
NetworkGym: Reinforcement Learning Environments
for Multi-Access Traffic Management in Network

Simulation (Supplementary Material)

Momin Haider
UC, Santa Barbara
momin@ucsb.edu

Ming Yin
Princeton University

my0049@princeton.edu

Menglei Zhang
Intel Labs

menglei.zhang@intel.com

Arpit Gupta
UC, Santa Barbara

arpitgupta@cs.ucsb.edu

Jing Zhu
Intel Labs

jing.z.zhu@intel.com

Yu-Xiang Wang
UC, San Diego

yuxiangw@ucsd.edu

We open-source our primary code and offline datasets at github.com/hmomin/networkgym. Each1

section (except Section 3) in this document references assets relative to the root directory of this2

repository.3

1 Computational Resources4

We make use of four internal 12 GB NVIDIA TITAN Xp GPUs to perform our experiments. With5

these GPUS, to perform all experiments described in this document requires roughly 1 month of6

compute, assuming each of 8 different CPU processes is used to perform an agent evaluation. Using7

only a single process to perform agent evaluation would result in the compute increasing to roughly 38

months.9

2 Offline Data Collection10

For each of three different heuristic policies (throughput_argmax, system_default, and11

utility_logistic), we collect and store 64 episodes of offline data on our Network-12

Gym Multi-Access Traffic Splitting environment (denoted nqos_split). Each episode13

contains 10,000 steps worth of data. The associated configuration file (located at14

network_gym_client/envs/nqos_split/config.json) for the episodes is chosen with the15

following constraints in mind:16

• At initialization of each environment, four UEs are randomly stationed 1.5 meters above the17

x-axis between x = 0 and x = 80 meters. From there, they begin to bounce back and forth18

in the x-direction at 1 m/s for the entire duration of an episode.19

• The Wi-Fi access points are stationed at (x, z) = (30m, 3m) and (x, z) = (50m, 3m),20

respectively.21

• The LTE base station lies at (x, z) = (40m, 3m).22

• The only change in the configuration file between episodes is the random_seed parameter.23

We use random seed values from 0 to 63, inclusive, for this parameter.24

We store the resulting three offline datasets in the NetworkAgent/buffers directory. Each dataset25

is a folder that contains 64 .pickle files, one for each episode. Each .pickle file contains a tuple26

Submitted to the 38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets
and Benchmarks. Do not distribute.

https://github.com/hmomin/networkgym


of four numpy arrays in the following order: (states, actions, rewards, next states) with shapes ([9999,27

56], [9999, 4], [9999, 1], [9999, 56]), respectively.28

We also provide a shell script (offline_collection.sh) to generate data for offline learning. The29

heuristic policy that takes actions in the environments can be specified at the top of the script.30

3 Training Existing State-of-the-Art Offline RL Algorithms31

To test several existing state-of-the-art offline reinforcement learning (RL) algorithms, we make use of32

the Clean Offline RL library provided at github.com/tinkoff-ai/CORL, which uses the Apache33

2.0 license. More specifically, we modify their library at github.com/hmomin/CORL-compare to34

be compatible with our offline dataset generated on the NetworkGym simulator. The modifications we35

make to the offline RL algorithm files (located at algorithms/offline) only support the following36

purposes:37

• We switch the algorithmic implementations from using D4RL-specific loading to using our38

NetworkGym OfflineEnv class instead.39

• We remove all resulting unused D4RL-specific environment/dataset loading and evaluation40

code.41

• We modify the env parameter in the TrainConfig class for each algorithm to use an42

environment specified by one of our three offline datasets.43

• We modify the normalize boolean parameter (where applicable) in the TrainConfig class44

to toggle whether or not we would like the algorithm to perform feature normalization based45

on the offline dataset.46

Using these modifications, any of the algorithm scripts at algorithms/offline can be executed47

directly to train these algorithms. We use the default hyperparameters for all algorithms, except48

where we toggle the normalize parameter.49

4 Training PTD350

To train our implementation of Pessimistic TD3 (PTD3), we use the default hyperparameters in51

TD3+BC, except for the following modifications:52

• We train PTD3 for 10,000 steps, instead of 1,000,000 steps, which we do for TD3+BC.53

• We test PTD3 across various values of α and β; we then report the corresponding experi-54

mental results.55

We provide the shell script train_offline_ptd3.sh to train PTD3 on any offline dataset generated56

by one of our heuristic algorithms. The desired values of offline dataset, α, and β can be specified at57

the top of the script.58

5 Training Online Deep RL Algorithms59

We use stable-baselines3 to train two different online deep RL algorithms, PPO and SAC. We60

do so by initializing a random agent, then updating that agent through 8 successive phases. In61

each phase, we parallelize environment instantiations across 8 different random seeds, where each62

environment runs for 10,000 steps, resulting in a total of 64 different environment instantiations.63

In this way, the online learning algorithm trains across the same number of steps available in each64

of the offline datasets, to allow for proper comparison. Additionally, for our parallel environment65

random seeds, we use 0-7, inclusive, followed by 8-15, 16-23, ..., 56-63. We provide the shell script,66

train_online_parallel.sh, in order to perform this training process with PPO and SAC. We use67

the default hyperparameters specified by stable-baselines3.68

2

https://github.com/tinkoff-ai/CORL
https://github.com/hmomin/CORL-compare


6 Evaluating Trained Agents69

Finally, to evaluate a trained agent (whether online or offline), we place the resulting model file in the70

NetworkAgent/models directory. Then, the model filename (without extension) can be specified as71

the agent parameter at the top of the test_agent.sh shell script and the script can be executed to72

evaluate the agent on a single 3,200 step episode. In our experiments, we evaluate each agent across73

32 or 40 episodes (each with a different random_seed parameter), depending on the experiment.74

Each episode is 3,200 steps and the random_seed parameter takes on values between 128-159,75

inclusive, for 32 evaluation episodes or 128-167, inclusive, for 40 evaluation episodes. We otherwise76

use the same environment configuration details mentioned in Section 2.77

3


	Computational Resources
	Offline Data Collection
	Training Existing State-of-the-Art Offline RL Algorithms
	Training PTD3
	Training Online Deep RL Algorithms
	Evaluating Trained Agents

