in Figure 2 for all values of
q ∈ [0, 10]. In this case, the unstable manifolds
are always equal to the diagonal, x = y and thus,
omitted. The progression of the surface of the
stable manifolds continuous for larger values of
q. Analogous plots, but with the results reversed
as predicted by Theorem 4.6, can be generated
for instances of Γw,β , in which the risk-dominant
equilibrium is different from the payoff-dominant
one, as well as, for 2× 2 generic PRPGs. In gen-
eral, putting together Theorem 4.6 and the current
visualizations, we have both theoretical and em-
pirical evidence that the region of attraction of
the payoff-dominant equilibrium in Γw,β is de-
creasing (increasing) in q for q ≥ 0 whenever
this equilibrium is (is not) risk-dominant.

Application: APoA in 2×2 PRPGs. To show-
case the practical importance of Theorem 4.6 and the invariant function approach, we conclude this
section with a concrete evaluation of the APoA average-performance measure in the class of 2× 2
symmetric PRPGs. For this result, we focus on symmetric 2 × 2 PRPGs such that payoff and
risk-dominant equilibria coincide; one can prove tight bounds on APoA as shown in Theorem 4.8.

Theorem 4.8. The APoA of GD dynamics in all 2 × 2 symmetric PRPGs, Γw,β , in which the
payoff- and risk-dominant NE coincide is bounded by 2, i.e., APoA(V0,Γw,β) ≤ 2, for all Γw,β with
β > 1− w. This bound is tight.

Figure 3: APoA of a 2 × 2 symmetric PRPG for
the gradient descent dynamics and various values of
β and w. The APoA is upper bounded by 2 (dark
to light values) as shown in Theorem 4.8.

The proof of Theorem 4.8 proceeds by first order
analysis of the function depicted in Figure 3 which,
in turn, depends on the invariant function of the
gradient descent dynamic, see Appendix C. Note
that the bound of Theorem 4.8 also holds for β =
1−w, but in this case, there exists no risk-dominant
equilibrium. Moreover, one way to check that this
bound is tight, is to set β = 1−w+ϵ, for a small ϵ >
0 and let w increase (cf. Figure 3). In combination
Theorem 4.6 and Theorem 4.8 imply that the APoA
of the RD (QRD with q = 1), is not upper bounded
by 2 whenever α < 0.5, i.e., whenever the risk- and
payoff-dominant equilibria are different. However,
for the case α > 0.5, the separatrices for all q ≥ 0
as visualized in Figure 2, (empirically) imply that

similar bounds hold for all values of q.5

5In Figure 2, we visualize the stable manifolds when GD have the largest region of attraction, i.e., the lowest
APoA. The case α < 0.5, in which the manifolds are mirrored on the y = 1− x diagonal, is in Appendix C.
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APoA ± std (Max APoA)

m RD GD

3 1.16 ± .05(1.23) 1.12 ± .04(1.19)
5 1.19 ± .06(1.30) 1.14 ± .04(1.22)
10 1.22 ± .05(1.38) 1.13 ± .03(1.20)
20 1.21 ± .04(1.28) 1.11 ± .02(1.22)

Figure 4 & Table 1: Numerical results for the APoA metric of replicator dynamics (RD) and gradient descent
(GD) in diagonal PRPGs of dimensions m = 2, . . . , 20. The two panels show the APoA of each dynamic
together with its standard deviation (left), their difference (solid line enveloped by the standard deviation shaded
region) and the difference of the maximum APoAs of the dynamics (right) observed over 100 sampled games at
each dimension. The GD dynamics throughout outperform the RD dynamics suggesting that Theorem 4.6, with
the notions of pure- and risk-dominant NE properly refined, may still hold for larger dimensional PRPGs (for the
reverse implication in Theorem 4.6 see Section 5). Table 1 provides detailed statistics for m = 3, 5, 10 and 20.

5 HIGHER DIMENSIONAL NUMERICAL EXPERIMENTS

In this section, we present experimental evidence that our approach can be extrapolated on larger
setups, i.e., beyond 2 × 2-games. Notice that, the extrapolation needs to be done with care since
the central notion of risk dominance may not be well-defined in larger game setups. We choose to
treat this, by restricting our focus to the class of two-player diagonal PRPGs. Such games can be
described by a common payoff matrix U the only non-zero elements of which lie on its diagonal, i.e.,
it is of the form, U := diag(u1, u2, . . . , um), where w.l.o.g, we assume 0 < u1 < u2 < · · · < um.
Notice that a diagonal PRPG defined as above has the following important traits:

1. Profiles (1, 1), . . . , (m,m) are the only pure NE and, since the game is PRPG, the only stable NE.
2. The pure NE can be ordered in terms of payoffs as u1 < · · · < um. Consequently the NE (i, i)

dominates all NE (j, j), j = 1, . . . , i− 1.
3. The difference in payoffs from any pure NE (i, i) to some non-diagonal profile (i, j), or (j, i), is
ui for any j ̸= i. If we define risk to be the negative deviation payoffs Harsanyi & Selten (1988),
then the risk of NE (i, i) is −u2i for all i = 1, . . . ,m, and therefore the pure NE can be ordered in
terms of risk with NE (i, i) be less risky than (j, j) for all j = 1, . . . , i− 1.

Experimental setup. We run experiments in random 2-agent, symmetric diagonal PRPGs of dimen-
sions m = 2, 3, . . . , 20 (size of each agent’s action space). In each game, the payoffs u1, u2, . . . , um
are selected (pseudo-)randomly and satisfy the following properties: (i) the lowest diagonal payoff,
u1, is at least as large as some predefined positive constant (set equal to 1e− 12 for the experiments),
(ii) the highest payoff, um, is equal to the dimension, m, of the game, i.e., um = 2, 3, . . . and 20
respectively, and (iii) u2, . . . , um−1 are in ascending order strictly between u1 and um with randomly
selected distances between them. For each dimension, we sample 100 random games and run the
gradient descent and standard replicator dynamics for 1000 initial conditions till convergence.

The outputs of the simulations of the above experiments are summarized in Figure 4 and Table 1.
The outputs provide indications that (i) the gradient descent dynamics (continue to) outperform the
replicator dynamics in all diagonal games in terms of average performance, and that (ii) the APoA is
lower-bounded by 2, the theoretical bound that we presented in the case of 2× 2 games. As Table 1
suggests, the APoA is, in fact, considerably lower than 2 in all sampled games.

6 CONCLUSION

We study the class of q-replicator dynamics (QRD), and showed that all QRD converge pointwise
to Nash equilibria in perfectly-regular potential games, a class of games that encompasses almost
all potential games, i.e., the standard models of multi-agent coordination. From the perspective of
equilibrium selection and quality, however, convergence provides little information. Even if two
dynamics converge and even if they have joint optimal no-regret guarantees, they may still exhibit
very different equilibrium selection properties, which, in turn, determine their practical performance.
Our analysis provides the first formal comparative analysis of different optimization-driven dynamics
by combining diverse techniques and establishes an intriguing direction for future work.
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SUPPLEMENTARY MATERIAL FOR

BEATING PRICE OF ANARCHY AND GRADIENT DE-
SCENT WITHOUT REGRET IN POTENTIAL GAMES

A EXTENSIONS AND CHALLENGES

A rigorous average-case analysis in arbitrary games is mathematically and computationally challeng-
ing, since closed-form solutions for the boundaries of RoAs not always exist, and since computing
RoAs is generally NP-Hard. Nevertheless, it is immediate to extend the empirical analysis by approx-
imating the APM of interest through counts of frequencies for each limiting equilibrium for multiple
random initializations. However, the invariant function approach offers a scalable alternative that
is promising to work in more complicated settings. Finally, non-uniform distributions over initial
conditions that keep the expectation in Definition 4.3 well-defined can be used to study games in
which the dynamics converge to limit cycles instead of NE.

B MISSING PROOFS AND MATERIALS: SECTION 3

To complete the steps in the sketch of the proof of Theorem 3.2, we start by showing that the class of
perfectly-regular potential games (PRPG) is well-defined, since restrictions of potential games are
also potential games.

Lemma B.1. A restriction of a potential game is also a potential game.

Proof of Lemma B.1. Let Γ′ a restriction of a potential game Γ and potential function Φ : A → R.
Take Φ′ : A′ → R to be the restriction of Φ to A′ ⊆ A. Then for all k ∈ N , and s, s′ ∈ A′ we have
that:

u′k(s)− u′k(s
′
k, s−k) = uk(s)− uk(s

′
k, s−k) = Φ(s)− Φ(s′k, s−k) = Φ′(s)− Φ′(s′k, s−k),

where the second equality follows from the definition of potential games (cf. section 2). Hence, Φ′ is
a potential function, and therefore Γ′ a potential game.

Using the recent results of Swenson et al. (2020), it is not difficult to show that perfectly-regular
potential games are generic, and have a finite number of restricted equilibria. These are the statements
of Lemma B.2 and Lemma B.3, respectively.

Lemma B.2. Almost all finite potential games are perfectly-regular.

Proof of Lemma B.2. Let RPG, and PRPG denote the sets of regular potential, and perfectly-regular
potential games, respectively. Let also Γ be a random finite potential game. Since Γ is finite, there
exist 2m distinct restrictions of Γ, where m :=

∑
k∈N |Ak|. Then, by Lemma B.1, we have that any

restriction Γ′ of Γ is also a random finite potential game, and therefore Pr(Γ′ ∈ RPG) = 1, with
respect to the Lebesgue measure Swenson et al. (2020). It follows that:

Pr(Γ ∈ PRPG) = 1− Pr(Γ /∈ PRPG)

= 1− Pr(
⋃

Γ′∈RΓ

Γ′ /∈ RPG)

≥ 1−
∑

Γ′∈RΓ

Pr(Γ′ /∈ RPG) = 1,

where the last equality follows from the fact that |RΓ| is finite.

Lemma B.3. Every perfectly-regular finite potential game has a finite number of restricted equilibria.
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Proof of Lemma B.3. Let Γ be a perfectly-regular finite potential game, and let Γ′ be one of its
restrictions. By the definition of a perfectly-regular potential game, we have that Γ′ is a regular
potential game. Furthermore, since Γ is finite and A′

k ⊆ Ak for all k ∈ N , it follows that Γ′ is finite.
But then Γ′ is a finite regular potential game and as such it has a finite number of Nash equilibria, i.e.,
NE(Γ′) <∞ Swenson et al. (2020). Finally, since each restricted equilibrium is a Nash equilibrium
of a restrictions of Γ, it follows that there exist at most:∑

Γ′∈RΓ

|NE(Γ′)| ≤ 2m max
Γ′∈RΓ

|NE(Γ′)| <∞

restricted equilibria of Γ. Therefore, the number of restricted equilibria of Γ is finite.

We, now, consider the q-replicator dynamics of a finite potential game Γ, given by the dynamical
system of equations in equation QRD. Our goal for the remainder of this section is to prove that for
any interior initial condition x(0) ∈ X the dynamics in equation QRD converge pointwise to a Nash
equilibrium of a given perfectly-regular finite potential game.1

The proof proceeds in two parts: First, we prove that the dynamics converge to a restricted equilibrium
of the game for any initial condition. Second, we prove that for any interior initial condition, the
dynamics are bound to deviate from any rest-point that is not a Nash equilibrium, and therefore, they
have to converge to a Nash equilibrium.

Let us begin by proving the first of the two claims. For this, we will use the notion of the ω-limit set
of a sequence (x(t))t≥0 ⊆ X that is generated by the QRD, which is defined as

ω(x(t)) :=
⋂
t≥0

cl{x(t′) | t′ > t}

where clS denotes the closure of a set S.

Lemma B.4. Given a perfectly-regular finite potential game Γ, every ω-limit set, with respect to the
q-replicator dynamics, is a singleton {x∗}, where x∗ ∈ X is a rest-point of the dynamics. Specifically,
x∗ is a Nash equilibrium, if q = 0, or a restricted equilibrium, if q > 0. Furthermore, the set
Q(X ) :=

⋃
x0∈X {x∗ ∈ X | limt→∞ x(t) = x∗, x(0) = x0}, i.e., the set of all limit points, is finite.

Proof of Lemma B.4. Let Γ be a perfectly-regular finite potential game. Since Γ is a potential game,
by Proposition 6.4 of Mertikopoulos & Sandholm (2018), we have that every ω-limit set consists
entirely of rest-points of the dynamics. In particular, these are Nash equilibria of Γ, if q = 0,
or restricted equilibria of Γ, if q > 0. However, since Γ is perfectly-regular—it suffices for it to
be regular for the case of q = 0—it follows by Lemma B.3 that every ω-limit set is a finite set.
Consider now, the ω-limit set of an orbit (x(t))t≥0 of the dynamics for some arbitrary initial condition
x(0) = x0. Since x(t) is continuous, the ω-limit set ω(x(t)) is the decreasing intersection of compact,
connected sets and, therefore, it is connected. Since the ω-limit set is finite, the above implies that,
in fact it has to be a singleton {x∗}, where x∗ is a Nash equilibrium if q = 0 Mertikopoulos &
Sandholm (2018), or a restricted equilibrium if q > 0, respectively. Finally, from the above, we have
that the set of all limit points, Q(X ) is a subset of the restricted equilibria of Γ; therefore, since Γ is a
perfectly-regular finite potential game, we have, by Lemma B.3, that the set of restricted equilibria of
Γ and, consequently, Q(X ) are finite.

To prove Theorem 3.2, it remains to exclude convergence to restricted equilibria that are not NE of
the original game, Γ. To establish that, we will show that as the QRD approach a limit point x∗k, the
probability xk,ak of non-optimally performing actions must go to zero. Thus, all actions in suppx∗k
must be a best response against x∗−k for all agents k ∈ N which implies that x∗k is a NE of Γ.

Proof of Theorem 3.2. If q = 0, the statement follows directly from Lemma B.4. So we only need to
consider the q-Replicator Dynamics for q > 0. Let Γ be a perfectly-regular finite potential game, and
let (x(t))t≥0 be a trajectory of the q-replicator dynamics with initial condition x(0) = x0 ∈ intX .

1Recall that the interior of the set X , intX is the set of all joint choice distributions x ∈ X with full support,
i.e., xk,ak > 0 for all ak ∈ Ak and for all k ∈ N ; all points of X that are not in the interior, are called boundary
points.
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Since q > 0, we know that the support of x(t) remains constant for all t ∈ R Mertikopoulos &
Sandholm (2018). Thus, since x(0) ∈ intX , it follows that x(t) remains in the interior of X for all
t ≥ 0, i.e., xk,ak(t) > 0 for all k ∈ N and for all ak ∈ Ak. Furthermore, by Lemma B.4, we have
that the limit limt→∞ x(t) exists and is a rest-point of the dynamics, say x∗.

Assume, now, that x∗ is not a Nash equilibrium. This implies that there exists a player i and a pure
action ai of i such that ui(ai, x∗−i) > ui(x

∗). Moreover, since, x∗ is, by construction, a rest-point,
ẋ∗iaj = 0 for all actions aj . Observe that x∗iai = 0. To see this, let us assume the absurdum x∗iai > 0.
Since ẋ∗iaj = 0 for all aj , by equation QRD, we have

ui(aj , x
∗
−i) =

∑
ak∈Ai

x∗iak
qui(ak, x

∗
−i)∑

ak∈Ai
x∗iak

q , for all aj whenever xiaj > 0. (3)

Furthermore, since ui(ai, x∗−i) > ui(x
∗), we also have

ui(ai, x
∗
−i) > ui(x

∗)

=
∑
aj∈Ai

x∗iajui(aj , x
∗
−i)

=
∑
aj∈Ai

x∗iaj

∑
ak∈Ai

x∗iak
qui(ak, x

∗
−i)∑

ak∈A x
∗
iak

q by equation 3

=

∑
ak∈Ai

x∗iak
qui(ak, x

∗
−i)∑

ak∈Ai
x∗iak

q .

(4)

Clearly, the above reveals a contradiction, and therefore, it must be the case that x∗iai = 0.

Fix ϵ > 0, and consider the set:

Bϵ :=

{
x ∈ X | ui(ai, x−i) >

∑
aj∈Ai

xqi,ajui(aj , x−i)∑
aj∈Ai

xqi,aj
+ ϵ

}
.

By continuity, Bϵ is open and by equation equation 4, it contains x∗—given ϵ small enough. Since
x(t) converges to x∗ as t → ∞, there exists a time tϵ ≥ 0 such that x(t) ∈ Bϵ for all t > tϵ.
Therefore, for each t > tϵ we have that:

ẋi,ai(t) = (xi,ai(t))
q

(
ui(ai, x−i)−

∑
aj∈Ai

(xi,aj (t))
qui(aj , x−i)∑

aj∈Ai
(xi,aj (t))

q

)
> ϵ(xi,ai(t))

q > 0,

where the last inequality follows because x(t) ∈ intX for all t ≥ 0. Finally, by integrating with
respect to time, we have that for all t > tϵ:

xi,ai(t) =

∫ t

t′=tϵ

ẋi,ai(t
′) dt+ xi,ai(tϵ) > xi,ai(tϵ) > 0.

Therefore, by the continuity of x(t), we have that x∗iai = limt→∞ xi,ai(t) ≥ xi,ak(tϵ) > 0, which is
a contradiction to our assumption that x∗iai = 0, which is a direct consequence of x∗ not being a NE
of the game; thus, x∗ has to be a Nash equilibrium of Γ.

C MISSING PROOFS AND MATERIALS: SECTION 4

For this part, it is useful to use the generic notation used by Pangallo et al. (2022), who provide a
taxonomy of 2 × 2 games. Consider an arbitrary 2 × 2 symmetric PRPG with payoff with payoff
functions u1(s1, s2) = u2(s2, s1) = Bs1,s2 , where the payoff matrix B ∈ R2×2 is given by:

B =

(
a c
b d

)
, (5)

and set without any loss of the generality d ≥ a ≥ b—that may always be done by possibly re-
indexing the agents’ actions. If c > d, then the game is dominance-solvable (cf. Table 1 of Pangallo
et al. (2022)) and as such the dynamics of the game are trivial. Hence, we may narrow our scope
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to payoff matrices that satisfy d ≥ c. Also, PRPG games have a finite number of Nash equilibria,
and so, we may exclude games where the above inequalities are not strict. All in all, we are going to
assume without any loss of the generality that the following conditions hold:

d > a > b and d > c. (6)

Proof of Lemma 4.5. Recall that in the notation of Pangallo et al. (2022), an arbitrary 2×2 symmetric
PRPG can be written with payoff functions u1(s1, s2) = u2(s2, s1) = Bs1,s2 , where the payoff

matrix B ∈ R2×2 is given by B =

(
a c
b d

)
, where we assumed without loss of generality that

d > a > b and d > c (cf. equation equation 6. Let also (x, 1− x) and (y, 1− y) with x, y ∈ [0, 1]
denote the choice distributions of the two agents, adopting the common notation for the statespace of
game dynamics in 2× 2 games. Thus, by slightly abusing notation, the choice distributions can be
conveniently represented by single variables, x and y for agents 1 and 2, respectively. The 3 Nash
equilibria of such games are x = y = 1 and x = y = 0, with payoffs a and d, respectively, for both
players, and x∗ = y∗ = d−c

a−b+d−c , with payoff (x∗)2a+ x∗(1− x∗)(b+ c) + (1− x∗)2d for both
players. Recall that, by definition, the Nash equilibrium x = y = 0 is always payoff-dominant—due
to the possible re-indexing of the actions—and it is risk-dominant if d− c > a− b.

To prove the claim of the Lemma, we begin by presenting the equations of motion of the q-replicator
dynamics as functions of x and y. For the first agent that is:

ẋ = xq
(
u1(a1, y)−

xqu1(a1, y) + (1− x)qu1(a2, y)

xq + (1− x)q

)
(7)

=
xq(1− x)q

xq + (1− x)q
(u1(a1, y)− u1(a2, y))

=
xq(1− x)q

xq + (1− x)q
(ay + c(1− y)− by − d(1− y)) (8)

=
xq(1− x)q

xq + (1− x)q
[(a− b+ d− c)y − (d− c)]

=
xq(1− x)q

xq + (1− x)q
κ · (y − y∗), (9)

where κ := a− b+ d− c. Similarly, we may derive the equation of motions for the second agent as
ẏ = yq(1−y)q

yq+(1−y)q κ · (x− x∗). Here, (x∗, y∗) is the mixed Nash equilibrium of the game (see above),
and it holds that y∗ = x∗. Thus, apart from the variables x and y and the hyperparameter q which is
exogenously given, the q-replicator dynamics depend on the payoffs of the game Γ only through κ
and x∗ = d−b

κ . It follows that any transformation that preserves the value of x∗ and scales κ by a
constant may only scale ẋ and ẏ by the same constant; that is, may only affect the convergence rate
of the dyanmics, but not their limiting behavior. Starting from an arbitrary payoff matrix B as given
in equation 5 let us assume, without any loss of the generality, that the conditions in equation 6 apply.
Notice that, since by the aforementioned assumptions we have that d > c, we may set some δ ∈ R
such that 0 < a+ δ < d− c. Accordingly, we consider the following sequence of transformations:
(T1) Add δ to the first column, (T2) subtract c from the second column, and (T3) divide by a+ δ.
These lead to:

B =

(
a c
b d

)
(T1)−→

(
a+ δ c
b+ δ d

)
(T2)−→

(
a+ δ 0
b+ δ d− c

)
(T3)−→

(
1 0
b+δ
a+δ

d−c
a+δ

)
=: A d−c

a+δ ,
b+δ
a+δ

.

Notice thatA d−c
a+δ ,

b+δ
a+δ

is the payoff matrix of a parametric game Γw,β , where w := d−c
a+δ and β := b+δ

a+δ .

Observe, that (T1), (T2) and (T3) leave x∗ unaltered and only scale κ by a constant 1
a+δ ; that is, the

limiting behavior of the q-replicator dynamics is preserved. Furthermore, the risk-dominance of the
equilibrium points is preserved, because:

d− c > a− b if and only if
d− c

a+ δ
> 1− b+ δ

a+ δ

Finally, the payoff-dominance of the Nash equilibrium x = y = 0 is also preserved because, by the
definition of δ, we have that d−ca+δ > 1.
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Next, we are going to construct the invariant functions of Γw,β with respect to the q-replicator
dynamics, which are given by Lemma 4.7 that we restate below for completeness. Recall that (α, α)
is defined to be the equilibrium point of the a game Γw,β ; that is, x∗ = y∗ = α.

Lemma 4.7 (Invariant functions of QRD in 2 × 2 symmetric PRPGs). Given a 2 × 2 symmetric
PRPG, Γw,β , whose agents evolve with respect to the q-replicator dynamics, QRD, the separable
function Ψq : (0, 1)

2 → R, with Ψq(x, y) := ψq(x)− ψq(y), and ψq : (0, 1) → R given by

ψq(x) =


x2−q + (1− x)2−q − 1

2− q
+

1− αx1−q − (1− α)(1− x)1−q

1− q
, q ̸= 1, 2,

α ln(x) + (1− α) ln(1− x), q = 1,

ln(x) + ln(1− x) +
α

x
+

1− α

1− x
, q = 2,

(2)

remains constant along any trajectory {x(t), y(t)}t≥0 of the system. The function Ψq(x) is continuous
with respect to the parameter q at, both, q = 1 and q = 2, since limq→1 Ψq(x) = Ψ1(x) and
limq→2 Ψq(x) = Ψ2(x) for all x ∈ (0, 1).

Proof of Lemma 4.7. To prove the statement, we will show that the time derivative of the function
Ψq(x(t), y(t)) is equal to zero. Let us begin by constructing the derivative of ψ(x). For q ̸= 1, 2 we
have that:

ψ′
q(x) =

x

xq
− 1− x

(1− x)q
− α

xq
+

1− α

(1− x)q
=
x− α

xq
+

x− α

(1− x)q
=

(x− α)[(1− x)q + xq]

xq(1− x)q
.

Similarly, for q = 1 we have that:

ψ′
1(x) =

α

x
− 1− α

1− x
=

α− x

x(1− x)
,

and, for q = 2, we have that:

ψ′
2(x) =

1

x
− 1

1− x
− α

x2
+

1− α

(1− x)2
=

(x− α)[x2 + (1− x)2]

x2(1− x)2
.

That is the derivative of ψ(x) has the general form:

ψ′
q(x) = λ · (x− α)[(1− x)q + xq]

xq(1− x)q
,

for all q ≥ 0, where λ ∈ {1,−1}. Notice, that the choice for λ is purely stylistic because the
invariance of a function is not affected by scalar transformations. Using equation 7 from the proof of
Lemma 4.5 we have that:

Ψ̇q(x, y) =
∂Ψq(x, y)

∂x
ẋ− ∂Ψq(x, y)

∂y
ẏ

= ψ′
q(x)ẋ− ψ′

q(y)ẏ

= λκ[(x− α)(y − α)− (y − α)(x− α)].

To proceed with the proof of Theorem 4.6, we first need to provide the formal definition of the stable
and unstable manifolds of the mixed NE of Γw,β .

Definition C.1 (Stable and unstable manifolds of Γw,β under QRD). Let Ψq : [0, 1]2 → R with
Ψq(x, y) = Ψq,Stable(x, y) · (x − y) for all x, y ∈ [0, 1] denote the invariant function of the q-
replicator dynamics for the 2× 2 symmetric PRPG, Γw,β . The unstable manifold of the mixed NE
(x, y) = (α, α) under the q-replicator dynamics is the curve MUnstable := {(x, y) ∈ (0, 1)2 | x =
y}; that is, the set of points for which limt→−∞ x(t) = limt→−∞ y(t) = α. Analogously, the stable
manifold of the mixed NE is the curve MStable := {(x, y) ∈ (0, 1)2 | Ψq,Stable(x, y) = 0}; that is,
the set of points for which limt→∞ x(t) = limt→∞ y(t) = α.

We are now ready to prove Theorem 4.6.
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Proof of Theorem 4.6. To establish the claim, We will need to have at hand an explicit form of the
stable manifold MStable of the mixed NE of Γw,β with respect to the 0-replicator dynamics, and GD.
In that regard, we are now going to construct that manifold. Recall that from equation 2, the invariant
function of any QRD in Γw,β is given by Ψ0(x, y) := ψ0(x)− ψ0(y) = 0, where:

ψ0(x) =
x2 + (1− x)2 − 1

2
+ 1− αx− (1− α)(1− x) = x2 − 2αx+ α.

Therefore, Ψ0(x, y) = x2 − 2αx+ α− y2 + 2αy − α = (x− y)(x+ y − 2α) = 0 and the stable
manifold (cf. subsection 4.2) satisfies Ψq,Stable(x, y) = x+ y − 2α = 0. In other words, the stable
manifold is the line segment:

MStable = {(x, y) ∈ (0, 1)2 | y = 2α− x}. (10)

By equation 10 and Definition C.1, the stable and unstable manifolds of gradient descent (GD) are
given by the lines y = 2α − x and y = x, respectively, where α = w

w+1−β , while the stable and
unstable manifolds of the standard replicator dynamics are given as solutions to:

Ψ1(x, y) = ψ1(x)− ψ1(y) = α ln

(
x

y

)
+ (1− α) ln

(
1− x

1− y

)
= 0,

where the line y = x corresponds to a solution. We are going to prove that the single remaining
solution of the previous equation, although it cannot be expressed explicitly, satisfies y ≤ 2α− x, if
α > 1

2 , y ≥ 2α− x, if α < 1
2 (with equality in both cases only if x = α), and y = 2α− x otherwise;

hence, the statements of Theorem 4.6 follow naturally.

It is not difficult to show that ψ′
1(x) =

α−x
x(1−x) (cf. proof of Lemma 4.7), and ψ′′

1 (x) = −x2−2αx+α
x2(1−x)2 <

0. Therefore, ψ1 is a strictly concave function with maximum at x = α. To proceed, it will be
useful to define the implicit function y : (0, 1) → (0, 1) such that y(α) = α, and ∀x ∈ (0, 1) \ {α}:
y(x) ̸= α, and ψ1(y(x)) = ψ1(x). By applying the Intermediate Value Theorem (IVT) on ψ1 in
the intervals (0, α), and (α, 1), we can verify that y is a well-defined bijective function. Note that
y = y(x) has to correspond to the remaining solution of Ψ1(x, y).

Without any loss of the generality, let us consider the case of α > 1
2 . Since ψ′

1 is strictly decreasing
in (0, 1) (ψ′′

1 < 0), we have that ψ′
1(x) > 0 for all x ∈ (0, α), and ψ′

1(x) < 0 for all x ∈ (α, 1).
We begin by proving that for all x ∈ (0, 1 − α) it holds that |ψ′

1(α − x)| < |ψ′
1(α + x)|, i.e.,

ψ′
1(α− x) < −ψ′

1(α+ x). Specifically, we have the following series of equivalences:

ψ′
1(α− x) < −ψ′

1(α+ x) ⇐⇒ x

(α− x)(1− α+ x)
<

x

(α− x)(1− α− x)

Since α > 1/2 and x ∈ (0, 1 − α, the latter is equivalent to 2x2(1 − 2α) < 0 or equivalently to
α > 1/2 which holds by assumption. Next, by taking advantage of the above, we can prove that, for
all x ∈ (0, 1− α), it holds ψ1(α− x) > ψ1(α+ x); that is:

ψ1(α− x) =

∫ α−x

0

ψ′
1(t) dt =

∫ α

0

ψ′
1(t) dt+

∫ α

α−x
−ψ′

1(t) dt

>

∫ α

0

ψ′
1(t) dt+

∫ α+x

α

ψ′
1(t) dt = ψ1(α+ x)

Let us, now, consider some x. There are three possibilities: 1. x ≤ 2α− 1; 2. x ∈ (2α− 1, α); and
3. x ≥ α. If x ≤ 2α− 1, then, since y(x) ∈ (0, 1), it follows, trivially, that x+ y(x) < 2α.

If x ∈ (2α − 1, α), let us set δ = α − x. Then, since ψ1 is strictly convex, we have that ψ1(x) =
ψ1(α − δ) > ψ1(α). Consequently, by the Intermediate Value Theorem, there must exist some
y∗ ∈ (α, α+δ) such that ψ1(α−δ) = ψ1(y

∗). Clearly α−δ ̸= y∗, and, therefore, since ψ1(α−δ) =
ψ1(y

∗), it must be the case that y(x) = y∗. Furthermore, x+y(x) = α−δ+y∗ < α−δ+α+δ = 2α,
and, therefore, our claim holds in that case as well.

Finally, if x ≥ α, let us set δ = x− α. Since α > 0.5, we have that δ ∈ (0, 1− α), and therefore,
ψ1(α− δ) < ψ1(α+ δ) = ψ1(x). Furthermore, by the monotonicity of ψ1 in the intervals (α− δ, α),
(α, x) and (x, 1), we also have, respectively, that

ψ1(y) < ψ1(α− δ) < ψ1(x) for all y ∈ (0, α) (11)
ψ1(y) < ψ1(x) for all y ∈ (α, x) (12)
ψ1(y) > ψ1(x) for all y ∈ (x, 1). (13)
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In other words, it has to be the case that y(x) ∈ (0, α−δ), and, therefore, x+y(x) < α+δ+α−δ =
2α.

It follows that, if α > 0.5, y(x) < 2α − x. We remark that the case of α < 1
2 follows identical

arguments, while the case α = 1
2 is trivial.

Remark C.2 (Technical intuition of Theorem 4.6). It is important to provide the mathematical
(technical) interpretation of Theorem 4.6. From equation QRD, we observe that the speed of the
projection dynamics, (q = 0), does not depend on the current state, since the x term is eliminated
from the right hand side. As a result, the separatrix is a straight line, see e.g., panel 1 in Figure 1.
As q increases for values between 0 and 1 for which our analysis applies, the dynamics leave the
boundary must faster, cf. panels 2 to 4 in Figure 1, while being fixed between the three points, i.e., the
corners (0, 1), (1, 0) and the mixed NE. This implies a certain curvature for the separatrix. On the
other hand, the center of the simplex, i.e., the (0.5, 0.5) point, belongs to the region of attraction of
the risk-dominant equilibrium under all dynamics. Combining these two, we get that the replicator
dynamics create a convex separatrix when risk- and payoff-dominant equilibria differ, and a concave
separatrix when risk- and payoff-dominant equilibria coincide, cf. Appendix D. This provides the
picture that we have, with the straight-line separatrix of the gradient descent (projection) dynamics
being below the curved separatrix of the replicator when risk- and payoff-dominant equilibria differ
and above when risk- and payoff-dominant equilibria coincide. The above explanation drives our
current proof of Theorem 4.6. Deriving a game-theoretic interpretation (along with the technical one
above) is an interesting open question.

Finally, a direct (technical) implication from the proof of Theorem 4.6 is provided in Lemma C.3
which may be of independent interest. Recall from the proof of Theorem 4.6 that the solutions
to Ψ1(x, y) = 0 are the functions y = x and y : (0, 1) → (0, 1) such that y(α) = α, and for all
x ∈ (0, 1) \ {α} it holds that y(x) ̸= α, and ψ1(y(x)) = ψ1(x).
Lemma C.3 (Curvature of the stable manifold of RD). Consider the 1-replicator dynamics (RD)
in the parametric game Γw,β . The stable manifold, MStable of RD in Γw,β is given by the curve
y = y(x). If the payoff-dominant equilibrium, x = y = 0, is also risk-dominant, then y is strictly
concave. Conversely, if the non-payoff dominant equilibrium, x = y = 1, is risk-dominant, then y is
strictly convex. Otherwise, y(x) = 1− x.

Proof of Lemma C.3. By differentiating both sides of the implicit function ψ1(y(x)) = ψ1(x) with
respect to x, we get that ψ′

1(y(x))y
′(x) = ψ′

1(x), i.e., y′(x) =
ψ′

1(x)
ψ′

1(y(x))
. Notice that, since y is

bijective, ψ′
1 is monotonic (ψ′′

1 < 0), and ψ′
1(y(α)) = ψ′

1(α) = 0, the above equality is well-defined
for all x ∈ (0, 1) \ {α}. Hence, we have that:

y′′ =
ψ′′
1 (x)[ψ

′
1(y)]

2 − ψ′
1(x)ψ

′′
1 (y)y

′

[ψ′
1(y)]

2
=
ψ′′
1 (x)[ψ

′
1(y)]

2 − [ψ′
1(x)]

2ψ′′
1 (y)

[ψ′
1(y)]

3

=
y3(1− y)3α(1− α)(x− y)(y + x− 2α)

(α− y)3x2(1− x)2y2(1− y)2
,

where the dependency of y to x is implied for compactness. Hence, we have that y′′(x) < 0 if and
only if (x−y)(y+x−2α)

α−y < 0. However, by the Intermediate Value Theorem (IVT) applied on ψ1 in
(0, α), and (α, 1), and the definition of y, it follows, trivially, that x ≤ y if, and only if, α ≤ y,
with equality in both inequalities only if x = α. Therefore, x−yα−y > 0, ∀x ∈ (0, 1) \ {α}; hence
y′′(x) < 0 if, and only if, y+x− 2α < 0, which by the proof of Theorem 4.6 is equivalent to α > 1

2 .
This concludes the proof for the first statement. The second statement follows in a similar manner by
requesting y′′(x) > 0, while the last statement is trivial.

Proof of Theorem 4.8. Let Γw,β be a 2×2 symmetric PRPG, where the payoff-dominant equilibrium,
x = y = 0, is also risk-dominant, i.e., β > 1− w, or equivalently α > 0.5, where x∗ = y∗ = α is
the mixed NE of Γw,β . Recall that, by equation 10, the stable manifold of the mixed NE of Γw,β
with respect to GD is the line segment ℓ : y = 2α − x, for x ∈ (max{0, 2α − 1},min{2α, 1}).
Since α > 0.5, we have that 2α − 1 ≥ 0 and 2α ≥ 1; therefore, the extreme points of ℓ are
(0, 2α) and (2α, 0). That implies the the RoA of (1, 1) is the triangle with extreme points at (1, 1),
(2α − 1, 1), and (1, 2α − 1). Since that is a right triangle, with both its base and its height equal
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Figure 5: The stable manifolds, Ψq,Stable(x, y) = 0, (solid blue lines) for the same values of q and the same
instance of Γw,β as in Figure 1, in which the payoff- and risk- dominant NE is at the bottom left corner. For all
q, the separatrix goes through the mixed NE at the intersection of the x∗ (dashed red) and y∗ (dashed black)
coordinates. All panels also include the unstable manifold defined by x− y = 0 (dashed blue line). The region
of attraction of the payoff-dominant NE is larger for all values of q; however, this is because this NE is also
risk-dominant, cf. Theorem 4.6.

to 2(1 − α), the Lebesque measure of RoA(0, 0) is µ(RoA(1, 1)) = 2(1 − α)2; subsequently,
µ(RoA(0, )) = 1− µ(RoA(1, 1)) = 1− 2(1− α)2. We may calculate the APoA of GD in Γw,β as
a function of w and β. Specifically, when α > 0.5, i.e., β < 1− w, we have that:

APoA(w, β) := APoA(GD,Γw,β) =
maxx,y∈[0,1] SW(x, y)

APMSW,[0,1]2(GD,Γw,β)

=
SW(0, 0)

SW(0, 0) · µ(RoA(0, 0)) + SW(1, 1) · µ(RoA(1, 1))

=
w

wµ(RoA(0, 0)) + µ(RoA(1, 1))

=
w

w[1− 2(1− α)2] + 2(1− α)2
=

w(w + 1− β)2

w(w + 1− β)2 − 2(w − 1)(1− β)2
.

where we used that α = 1−
(

1−β
w+1−β

)2
. We may, now, perform a first-order analysis in APoA(w, β);

that is, for all β ≥ 1− w, we have that:

∂APoA(w, β)

∂β
=

−4w2(w − 1)(w + 1− β)(1− β)

[w(w + 1− β)2 − 2(w − 1)(1− β)2]2
≤ 0.

From the above, it follows that APoA(w, β) ≤ APoA(w, 1− w); that is:

APoA(w, β) ≤ 4w3

4w3 − 2(w − 1)w2
=

2w3

w3 + w2
< 2,

where the last inequality follows by letting w → ∞. Notice that this bound is tight. It is not difficult
to see that if α < 0.5, APoA(w, β) is unbounded.

D VISUALIZATIONS: INVARIANT FUNCTIONS AND SEPARATING MANIFOLDS

In this part, we provide systematic, and essentially exhaustive, visualizations of the stable manifolds
(separatrices) in the Γw,β class.

Same payoff- and risk-dominant NE in Γw,β . As mentioned in the main part, the separatrix for
different values of q can be obtained by plotting the 0-level set of the invariant functions in Figure 1.
These are depicted in Figure 5. As a sanity check, we also see from Figure 5 that the region of
attraction of the payoff-dominant equilibrium for q = 0 (GD dynamics) is larger than the region of
attraction for q = 1 (RD).

Stable manifolds for all q ≥ 0. In a similar vein to Figure 2, we next depict the separatrices,
stacked for all values of q ∈ [0, 10], for different parameterizations of the Γw,β class (Figure 6. In
all panels of Figure 6, parameter w is equal to 2. We obtain qualitatively equivalent plots for any
w > 1 and β small enough. The main takeaways from the (essentially exhaustive) visualizations
in the panels of Figure 6 are that (i) the region of attraction of the risk-dominant equilibrium is

20



Published as a conference paper at ICLR 2024

Figure 6: Stable manifolds (separatrices) for all different values of q ∈ [0, 10] (from blue to brown) in different
parameterizations of the Γw,β game for w = 2 and varying β. In all panels, the manifolds for q = 0, q = 1, and
q = 2 are shown in shades of black for reference. The region of attraction of the payoff-dominant equilibrium
(bottom-left corner) shrinks as q increases when this equilibrium is also risk-dominant (α > 0.5) and increases
with q when this equilibrium is not risk-dominant (α < 0.5). In fact, as β decreases, the payoff-dominant
becomes increasingly more “risky” and its region of attraction becomes arbitrarily small.

larger for all q ≥ 0 regardless of whether this equilibrium is payoff-dominant or not, (ii) the region
of attraction of the payoff-dominant equilibrium may become arbitrarily small as this equilibrium
becomes arbitrarily risky. In particular, observation (ii), suggests that in this case, it is hopeless to
bound any static or average performance measure. This became more transparent with the APoA
analysis in the previous Section of the Appendix (cf. Theorem 4.8 in the main paper). We conclude
this part with some visualizations of the stable and unstable manifolds in a 2 × 2 non-symmetric
PRPG.

non-symmetric PRPGs. Consider the identical-interest PRPG, IDw,β , with identical payoff func-
tions uw,β,1(s1, s2) = uw,β,2(s1, s2) = Aw,β,s1,s2 , where the payoff matrix Aw,β ∈ R2×2 is given

by Aw,β =

(
1 0
β w

)
, β ≤ 1 ≤ w. The game IDw,β has the same pure NE as the games Γw,β ,

namely x = y = 0, with payoff w, and x = y = 1, with payoffs 1 for both players, but now the
mixed NE is not symmetric and it is given by x∗ = (w− β)/(w+ 1− β) and y∗ = w/(w+ 1− β).

In Figure 7, we visualize the stable and unstable manifolds for all values of q ∈ [0, 10] in an instance
of IDw,β with w = 2 and β = −2. In this case, the separating (stable) manifolds do not increase
(decrease) monotonically with q as it is evident from the overlapping (equally) colored regions.
Thus, it requires a different approach to estimate whether the size of the regions of attraction of
the payoff-dominant equilibrium follow a certain monotonicity pattern, which again may change
depending on whether this equilibrium is also risk-dominant or not. In the context of the current
paper, Figure 7 highlights that (i) the geometry of the regions of attraction is highly complex under
different algorithms (parametrizations of QRD) even for low-dimensional, identical interest games,
and (ii) given this complexity, the findings in the class Γw,β become even more surprising and
intriguing.

Different payoff- and risk-dominant NE in Γw,β . The main differences in the class Γw,β occur
between games in which the payoff- and risk-dominant equilibria coincide and games in which they
differ. Recall that Figure 1 shows the invariant function in a Γw,β instance, where w = 2 and β = 0,
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Figure 8: The invariant function, Ψq(x, y), for all x, y ∈ [0, 1]2 in the game Γw,β for w = 2, β = −4, and
the same values of q as in Figure 1: q = 0 (gradient descent dynamics), q = 1 (standard replicator dynamics),
q = 2 (log-barrier dynamics), and q = 20. The invariant function again becomes very steep at the boundary as q
increases, taking both arbitrarily large negative (dark) and positive (light) values in the vicinity of the NE.

Figure 9: The stable manifolds, Ψq,Stable(x, y) = 0, (solid blue lines) for the same values of q and instance of
Γw,β as in Figure 8, in which the payoff-dominant NE is at the bottom-left corner and the risk-dominant NE is at
the upper-right corner. For all q, the separatrix goes through the mixed NE at the intersection of the x∗ (dashed
red) and y∗ (dashed black) coordinates. All panels also include the unstable manifold defined by x − y = 0
(dashed blue line). The region of attraction of the payoff-dominant NE is now smaller for all q, because this NE
is not risk-dominant, cf. Theorem 4.6.

i.e., in which the payoff- and risk- dominant equilibria coincide. In Figure 8, we provide an instance
in which the payoff- and risk-dominant equilibria differ. Similar to Figure 5, Figure 9 depicts the
separating manifolds (stable manifolds or separatrices) of the regions of attractions of the two pure
NE. These are precisely the zero-level sets of the invariant functions shown in Figure 8. As we can
see, in this case, the region of attraction of the payoff-dominant equilibrium, w is smaller than the
region of the, now, risk-dominant equilibrium, 1. Intuitively, when a NE becomes risk-dominated,
its region of attraction shrinks, even if this NE is payoff-dominant. This is because, for a mixed
choice of distributions, the risk-dominant NE yields a higher utility and is that more “attractive” for
the dynamics. This trade-off between high reward at a certain state (e.g., w,w) and high risk if that
state is not reached (e.g., β, 0, with β < 0), also explains why socially optimal, but otherwise risky,
outcomes, e.g., the adoption of revolutionizing technology or a social norm that challenges the status
quo, are never reached in real-life situations.

On risk-dominance in higher dimensions In diagonal games (D-PRPGs), it is straightforward
to make an equilibrium more risky. This is achieved simply by replacing the zero entries in the
corresponding line of matrix U by some negative number, e.g.,

Urisky,m =


u1 0 . . . 0
0 u2 . . . 0
...

...
. . .

...
−10 −10 . . . um

 := diag(u1, u2, . . . , um; riskn = −10)

In this case, the payoff-dominant equilibrium with payoff um to each player becomes more risky,
since a failure to coordinate on it results to a negative payoff of −10 for the agent who selected the
corresponding action. Proceeding in a similar fashion, one may replace the zero entries with an
(arbitrarily large) negative element in all lines of the matrix except for the first one. In analogy to the
Urisky,m notation, we will denote such games by Urisky := diag(u1, u2, . . . , um; risk = −r), where
r > 0 is the risk constant (equal to −10 in the example above). In this way, all equilibria become
more risky except for the payoff-dominated one, i.e., the equilibrium with payoffs u1 to each agent
which corresponds to the action profile in which every agent selects their first action.2 Concerning

2An alternative interesting approach to generalize the notion of risk-dominance in arbitrary games is via
pairwise comparisons of actions as proposed by Honda (2012).
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our experiments, the outcome of Figure 4 is reversed in games of the form Urisk, i.e., in games in
which the payoff superior equilibria were more risky (not reported here).

Figure 7: Stable and unstable manifolds for all q ∈
[0, 10] in an instance of the identical interest game
IDw,β with w = 2 and β = −2. The unique mixed
NE is not symmetric and lies at x∗ = 0.8, y∗ = 0.4.
The main difference with the symmetric games in Γw,β

is that the regions of attraction of the payoff-dominant
equilibrium (bottom-left corner) are not increasing (nor
decreasing) in q anymore.
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