
Appendix449

A Limitations450

To ensure the compatibility with previous CLL algorithms, our work focuses on image datasets based451

on CIFAR10/100, and TinyImageNet. It is worth investigating the real-world CLL datasets on larger452

datasets, such as ImageNet, and other domains. On the other hand, the proposed protocol focuses on453

collecting real-world complementary labels for analyzing the common assumptions on CLL. That454

said, it is also crucial to understand efficient ways to collect complementary labels in practice, e.g., by455

asking annotators binary questions to collect ordinary and complementary labels simultaneously. We456

leave these directions as future works and hope that our work can open the way for the community to457

understand these questions.458

B More discussion on practical noise and extended ablation study459

Our work found out that the labeling noise is the main factor contributing to the performance460

gap between synthetic CL and practical CL. Hence, we conducted deeper investigation into some461

directions to handle the practical noise. In Section B.1, we discussed the performance improvement462

when more human-annotated complementary labels were available. In Section B.2, we designed the463

synthetic CLCIFAR-N dataset to study the difference between synthetic uniform noise and practical464

noise. In Section B.3, we provided the benchmark results of all robust loss methods to emphasize465

the essence of studying a practical complementary label dataset. In Section B.4, we discussed466

result analysis of CLCIFAR20 and CLMicroImageNet20 datasets and described the process how467

MicroImageNet10 and MicroImageNet20 datasets generation in Section B.5.468

B.1 Multiple complementary labels469

In this experiment, we studied the case when there were multiple CLs for a data instance. We470

duplicated the data instance and assigned them with another practical label from the annotators. The471

results of this experiment were summarized in Table 5.472

For CLCIFAR10, we observe that the model achieved better learning performance when trained on473

data instances with more CLs. However, the issue of overfitting persists even with the increased num-474

ber of labels. In the case of CLCIFAR20, we found that without employing early stopping techniques,475

it is challenging to achieve improved results as the number of labels increased. Furthermore, the476

overfitting problem becomes more pronounced with the increased number of labels. Overall, these477

findings shed light on the challenges posed by multiple CLs and the persistence of overfitting.478

B.2 Benchmarks with synthetic noise479

Generation process of CLCIFAR-N Inspired by the conclusions drawn in Section 5.3, we investi-480

gated another avenue of research: the generalization capabilities of methods when transitioning from481

synthetic datasets with uniform noise to practical datasets. To obtain a general synthetic dataset with482

minimum assumption, we introduced CLCIFAR-N. This synthetic dataset contains unifrom CL and483

uniform real world noise from CLCIFAR dataset. The complementary labels of CLCIFAR-N are484

i.i.d. sampled from Tsyn, where the diagonal entries are set to be 3.93%/10 (for generating CL for485

CIFAR10) or 2.8%/20 (for generating CL for CIFAR20). The non-diagonal entries are uniformly dis-486

tributed. This construction allows us to generate a synthetic dataset that mimics real-world scenarios487

more closely with minimum knowledge.488

Benchmark results We ran the benchmark experiments with the identical settings as in Section 5.1489

and present the results in Table 6. The performance difference between sythetic noise and practical490

noise are illustrated in the diff columns. A smaller difference indicates a better generalization491

capability of the models. Interestingly, the robust loss methods exhibit superiority on the synthetic492

CLCIFAR10-N dataset but struggle to generalize well on real-world datasets. This finding suggests493

the existence of fundamental differences between synthetic noise and practical noise. Further494

investigation into these differences is left as an avenue for future research.495
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Table 4: The testing accuracy of models evaluated with URE and SCEL.
uniform-CIFAR10 uniform-CIFAR20 uniform-MIN10 uniform-MIN20

URE SCEL valid acc gap (↓) URE SCEL valid acc gap (↓) URE SCEL valid acc gap (↓) URE SCEL valid acc gap (↓)

FWD-U 53.41±5.51 50.36±3.25 64.19±0.57 10.78 16.73±2.29 16.52±2.61 21.54±0.37 4.81 33.65±2.84 33.20±3.16 36.30±1.12 2.65 10.10±2.66 9.15±1.68 12.57±2.94 2.47
FWD-R 52.55±4.06 49.17±3.11 61.32±0.90 8.77 18.29±0.39 16.61±2.65 21.50±0.38 3.21 32.15±3.40 33.10±2.03 35.70±1.19 2.60 12.72±3.28 11.57±2.91 14.85±1.75 2.12
URE-GA-U 48.68±1.11 49.29±1.67 50.24±1.11 0.95 15.23±2.35 16.09±1.23 16.67±1.35 0.58 28.10±5.24 34.35±2.39 35.70±1.97 1.35 8.53±1.55 8.52±1.38 11.65±1.90 3.12
URE-GA-R 50.49±1.21 50.25±1.57 50.73±1.83 0.25 15.68±1.35 16.12±0.95 17.57±0.61 1.45 29.85±4.73 34.10±1.90 33.65±1.40 -0.45 7.15±2.13 7.12±2.42 9.78±3.88 2.63
SCL-NL 54.32±6.71 51.03±3.12 63.76±0.09 9.44 15.65±3.06 16.32±3.11 21.37±1.18 5.05 32.95±3.13 33.20±3.69 37.05±1.40 3.85 11.50±3.76 9.28±2.55 13.00±2.80 1.50
SCL-EXP 50.98±6.83 41.61±3.52 63.29±1.02 12.30 16.71±2.72 16.15±2.55 21.57±1.13 4.86 32.95±2.91 29.70±2.83 36.55±1.28 3.60 10.53±2.02 8.83±3.19 12.95±3.38 2.43
L-W 46.88±9.44 50.36±0.47 54.32±0.41 3.95 16.26±1.93 14.67±1.59 19.59±0.99 3.33 17.70±9.90 28.60±5.15 33.80±2.66 5.20 8.58±1.25 7.70±0.35 12.70±2.35 4.12
L-UW 52.47±3.63 51.15±1.61 57.52±0.59 5.05 16.10±1.51 15.58±1.97 20.71±0.92 4.62 22.10±7.68 25.60±7.14 35.10±2.74 9.50 10.60±2.36 8.28±2.02 12.12±3.13 1.52
PC-sigmoid 35.29±1.67 34.82±1.24 37.78±0.80 2.49 13.41±0.95 13.40±0.72 14.48±0.47 1.07 25.55±5.99 27.05±5.66 29.10±0.98 2.05 7.75±1.73 8.72±0.26 10.72±1.38 2.00
ROB-MAE 57.99±1.72 57.79±2.03 59.38±0.63 1.39 17.07±2.02 15.62±1.79 18.17±1.31 1.11 30.15±4.22 29.15±2.90 31.50±1.81 1.35 5.42±0.27 5.03±0.54 6.35±0.86 0.92

Table 5: Learning with Multiple CL: The figure shows the classification accuracy of each task with
early stopping indicated in brackets. The highest accuracy in each column is bolded for ease of
comparison.

CLCIFAR10 CLCIFAR20

num CL 1 2 3 1 2 3

FWD-U 34.09(36.83) 41.95(41.53) 42.88(45.18) 7.47(8.27) 8.28(8.78) 8.15(10.27)
FWD-R 28.88(38.9) 34.33(47.07) 37.84(49.76) 16.14(20.31) 16.99(23.41) 15.54(24.19)
URE-GA-U 34.59(36.39) 45.71(44.85) 45.97(47.97) 7.59(10.06) 8.42(11.52) 8.53(12.75)
URE-GA-R 28.7(30.94) 42.73(43.34) 44.73(47.36) 5.24(5.46) 6.77(6.92) 5.0(5.55)
SCL-NL 33.8(37.81) 40.67(42.58) 43.39(45.2) 7.58(8.53) 6.77(6.92) 5.0(5.55)
SCL-EXP 34.59(36.96) 40.89(42.99) 44.4(47.9) 7.55(8.11) 7.42(8.39) 8.0(9.31)
L-W 28.04(34.55) 34.96(41.83) 39.05(47.46) 7.08(8.74) 8.06(8.76) 8.03(10.18)
L-UW 30.63(35.13) 38.05(43.32) 39.49(45.82) 7.36(8.71) 7.03(8.55) 7.86(10.11)
PC-sigmoid 24.38(35.88) 25.63(39.82) 33.89(43.75) 9.27(14.26) 11.91(16.07) 17.68(14.13)

B.3 Results of the robust loss methods496

The original design of the robust loss aims to obtain the optimal risk minimizer even in the presence497

of corrupted labels. However, their methods do not generalized well on practical datasets. The results498

are provided in Table 7. In other words, solely considering synthetic noisy CLs does not guarantee499

performance on real-world datasets. These results once again underscore the importance of the500

CLCIFAR dataset.501

B.4 Result analysis of CLCIFAR20 and MicroImageNet20502

In this section, we further investigate the complementary labels collected from the CLCIFAR20 and503

MicroImageNet20 datasets. We followed similar observation and analyzed in the Section 4. Our504

observation and analysis are described as below:505

Observation 1: noise rate compared to ordinary label collection We observed that the noise rates506

for the complementary labels collected from the CLCIFAR20 and MicroImageNet20 datasets are507

2.80% and 3.21%, respectively. This finding is consistent with the observations discussed in Section 4.508

The lower noise rate in the CLCIFAR20 dataset compared to MicroImageNet20 can be attributed to509

the greater difficulty in labeling the MicroImageNet20 dataset.510

Observation 2: imbalanced complementary label annotation Next, we analyzed the distribution511

of the collected complementary labels. The frequencies of these labels for the CLCIFAR20 and512

CLMicroImageNet20 (CLMIN20) datasets are shown in Figure 4. The figure reveals that annotators513

exhibit specific biases towards certain labels. For example, in CLCIFAR20, annotators show a514

preference for labels such as "fish", "flowers", "people", "trees", "food container", and "transportation515

vehicles". In CLMIN20, they favor "iPod" and "tractor". In CLCIFAR20, the bias tends towards labels516

with shorter, more concrete, and understandable names. Conversely, in CLMIN20, the preference is517

for easily recognizable items as "iPod", and "tractor", while less familiar items such as "bannister",518

"american lobster", "snorkel", and "gazelle" are less favored.519

Observation 3: biased transition matrix Finally, we visualized the empirical transition matrix520

using the collected complementary labels, as shown in Figure 5. Our observations indicate that the521

transition matrix is biased. Specifically, we discovered that the bias in the complementary labels is522

dependent on the true labels, as depicted in Figure 5. In CLCIFAR20, there are more annotations for523

labels with shorter, more concrete, and understandable names, such as "fish," "flowers," "people,"524

and "transportation vehicles." This results in a distribution that is more biased towards these labels. A525
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Table 6: Benchmark results on CLCIFAR-N datasets. The classification accuracy difference is
calculated by subtracting the practical CLCIFAR dataset from the performance on the synthetic
CLCIFAR-N dataset.

CLCIFAR10-N diff(↓) CLCIFAR20-N diff(↓)

FWD-U 37.1 2.2 7.58 0.11
FWD-R - - - -
URE-GA-U 31.29 -3.3 8.1 0.5
URE-GA-R - - - -
SCL-NL 37.79 2.06 7.75 0.16
SCL-EXP 35.86 3.19 6.95 -0.59
L-W 30.1 2.06 6.16 -0.91
L-UW 32.69 2.05 6.89 -0.47
PC-sigmoid 19.64 -4.73 6.54 -2.72

CCE 32.34 13.45 5.71 0.71
MAE 41.34 23.09 6.83 1.83
WMAE 37.62 22.26 6.36 1.08
GCE 35.00 18.71 6.7 1.7
SL 29.98 12.29 6.08 1.05

Table 7: Standard benchmark results on CLCIFAR and uniform-CIFAR datasets for the robust loss
method. Mean accuracy (± standard deviation) on the testing dataset from four trials with different
random seeds. Highest accuracy in each column is highlighted in bold.

uniform-CIFAR10 CLCIFAR10 uniform-CIFAR20 CLCIFAR20

methods valid_acc valid_acc (ES) valid_acc valid_acc (ES) valid_acc valid_acc (ES) valid_acc valid_acc (ES)

CCE 46.57±1.75 49.51±0.73 16.18±2.97 20.18±3.39 12.54±0.40 14.62±1.29 5.07±0.05 5.41±0.30
MAE 57.37±0.48 58.50±0.97 16.30±2.27 19.44±4.41 16.72±1.52 17.63±1.63 5.11±0.11 5.87±0.26
WMAE - - 13.01±1.89 15.51±0.75 - - 5.31±0.27 6.65±0.65
GCE 58.10±1.54 59.44±2.30 14.31±1.44 18.97±2.16 15.86±1.93 17.09±1.19 5.21±0.29 5.76±0.32
SL 41.13±1.64 42.64±0.11 16.45±2.80 19.28±3.16 13.60±0.55 15.70±1.23 5.44±0.29 6.59±0.43

similar pattern of bias is observed in CLMIN20, where annotators favored easily recognizable items526

like "iPod" and "tractor", while less familiar items received fewer annotations.527

(a) CLCIFAR20 (b) CLMicroImageNet20

Figure 4: The label distribution of CLCIFAR20 and CLMicroImageNet20 datasets.

B.5 MicroImageNet dataset generation528

To generate the MicroImageNet10 and MicroImageNet20 datasets, we began by randomly selecting529

10 classes from the 200 available in MicroImageNet to create MicroImageNet10. Similarly, we530

randomly selected 20 classes to form MicroImageNet20. The selected classes are listed in Table 10531

of Appendix F. Each class in the TinyImageNet200 dataset contains multiple labels. To ensure532

reproducibility and facilitate human annotation, we chose the first label to represent the primary label533

of each class, as detailed in Appendix F. Each class in the MicroImageNet10/20 datasets comprises534

500 images for the training set and 50 images for the validation set. To collect complementary535

labels for the MicroImageNet10/20 datasets, we followed a protocol similar to the one described in536

Section 3.2.537
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(a) CLCIFAR20 (b) CLMicroImageNet20

Figure 5: The empirical transition matrices of CLCIFAR20 and CLMicroImageNet20. The label
names of CLCIFAR20 and CLMicroImageNet20 are abbreviated as indexes to save space. The full
label names are provided in Appendix F.

Table 8: The overfitting results when there is no data augmentation.
uniform-CIFAR10 CLCIFAR10 uniform-CIFAR20 CLCIFAR20

methods valid_acc valid_acc (ES) valid_acc valid_acc (ES) valid_acc valid_acc (ES) valid_acc valid_acc (ES)

FWD-U 48.44 49.33 21.29 25.59 17.4 17.97 6.91 7.32
FWD-R - - 14.97 28.3 - - 6.82 14.67
URE-GA-U 39.55 39.67 21.0 23.53 13.52 14.08 5.55 8.38
URE-GA-R - - 19.81 20.8 - - 5.0 6.43
SCL-NL 48.2 48.27 21.96 26.51 16.55 17.54 7.1 7.92
SCL-EXP 46.79 47.52 21.89 27.66 16.18 17.89 6.9 7.3
L-W 27.02 44.78 20.06 27.6 10.39 16.3 5.64 8.02
L-UW 31.3 46.38 20.28 26.26 12.33 16.32 6.03 8.14
PC-sigmoid 18.97 33.26 - - 7.67 10.41 - -

C More discussion on biasedness538

In addition to the label noise, the biasedness of CL in practical dataset would lead to overfitting,539

especially for those T-informed algorithms. We conducted deeper investigation into this phenomenon.540

In Section C.1, we demonstrated the necessity of employing data augmentation techniques to prevent541

overfitting. In Section C.2, we attempted to address the issue of overfitting by employing an542

interpolated transition matrix for regularization.543

C.1 Ablation on data augmentation544

To further investigate the significance of data augmentation, we conducted identical experiments545

without employing data augmentation during the training phase. As we can observe in the training546

curves in Figure 6, data augmentation could improve the testing accuracy of all the algorithms we547

considered.548

We also provide the results without the use of data augmentation techniques in Table 8, and we549

observed that almost all methods suffered from overfitting. It is worth noting that URE with gradient550

ascent suffers less compared to the other methods. The reason might be that reversing the gradient of551

the class with negative loss (the overfitting class) can be seen as a regularization technique. Therefore,552

URE with GA methods can be more resistant to overfitting in practical datasets.553

C.2 Ablation on interpolation between Tu and Te554

In Table 1, we discovered that the T -informed methods did not always deliver better testing accuracy555

when Te is given. Looking at the difference between the accuracy of using early-stopping and not556

using early-stopping, we observe that when the Tu is given to the T -informed methods, the difference557

becomes smaller. This suggests that T -informed methods using the empirical transition matrix has558
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Figure 6: The Overfitting accuracy curve of FWD, URE, SCL-NL, L-W. The dotted line represents
the accuracy obtained without data augmentation, while the solid line represents the accuracy with
data augmentation included for reference. The accuracy of FWD, SCL-NL, SCL-EXP, L-W, L-UW
methods reaches its highest at approximately the 50 epoches and converges to some lower point. The
detail numbers are in Table 8

greater tendency to overfitting. On the other hand, T -informed methods using the uniform transition559

matrix could be a more robust choice.560

We observe that the uniform transition matrix Tu acts like a regularization choice when the algorithms561

overfit on CLCIFAR. This results motivate us to study whether we can interpolate between Tu and562

Te to let the algorithms utilize the information of transition matrix while preventing overfitting. To563

do so, we provide an interpolated transition matrix Tint = αTu + (1− α)Te to the algorithm, where564

α controls the scale of the interpolation. As FWD is the T -informed method with the most sever565

overfitting when using Tu, we performed this experiment using FWD adn reported the results in566

Figure 7. As shown in Figure 7, FWD can learn better from an interpolated Tint, confirming the567

conjecture that Tu can serve as a regularization role.568

Figure 7: The last epoch accuracy of CLCIFAR10 and CLCIFAR20 for FWD algorithm with an
α-interpolated transition matrix Tint. The five solid points on each cruve represent different noise
cleaning rate: 0%, 25%, 50%, 75%, 100% from left to right.
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D An overview of the complementary-label learning algorithms569

In this section, we review the algorithms benchmarked in Section 5.570

D.1 T-informed CLL algorithms571

Some of them take the transition matrix T as inputs, which we call T -informed methods, including572

• Two versions of forward correction method [28]: FWD-U and FWD-R. They utilize a573

uniform transition matrix Tu and an empirical transition matrix Te as input, respectively.574

• Two versions of unbiased risk estimator with gradient ascent [10]: URE-GA-U with a575

uniform transition matrix Tu and URE-GA-R with an empirical transition matrix Te.576

• Robust loss methods [11] for learning from noisy CL, including CCE, MAE, WMAE,577

GCE, and SL5. We applied the gradient ascent technique [10] as recommended in the578

original paper.579

In practice, the empirical transition matrix Te is not accessible to the learning algorithm, but we580

assume that the correct Te is given to FWD-R, URE-GA-R and the robust loss methods for simplicity.581

T-informed CLL algorithms are those that has the transition matrix as inputs, includes but not limited582

to Forward loss correction (FWD) and Unbiased risk estimate (URE). They are expected to utilize the583

information of the transition matrix to provide better performance when the complementary labels584

are not generated uniformly. The transition matrix, however, may not be accessible in practice. In585

this case, a uniform transition matrix Tu is typically provided to the algorithms as a default choice. In586

the benchmark in Section 5, we considered both scenarios in which the empirical transition matrix Te587

or the uniform transition matrix Tu was provided.588

FWD Forward loss correction utilizes the information of a transition matrix T in its loss function589

as in Eq. 3 [28]. Essentially, this method trains model f by minimizing the following loss function.590

R(g) =
1

N

N∑
i=1

ℓ(T⊤ sm(g(xi)), ȳi) (3)

where T is the transition matrix provided to the method and sm denotes the softmax function. We591

use FWD-U and FWD-R to indicate the cases that T equals Tu and Te, respectively.592

URE-GA Ishida et al. [9] proposed an unbiased risk estimator (URE) for learning from comple-593

mentary label. The loss of the URE is defined as follows,594

R(g) =
1

N

N∑
i=1

e⊤yi
(T−1)ℓ(g(xi)) (4)

URE, however, can go below zero during the optimization procedure, leading to overfitting of the595

model. To address this issue, Ishida et al. [10] proposed two tricks, non-negative risk estimator (NN)596

and gradient accent(GA). The former zeros out the gradient when the mini-batch loss goes below597

zero while the latter reverse the mini-batch gradient when the loss from any of the complementary598

class goes below zero. We replace the transition matrix T in the risk estimator 4 with Tu and Te for599

URE-GA-U and URE-GA-R.600

D.2 T-agnostic CLL algorithms601

T-agnostic CLL algorithms are those that do not take the information of the transition matrix, includes602

but not limited to Surrogate complementary loss (SCL) and Discriminative modeling (L-W/L-UW).603

5Due to space limitations, we only provided the results of MAE. The remaining results and discussions
related to the robust loss methods can be found in Appendix B.3.
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SCL Chou et al. [1] proposed to use the surrogate complementary loss (SCL) to address the604

overfitting tendency in URE. The loss function is defined as follows,605

R(g) =
1

N

N∑
i=1

ϕ(ȳi,g(xi)), (5)

where ϕ(·) is a surrogate loss for 0 − 1 loss. For instance, SCL-NL uses the negative log loss606

ϕ(ȳ,g(x)) = − log(1− pȳ) and SCL-EXP uses the exponential loss ϕ(ȳ,g(x)) = exp(pȳ).607

L-W/L-UW Gao and Zhang [7] proposed to use discriminative modeling to directly model the608

distribution of complementary labels. To do so, they proposed the following loss functions,609

R(g) =
1

N

N∑
i=1

− log(sm(1− sm(g(x))))ȳi
, (6)

where sm denotes the softmax function. They also proposed a weighting function to further improve610

the performance. The unweighted version is denoted as L-UW and the weighted version is denoted611

as L-W.612

D.3 Robust loss methods613

Ishiguro et al. [11] studied two conditions on loss functions: weighted symmetric condition and614

relaxation of weighted symmetric condition. Five loss functions that can be robust against the615

estimation error of the transition matrix were proposed. Their results can be further generalized to616

noisy complementary label learning. More experiment details for reproduction can be found in their617

paper.618

E Additional charts for CLCIFAR dataset with data cleaning619

We remove 0%, 25%, 50%, 75%, 100% of the noisy data in CLCIFAR10 and CLCIFAR20 datasets.620

We discover that by removing the noisy data in the practical dataset, the practical performance621

gaps vanish for all the CLL algorithms. Therefore, we can conclude that the main obstacle to the622

practicality of CLL is label noise.623

(a) FWD-(U/R) on CLCIFAR10 (b) FWD-(U/R) on CLCIFAR20
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(a) SCL-(NL/EXP) on CLCIFAR10 (b) SCL-(NL/EXP) on CLCIFAR20

F Label names of CLCIFAR20 and CLMicroImageNet20624

Table 9: The correspondence between index and label names of CLCIFAR20 and CLMicroIma-
geNet20 datasets.

Index CLCIFAR20 Label Name CLMicroImageNet20 Label Name

0 aquatic mammals tailed frog
1 fish scorpion
2 flowers snail
3 food containers american lobster
4 fruit, vegetables and mushrooms tabby
5 household electrical devices persian cat
6 household furniture gazelle
7 insects chimpanzee
8 large carnivores and bear bannister
9 large man-made outdoor things barrel

10 large natural outdoor scenes christmas stocking
11 large omnivores and herbivores gasmask
12 medium-sized mammals hourglass
13 non-insect invertebrates iPod
14 people scoreboard
15 reptiles snorkel
16 small mammals suspension bridge
17 trees torch
18 transportation vehicles tractor
19 non-transportation vehicles triumphal arch
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Table 10: The selected classes/folders for MicroImageNet10 (MIN10) and MicroImageNet20
(MIN20) are drawn from the TinyImageNet200 dataset. The labels provided in the table repre-
sent the first ordinary label for these classes.

Index MIN10 Folder MIN10 Label Name Index MIN20 Folder MIN20 Label Name

0 n02281406 sulphur-butterfly 0 n01644900 tailed frog
1 n02769748 backpack 1 n01770393 scorpion
2 n02963159 cardigan 2 n01944390 snail
3 n03617480 kimono 3 n01983481 american lobster
4 n03706229 magnetic-compass 4 n02123045 tabby
5 n03838899 oboe 5 n02123394 persian cat
6 n04133789 scandal 6 n02423022 gazelle
7 n04456115 torch 7 n02481823 chimpanzee
8 n07873807 pizza 8 n02788148 bannister
9 n09193705 alp 9 n02795169 barrel

10 n03026506 christmas stocking
11 n03424325 gasmask
12 n03544143 hourglass
13 n03584254 iPod
14 n04149813 scoreboard
15 n04251144 snorkel
16 n04366367 suspension bridge
17 n04456115 torch
18 n04465501 tractor
19 n04486054 triumphal arch

G Analysis between multiple label collection trials625

We carried out the same protocol for three independent trials to ensure the consistency of our results.626

The noise rates of CLCIFAR10 are 0.0398, 0.03882, and 0.03928 for three trials respectively. On the627

other hand, the noise rates of CLCIFAR20 are 0.02322, 0.02902, and 0.03196. These results show628

that the obtained noise rates are reliable and consistent. Besides, we also analyzed the distribution629

of complementary label within three trials as reported in Figure 10. The consistent distribution of630

complementary labels reveals the empirical human annotating biasedness within our protocol. Both631

analyses show that our protocol and discovery are solid and stable.632

(a) CLCIFAR10 (b) CLCIFAR20

Figure 10: The complementary label distribution of three independent trials of CLCIFAR10 dataset
(Left) and CLCIFAR20 dataset (Right).

H AutoAugment633

In addition to the standard data augmentation, RandomCrop and RandomHorizontalFlip, we also634

considered a more advanced one, AutoAugment [3]. The benchmark results using AutoAugment are635

provided in Table 11. We observe that AutoAugment can improve the performance in almost all of636

the secenarios with a cost of around double running time compared to standard data augmentation.637

Also, the overfitting tendency of the previous algorithms remains unsolved although we observe that638

early-stopping can still deliver better performance when using AutoAugment.639
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Table 11: Comparison of performance using AutoAugment on CLCIFAR and uniform-CIFAR
datasets in relation to tab:exp-1. The accuracy changes are shown in subscript, with enhanced
accuracy values being highlighted in bold.

uniform-CIFAR10 CLCIFAR10 uniform-CIFAR20 CLCIFAR20

methods valid_acc valid_acc (ES) valid_acc valid_acc (ES) valid_acc valid_acc (ES) valid_acc valid_acc (ES)

FWD-U 75.72+6.55 77.02+7.23 42.46+8.37 43.52+6.69 26.8+6.56 26.93+6.31 7.38−0.09 8.76+0.49
FWD-R 75.53+5.79 76.06+6.47 40.37+11.49 42.13+3.23 26.74+6.74 26.98+6.27 20.71+4.57 24.77+4.46
URE-GA-U 60.24+5.62 59.9+4.96 37.78+3.19 38.48+2.09 17.08+1.67 18.59+2.0 8.88+1.29 9.7−0.36
URE-GA-R 58.36+5.06 59.42+2.40 31.98+3.28 33.08+2.14 18.2+3.34 19.72+2.39 10.85+5.61 9.89+4.43
SCL-NL 76.6+9.45 76.83+8.19 38.4+4.6 43.22+5.41 23.11+3.07 26.62+5.94 7.34−0.24 8.34−0.19
SCL-EXP 75.9+11.04 75.75+10.35 40.95+6.36 41.63+4.67 24.96+5.56 26.64+5.61 7.21−0.34 8.47+0.36
L-W 67.2+10.99 71.07+11.89 33.89+5.85 38.16+3.61 22.28+7.93 23.19+4.08 7.58+0.5 8.64−0.1
L-UW 72.39+11.51 73.26+10.83 34.61+3.98 40.3+5.17 23.31+7.3 24.41+4.99 7.47+0.11 8.96+0.25
PC-sigmoid 45.72+17.52 46.53+7.24 33.24+8.86 40.72+4.84 12.81+3.09 13.84−2.61 14.15+4.88 17.06+2.8
MAE 61.26+3.89 63.41+4.91 21.74+5.44 23.65+4.21 20.03+3.41 21.79+4.16 5.18+0.07 6.68+0.81

I Broader impacts640

The datasets may advance the alorithms for learning from complementary labels. Those algorithms641

could learn a classifier with weak information. The privacy of the users may be easier to compromised642

as a result. We suggest the practitioners pay attention to the privacy issues when trying to utilize the643

collected datasets and the CLL algorithms.644

J Access to the dataset and codes for reproduce645

Please refer to the following link: https://github.com/ntucllab/CLImage_Dataset646
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