
Appendices

A Benchmark Details
The full set of primitive tasks is summarized in Table 1 and the statistics detailed in Table 2.
Primitives can be individually visualized in Figs. 7-16. Each primitive figure shows an analogy where
the underlying relation is over a particular composable property of the scene/image.

Dataset Primitive Task Set Domain Size

3D Shapes

(1) Modify object color from source value to target value 10
(2) Modify floor color from source value to target value 10
(3) Modify wall color from source value to target value 10
(4) Modify scene orientation from source value to target value 15

BitMoji Faces

(1) Modify skintone from source value to target value 3
(2) Modify hair style from source value to target value 10
(3) Modify facial hair from source value to target value 5
(4) Modify eyewear from source value to target value 5

CLEVr Objects (1) Add object to the scene at position p 1000
(2) Delete object from the scene at position p 1000

Table 1: Summary of primitive tasks across all benchmarks

Dataset Examples per
task

#primitive
tasks

#primitive
extrapolation tasks

#k-composite
tasks

3D Shapes 3 80000 1000 1000 ∀k ∈ {2, 3, 4}
BitMoji Faces 3 80000 1000 1000 ∀k ∈ {2, 3}
CLEVr Objects 2 55000 1000 200 ∀k ∈ {2, 3, 4}

Table 2: Benchmark statistics

: :: :

Support Prompt Query Solution

Figure 7: 3D Shapes→Modify object color from source value to target value.

15

: :: :

Support Prompt Query Solution

Figure 8: 3D Shapes→Modify floor color from source value to target value.

: :: :

Support Prompt Query Solution

Figure 9: 3D Shapes→Modify wall color from source value to target value.

: :: :

Support Prompt Query Solution

Figure 10: 3D Shapes→Modify orientation from source value to target value.

Support Prompt Query Solution

: :: :

Figure 11: BitMoji Faces→Modify facial skintone from source value to target value.

16

: :: :

Support Prompt Query Solution

Figure 12: BitMoji Faces→Modify hair style from source value to target value.

: :: :

Support Prompt Query Solution

Figure 13: BitMoji Faces→Modify facial hair from source value to target value.

: :: :

Support Prompt Query Solution

Figure 14: BitMoji Faces→Modify eyewear from source value to target value.

: :: :

Support Prompt Query Solution

Figure 15: CLEVr→ Add object to position p.

17

: :: :

Support Prompt Query Solution

Figure 16: CLEVr→ Delete object from position p.

B LLMs as In-Context Compositional Learners
It is straightforward to see how the aformentioned framework subsumes LLMs. The input space X is
natural language and the compositional space C contains the dictionary of resultant tokens obtained
via a tokenizer Eϕ(.). The relation class R in this context is the set of underlying tasks spanning
numerical reasoning, reading comprehension, sentiment analysis, and question answering, to name a
few. The core Transformer model forms the executor Tα(., ., .) that simply concatenates A, B, and
C into a sequence prompt to compose the output D autoregressively. A de-tokenizer Dθ(.) constructs
natural language outputs from the generated tokens.

C Background
We give brief details of the Slot Attention Mechanism and Slot Attention Transformer (SLATE) that
form essential components of our best-performing agents.

C.1 Slot Attention: Object-Centric Learning frameworks decompose scenes into compositional
object files called slots. Slot Attention (SA) [6] is a powerful auto-encoder-based inductive bias
for learning such slots. The encoder fϕ(.) initializes a set of N symmetric and independent slots
S0
1:N ≜ {s01, s02, · · · , s0N} that iteratively compete over T timesteps to attend to the input scene X and

break symmetry to yield the final slots ST
1:N ≜ {sT1 , sT2 , · · · , sTn}. A decoder gθ (.) then individually

decodes each slot in the final set into the pixel space to yield N images I1:N and their corresponding
masks M1:N . A convex combination of the images, using masks as weights, reconstructs the scene
X̂ .

ST
1:N = fϕ(S

0
1:N , X) (10)

I1,M1 = gθ(s
T
1), · · · , IN ,MN = gθ(s

T
N). (11)

X̂ = M1 × I1 + · · ·+MN × IN (12)

C.2 Slot Attention Transformer (SLATE): Recent work [7] solves the pixel independence problem
in SA [6] by learning a latent discrete library from pixels using a dVAE [65, 66] and then running
SA over the vocabulary space of the dictionary. An Image-GPT decoder [30] learns to predict the
sequence of image latent from the slot prompts and, as a result, enables novel composition of slots.
We lay out the forward pass of the autoencoder architecture below but defer the finer details to the
original article.

Z1:L = {z1, · · · , zL} = fdV AE
ϕ (X)→ dVAE encoder (13)

ST
1:N = SAϕ(Z1:L, S

0
1:N)→ Slot Attention (14)

Ẑ1:L = gGPT
θ (ST

1:N)→ Image-GPT (15)

X̂ = gdV AE
θ (Ẑ1:L)→ dVAE decoder (16)

Here, X is the input, Z1:L is the latent discrete sequence of length L, and S1:N denotes the N slots.

D Learning Agents
D.1 Monolithic: The encoder eϕ(.) and decoder dθ(.) architectures are convolutional and deconvo-
lutional networks with four layers initialized as shown in Tables 3 and 4, respectively.

18

Layer Stride Activation Channels Weight Matrix

Conv 3× 3 2 ReLU 192 -
Conv 3× 3 2 ReLU 192 -
Conv 3× 3 2 ReLU 192 -
Conv 3× 3 2 ReLU 192 -

Fully Connected - ReLU - (192× Image Size/16× Image Size/16)× 192
Fully Connected - - - 192× 192

Table 3: Encoder eϕ(.) of the monolithic agent

Layer Stride Activation Channels Weight Matrix

Fully Connected - - - 192× 192
Fully Connected - ReLU - 192× (192× Image Size/16× Image Size/16)

Conv Transpose 3× 3 2 ReLU 192 -
Conv Transpose 3× 3 2 ReLU 192 -
Conv Transpose 3× 3 2 ReLU 192 -
Conv Transpose 3× 3 2 ReLU 3 -

Table 4: Decoder dθ(.) of the monolithic agent

The inference network fα(.) and executor network hβ(.) are feed-forward networks, as parameterized
in Table 5.

Layer Weight Matrix Activation

Fully Connected 384 × 192 ReLU
Fully Connected 192 × 192 ReLU
Fully Connected 192 × 192 ReLU

Table 5: The inference network fα(.) and executor network hβ(.) of the monolithic agent

D.2 Inpainting Model: The Inpainting model has been described in Fig. 17. The model architecture
follows from the task proposed in [47, 61] with the exception of the VQ-GAN replaced by a dVAE
and the model trained end-to-end from scratch. Hyperparameters across various test suites have been
specified in Table 6.

Module Hyperparameters 3D Shapes BitMoji Faces CLEVr Objects

Pixel and Discrete Space Image Size 64 128 128
Image Tokens 256 1024 1024

dVAE Vocabulary Size 512 1024 4096
Tau 0.1 0.1 0.1

ViT Encoder/Decoder
Num. Layers 4 8 8

Heads 4 8 8
Hidden Dims 192 192 192

Table 6: Hyperparameters for the Inpainting model.

D.3 Object-Centric Learner: The Context Encoder Transformer (CET) is a stack of L blocks, each
computing (a) self-attention over inputs followed by (b) cross-attention of inputs over context slots.
The cross-attention implementation of block l is shown in Algorithm 2.

D.4 Sequential Prompter: We visualize this learner in Fig. 18.

19

dVAE
Encoder

[Mask]

21 32 81 45

Discrete Sequence of masked
image tokens

ViT Encoder

Add masked tokens

ViT Decoder

Cross
Entropy

Encode non-masked
tokens

Figure 17: Visualization of the Inpainting model architecture. A dVAE encodes the masked input
into a discrete sequence. A ViT [60] encodes the non-masked context patches. Subsequently, masked
tokens are added to the encoded patches and decoded via another ViT to predict the discrete sequence.
The model is trained end-to-end via the popular Masked Autoencoder (MAE) reconstruction task [61]

Algorithm 2 Cross-Attention for Block l of CET

Require: A1:N ∈ RN×d, N slots of context A
Require: B1:N ∈ RN×d, N slots of context B
Require: C1:N

SA,l ∈ RN×d, N slots of input C obtained from the self-attention layer of block l

Output: C1:N
l , Context encoded input slots of block l

Get query tokens: QC = MLPQ(C
1:N
SA,l)

Get keys, values of A, KA, V A = MLPKV (A
1:N
l−1)

Get keys, values of B, KB , V B = MLPKV (B
1:N
l−1)

Concatenate K = [KA,KB] ∈ R2N×d

Concatenate V = [V A, V B] ∈ R2N×d

Compute Cross-Attention Matrix Att = softmax(QTK/
√
d)

Compute C1:N
l = Att× V

concatenate

SLATE
decoder

A B C

D

Figure 18: The Sequential Prompter concatenates slots from context prompts and a query together. It
further injects position embeddings to create an LLM-like sequential input prompt for the decoder.

20

E Hyperparameters
The hyperparameters for OCL are listed in Table 7. The ablated architectures follow the same setup
without the ablated module. All experiments were performed on NVIDIA A100 GPUs.

Module Hyperparameters 3D Shapes BitMoji Faces CLEVr Objects

Pixel and Discrete Space Image Size 64 128 128
Image Tokens 256 1024 1024

dVAE
Vocabulary Size 512 1024 4096
LR (no warmup) 5× 10−5 5× 10−5 1× 10−5

Tau 0.1 0.1 0.1

CET
Num. Layers 4 4 4

Heads 4 4 4
Hidden Dims 192 192 192

Image-GPT
Num. Layers 4 8 8

Heads 4 8 8
Hidden Dims 192 192 192

Slot Attention

Num. Slots 3 2 6
Iterations 3 3 7

Slot Heads 1 3 1
Hidden Dims 192 192 192

LR (no warmup) 5× 10−5 5× 10−5 1× 10−5

Training Setup

Batch Size 32 24 20
LR Warmup steps 15000 30000 30000

Peak LR 1× 10−4 1× 10−4 1× 10−4

Dropout 0.1 0.1 0.1
Gradient Clipping 1.0 1.0 1.0

Sampling Scheme
Temperature 0.7 0.7 0.1

Top-k 8 8 −
Top-p 0.75 0.75 0.5

Training Cost GPU Usage 15 GB 40 GB 40 GB
Days 1 3 5

Table 7: Hyperparameters for the Object-Centric Learner (OCL) instantiation and training setup

21

(a) (b) (c)

Figure 19: Inpainting model results for the i.i.d. validation set for (a) 3D Shapes (b) BitMoji Faces,
and (c) CLEVr Objects analogies. The lower right grid (shown within red boundaries) shows the
model completion.

F Experiments
F.1 Inpainting Validation Set Results: Fig. 19 shows the Inpainting completions for the i.i.d.
distribution validation set. The lower right grid is masked and subsequently filled in by the model.
While the model produces near-accurate solutions for this set, it is unable to perform coherent
out-of-distribution extrapolation.

F.2 Object Slot Emergence: Distinct object slots stay preserved in object-centric architectures (OCL
and Sequential Prompter) while training on primitive in-context learning tasks. We visualize the slot
formation in Figs. 20, 21, and 22 for 3D Shapes, BitMoji Faces, and CLEVr Objects, respectively.

F.3 Primitive Task Extrapolation: Figs. 23-25 show generated examples in the primitive task
extrapolation regime by different agents.

F.4 Composite-Task Extrapolation: Figs. 26-32 show generated examples in the composite tasks
extrapolation regime by different agents.

G Counterfactual Prompt Engineering
Algorithm 3 details the scene generation and prompt engineering mentioned in Sec. 6.5.

Algorithm 3 Scene Generation via Counterfactual Prompt Engineering

Require: S1:T , Asset scenes containing individual objects
Require E, Empty scene
Require S0, Initial Scene
Require: M(.), OCL Model pre-trained on CLEVr Objects analogies
Initialize Q← S0

for i in 1 · · ·T do
Set A← S0

Set B← Si

Set C← Q
D̂ = M(A,B,C)

Set Q← D̂

end for
Return: Q

22

(a) (b)

Figure 20: Slots from training OCLs on 3D Shapes: (a) pre-trained slots and (b) slots after Im-
Promptu training. The structure of slots remains preserved.

Broader Impact
This work demonstrates the potential for analogy-making to enable an in-context understanding of
composition rules over visual stimuli. The benchmarks and meta-learning framework presented in
this article provide a foundation for further exploration, which could lead to the development of
more efficient and effective models for image generation and other visual tasks. While the current
benchmark has no sampling bias over primitives, scaling up the models and the dataset can lead to
biased outputs and the generation of counterfactual images capable of fooling humans.

23

(a) (b)
Figure 21: Slots from training OCLs on BitMoji Faces: (a) pre-trained slots and (b) slots after
Im-Promptu training. There occurs a minor modification in slots where the structure of the eye is
merged with the slots carrying the facial contents.

24

(a) (b)

Figure 22: Slots from training OCLs on CLEVr Objects: (a) pre-trained slots and (b) slots after
Im-Promptu training. We observe that slots become more refined after Im-Promptu training.

25

A B Query Ground Truth Pixel Inpainting Monolithic Patch Seq. OCL

Figure 23: Primitive task extrapolation for the 3D Shapes benchmark.

26

A B Query Ground Truth Pixel Inpainting Monolithic Patch Seq. OCL

Figure 24: Primitive task extrapolation for the BitMoji Faces benchmark.

27

A B Query Ground Truth Pixel Inpainting Monolithic Patch Seq. OCL

Figure 25: Primitive task extrapolation for the CLEVr Objects benchmark.

28

A B Query Ground Truth Pixel Inpainting Monolithic Patch Seq. OCL

Figure 26: Two-composite task results on the 3D Shapes benchmark.

29

A B Query Ground Truth Pixel Inpainting Monolithic Patch Seq. OCL

Figure 27: Three-composite task results on the 3D Shapes benchmark.

30

A B Query Ground Truth Pixel Inpainting Monolithic Patch Seq. OCL

Figure 28: Four-composite task results on the 3D Shapes benchmark.

31

A B Query Ground Truth Pixel Inpainting Monolithic Patch Seq. OCL

Figure 29: Two-composite task results on the BitMoji Faces benchmark.

32

A B Query Ground Truth Pixel Inpainting Monolithic Patch Seq. OCL

Figure 30: Three-composite task results on the BitMoji Faces benchmark.

33

A B Query Ground Truth Pixel Inpainting Monolithic Patch Seq. OCL

Figure 31: Two-composite task results on the CLEVr Objects benchmark.

34

A B Query Ground Truth Pixel Inpainting Monolithic Patch Seq. OCL

Figure 32: Three-composite task results on the CLEVr Objects benchmark.

35

	Introduction
	Related Work
	Object-Centric Learning:
	Analogical Reasoning:
	Compositional Generative Models:
	Modular Representations and Attention:

	Benchmarks
	3D Shapes Image Prompts:
	BitMoji Faces Image Prompts:
	CLEVr Objects Image Prompts:

	Methods
	In-Context Learning as Analogy Completion:
	Im-Promptu Learning:

	Learning Agents
	Pixel Baseline:
	Monolithic Learner:
	Inpainting Model:
	Object-Centric Learner (OCL):
	Sequential Prompter:
	Patch Learner:

	Experiments
	Training Setup:
	Primitive Task Extrapolation:
	Composite Task Extrapolation:
	Analysis:
	`Counterfactual Prompt Engineering' with Im-Promptu:

	Conclusion
	Benchmark Details
	LLMs as In-Context Compositional Learners
	Background
	Slot Attention:
	Slot Attention Transformer (SLATE):

	Learning Agents
	Monolithic:
	Inpainting Model:
	Object-Centric Learner:
	Sequential Prompter:

	Hyperparameters
	Experiments
	Inpainting Validation Set Results:
	Object Slot Emergence:
	Primitive Task Extrapolation:
	Composite-Task Extrapolation:

	Counterfactual Prompt Engineering

