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ABSTRACT
Online chatting has become an essential aspect of our daily inter-
actions, with stickers emerging as a prevalent tool for conveying
emotions more vividly than plain text. While conventional image
emotion recognition focuses on global features, sticker emotion
recognition necessitates incorporating both global and local fea-
tures, along with additional modalities like text. To address this, we
introduce a topic ID-guided transformer method to facilitate a more
nuanced analysis of the stickers. Considering that each sticker will
have a topic, and stickers with the same topic will have the same
object, we introduce a topic ID and regard the stickers with the
same topic ID as topic context. Our approach encompasses a novel
topic-guided context-aware module and a topic-guided attention
mechanism, enabling the extraction of comprehensive topic con-
text features from stickers sharing the same topic ID, significantly
enhancing emotion recognition accuracy. Moreover, we integrate a
frequency linear attention module to leverage frequency domain
information to better capture the object information of the stick-
ers and a locally enhanced re-attention mechanism for improved
local feature extraction. Extensive experiments and ablation stud-
ies on the large-scale sticker emotion dataset SER30k validate the
efficacy of our method. Experimental results show that our pro-
posed method obtains the best accuracy on both single-modal and
multi-modal sticker emotion recognition.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; • In-
formation systems→ Information systems applications.

KEYWORDS
sticker emotion analysis, multimodal learning, sentiment analysis

1 INTRODUCTION
With the popularity of the internet and information techniques,
online chatting has become an indispensable part of our daily lives.
In the process of online chat, in addition to using pure text messages
for communication, users often use stickers, one kind of image
with abundant information, for better expression. The sticker, as
an effective carrier of pictures and text [13], often plays the role of
a picture worth a thousand words in the chat process, which can
effectively reflect the emotions of users [28]. Therefore, recognizing
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the emotion of the sticker used in chatting can help us understand
the emotion of the conversation.

In recent years, image-based emotion recognition which is one of
the most important parts of visual affective analysis [18], especially
the realistic images [33] and facial expressions [24]. Complicated
visual elements are contained in the image including both low-level
and high-level, local and global. With the availability of large-scale
data sets and the continuous development of deep learningmethods,
there has been a lot of research on pre-training networks on large-
scale data sets and migrating to image emotion recognition tasks
[22, 36]. Thesemethods have achieved encouraging results in image-
based emotion recognition. However, compared to normal images,
stickers can be comprehensive representations of various visual
elements such as cartoon characters, facial expressions, and textual
illustrations [2]. Due to the complexity of information and lack of
sufficient data, few studies have targeted specific emoji recognition.
Ref [17] proposed the first large-scale Sticker Emotion Recognition
dataset called SER30K, which provided the basis and convenience
for sticker emotion recognition.

Recognizing the emotion of stickers is more challenging than
realistic image sentiment recognition since both the local and global
information is the same important. Despite being frequent users of
stickers, there are differences in how the sender and the recipient
interpret the emotions of the stickers [29]. Stickers are usually
grouped by theme, and stickers under the same theme will have
multiple different emotional labels. On the one hand, the theme
can help with finding the subject of the stickers for the global
feature extraction, which can set the emotional tone. On the other
hand, the differences between the emotions of the stickers from the
same theme will be depicted in the details, which are also the local
features. Therefore, to fully explore the global features and local
features is crucial for sticker emotion recognition.

Against this background, we proposed a novel topic-guided
context-aware method to capture both global and local features of
stickers. Firstly, we assign each sticker a topic ID. Stickers that come
from the same original sticker or with the same theme will share
the same topic ID as Fig. 1. We further regard the feature from the
stickers with the same topic ID as the context feature of the stickers.
As we can see in Fig. 1, conducting context-aware on the sticker
and its transformed version can achieve local detail enhancements.
For the stickers with the same theme, context-aware can help the
model focus on the subject of the sticker and better grasp the global
feature. Specifically, we design a novel topic-Guided context-aware
module (TGCA-Module) and introduce it into a pre-trained pyramid
vision transformer (PVT) model [31], which is called TGCA-PVT
to better improve the performance on sticker emotion recognition.
We also design a locally enhanced re-attention (LERA) to enhance
local details and a topic guided attention (TG-Attention) to enhance
the global features according to topic ID. We conduct extensive ex-
periments on the large-scale sticker emotion recognition dataset

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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(a) Transformed sticker with same emotion label.

(c) Same themes with different emotion label.

Fear Fear

Happiness Sadness

(b) Local detail enhancement.

(d) Focus on sticker subject.

Panda Bear

Figure 1: Examples of stickers sharing the same topic ID. (a)
Image transformations, like altering the image, maintain
the topic ID and emotional labels. Conducting topic context-
awareness on these can enhance local details, as seen in (b).
(c) Stickers under the same topic ID but with varying emo-
tional labels. Conducting topic-guided context-awareness on
these can aid in better understanding the image subject and
extracting effective features, as shown in (d).

SER30K [17] and image emotion recognition dataset FI [40] to evalu-
ate our proposed method comprehensively. The main contributions
of this work can be summarized as follows:

• Based on the subject information of emoticons and the data
enhancement methods commonly used in the image process-
ing field, we introduce the concept of Topic ID and propose a
TGCA-Module and a TG-Attention based on Topic ID tomine
the subject information shared by emoticons with the same
subject, as well as the local enhancement features brought
by the image transformation.

• We design a novel frequency linear attention module (FLA-
Module) to better capture the frequency domain informa-
tion for sticker object feature extraction and a novel LERA-
Module to the ability of the proposed model to extract local
details of stickers for better emotion recognition.

• Extensive experiments and ablation studies are conducted
on the public large-scale sticker emotion recognition dataset
SER30K to verify the effectiveness of our proposed method.

2 RELATEDWORK
2.1 Image-based emotion recognition.
Affective image recognition is now widely conducted to analyze
how humans feel about what they see in the computer vision field
[46]. One of the biggest challenges is to fill the affective gap between
bitmap and abstract emotion [12]. Previous methods generally use
CNNs to capture the global features of the image and then analyze
the emotion contained [43]. Chen et al. [3] and Peng et al. [20] used
deep CNN models to classify the image emotion and demonstrated
that using deep CNN models is superior to previous handcrafted
techniques and machine learning-based methods (such as SVM).

Furthermore, Zhu et al. [49] proposed a multi-task learning frame-
work that leverages CNN to extract different levels of features
and RNN to integrate the learned features. Ankita et al. [21] also
combined RNN and CNN better to integrate the multi-level visual
attributes for sentiment classification. Furthermore, the emotional
cues are thought to be contained in the regional features or details
of the image, therefore, some recent studies focus on fully exploit-
ing the visual emotion with regional features or shallow visual
details. Yang et al. [38] first used an off-the-shelf objectness tool to
capture features of the object regions and utilized CNN to compute
the corresponding sentiment scores of each region, then aggregated
these features to obtain the prediction of image emotion. Rao et
al. [22] proposed the MldrNet to consider global and local image
views and capture image semantics, aesthetics, and low-level visual
features for emotion recognition. Considering the success of the
feature pyramid network, Rao et al. [23] proposed a region-based
deep CNN model to capture multi-level features for visual senti-
ment recognition. Although these methods can effectively capture
the emotional features of images, they are not completely suitable
for sticker emotion recognition because of the specificity of stickers.
Local features, object relationships, theme information, and even
texts are all the emotion-related information of stickers, and that’s
what we consider in our work.

2.2 Sticker and Emotion.
Stickers, which have more expressive information including di-
verse animations, multiple objects, and texts than emoticons and
emojis, are considered one of the fundamental features of instant
messaging [25]. As multi-modal information [27], stickers can help
people fill in important information lost during online chats, such
as gestures and facial expressions, in face-to-face conversations
[7]. Similar to emoticons and emoji, stickers can enhance human
interaction in online chatting, and also improve the expression of
emotion for people [5]. The sticker theme represents the character
image adopted within a sticker package, which includes TV series,
cartoons, anime, etc. Users could utilize stickers in cartoon themes
with detailed illustrations to express their emotions, such as inti-
macy [30]. Because of their expressive power, stickers have more
advantages for emotional intensity, positivity, and intimacy [16],
but they also have drawbacks, that as emotional misinterpretation
[2]. Since the sticker must be sent as a separate message, emotional
misinterpretation of stickers often occurs more frequently than
emoticons and emojis. Thus, it can be seen that achieving accurate
emotion recognition of stickers is a very challenging task, and it is
also more meaningful for machines to understand human emotions.

3 METHODOLOGY
We design our TGCA-PVT with the pre-trained PVT model and
Bert model as the backbone network. For the characteristics of
emotion recognition of emoticons, several modules are introduced
to further improve the accuracy of emotion recognition. The whole
framework of our proposed TGCA-PVT is shown in Fig. 2.

3.1 Backbone Network
Considering the great performance of the PVT models in capturing
the global relation information of image [31], we adopt a pre-trained
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Figure 2: Overview of our proposed TGCA-PVT model. The PVT and the BERT are used for the visual encoder and the textual
encoder respectively. A FLA-Module is designed to capture the frequency domain information. We then design the TGCA-
Module to capture the context features from the input with the same topic ID and the LERA-Module to enhance the local feature
of stickers. The TG-Attention is designed to enhance the features with topic-guided features for better emotion recognition.

PVT model, which contains four stages, as the backbone visual en-
coder. Specifically, given a sticker input 𝑋 ∈ R3×𝐻×𝑊 , where 𝐻
and𝑊 represent the height and width of the sticker, PVT will first
use a Conv2d layer to project it and then flatten it as a sequence
of the patch features 𝑋𝑝𝑎𝑡𝑐ℎ ∈ R𝑁×𝐶 , where 𝑁 = 𝐻𝑊

𝑃2 and 𝑃 is the
patch size, this process is also called the Patch Embed. During each
stage, we introduce the FLA-Module, which will be illustrated in
detail in Section 3.2, to enhance the frequency features of the stick-
ers before feeding them to the Patch Embed. Then we concatenate
an additional CLS token 𝑋𝐶𝐿𝑆 ∈ R1×𝐶 ahead of the patch features
to capture the global and local patches better. What’s more, we also
add the position embedding 𝑋𝑝𝑜𝑠 to deal with the position-agnostic
problem of the input patch tokens before feeding it to the encoder
of the PVT model. Therefore, the input of the encoder in each stage
can be illustrated as Eq. 1.

𝑋 𝑙𝑖𝑛 = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑋 𝑙𝐶𝐿𝑆 , 𝑋
𝑙
𝑝𝑎𝑡𝑐ℎ

) + 𝑋 𝑙𝑝𝑜𝑠 , 𝑋 𝑙𝑖𝑛 ∈ R(𝑁+1)×𝐶 (1)

where 𝑋 𝑙
𝑖𝑛

represents the input of encoder in the 𝑙-th stage, and
𝐶𝑜𝑛𝑐𝑎𝑡 represents the concatenation operation.

The encoder of the PVT model uses spatial-reduction attention
(SRA) to replacemulti-head attention (MHA) in the first three stages.
Similar to MHA, two linear projections are used to obtain the 𝑋 𝑙

𝑖𝑛
into the query, key, and value embeddings as Eq. 2 to Eq. 5.

𝑄𝑙 =𝑊 𝑙
𝑞𝑋

𝑙
𝑖𝑛 + 𝑏𝑙𝑞, (2)

𝐾𝑉 𝑙 =𝑊 𝑙
𝑘𝑣
𝑋 𝑙𝑖𝑛 + 𝑏𝑙

𝑘𝑣
, (3)

𝐾𝑉 ′𝑙 = 𝑅𝑒𝑠ℎ𝑎𝑝𝑒 (𝐾𝑉 𝑙 ), (4)

𝐾𝑙 = 𝐾𝑉 ′𝑙 [0],𝑉 𝑙 = 𝐾𝑉 ′𝑙 [1], (5)

where 𝑄𝑙 ∈ R(𝑁 𝑙+1)×𝐶𝑙
is the query embedding, and the key em-

bedding and the value embedding are obtained by a linear pro-
jection so 𝐾𝑉 𝑙 ∈ R(𝑁 𝑙+1)×(𝐶𝑙×2) . Then the 𝐾𝑉 𝑙 is reshaped to
𝐾𝑉 ′𝑙 ∈ R2×(𝑁 𝑙+1)×𝐶𝑙

, and final separate it to 𝐾𝑙 ,𝑉 𝑙 ∈ R(𝑁 𝑙+1)×𝐶𝑙
.

𝐶𝑙 represents the hidden dimension of the 𝑙-th stage.
The spatial-reduction calculation is shown as Eq. 6:

𝑆𝑅(𝑥) = 𝐿𝑁 (𝑅𝑒𝑠ℎ𝑎𝑝𝑒 (𝑋 ′, 𝑆𝑙 )𝑊 𝑆 ), (6)

where 𝑋 ′ is the spatial feature that obtained by remove the 𝑋𝐶𝐿𝑆
from 𝑋𝑖𝑛 , LN represents the layer normalization, 𝑆𝑙 represents the
reduction ratio 𝑙-th stage, and𝑊 𝑠 is a learnable linear transforma-
tion. The whole process of SRA is shown in Eq. 7 and Eq. 8

𝑆𝑅𝐴(𝑄,𝐾,𝑉 ) = 𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1, ..., ℎ𝑒𝑎𝑑𝑁𝑙
)𝑊𝑂 , (7)

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑄

𝑖
, 𝑆𝑅(𝐾)𝑊𝐾

𝑖 , 𝑆𝑅(𝑉 )𝑊
𝑉
𝑖 ), (8)

where ℎ𝑒𝑎𝑑𝑖 represents the 𝑖-th self-attention head, 𝑁𝑙 is the head
numbers in the 𝑙-th stage, and 𝑊𝑂 ∈ R𝐶𝑙×𝐶𝑙

, 𝑊𝑄

𝑖
,𝑊𝐾

𝑖
,𝑊𝑉

𝑖
∈

R𝐶
𝑙×𝑑ℎ𝑒𝑎𝑑 , where 𝑑ℎ𝑒𝑎𝑑 is the the dimension of each attention head.

The CLS token is then projected by a linear transformation𝑊𝑔𝑙𝑜𝑏𝑎𝑙
to better capture the global features 𝑥𝑙𝑔 and then concatenate it with
𝑋 after SR. The attention head operation is shown as Eq. 9:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 ( 𝑄𝐾𝑇√︁
𝑑ℎ𝑒𝑎𝑑

)𝑉 (9)
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Figure 3: Framework of the proposed FLA-module.

Finally, the output feature 𝑋 𝑙𝑜𝑢𝑡 of the 𝑙-th stage is fed to TCA-
Module and the next stage. If the sticker input has textual informa-
tion, we adopted a pre-trained BERT model to obtain the contextu-
alized word representations 𝑋𝑡 .

3.2 FLA-Module
Inspired by Frequency MLP [39], we design a Frequency Linear
Attention module (FLA-module) capture the frequency domain
information for the object feature enhancement, which can help
distinct the object from the background [47]. The proposed FLA-
Module is shown in Fig. 3. Given the input 𝑋 , we first use a faster
Fast Fourier Transform (FFT) to get the frequency components
𝑋𝑓 𝑟𝑒 = 𝑥𝑟 + 𝑗𝑥𝑖 , which is a complex number feature. According
to the multiplication of complex numbers, we introduce learnable
weights𝑊 =𝑊𝑟 + 𝑗𝑊𝑖 and 𝐵 = 𝐵𝑟 + 𝑗𝐵𝑖 to conduct frequency linear
computation as Eq. 10.

ℎ𝑟 + 𝑗ℎ𝑖 = 𝜎 (𝑥𝑟𝑊𝑟 − 𝑥𝑖𝑤𝑖 + 𝐵𝑟 ) + 𝑗𝜎 (𝑥𝑟𝑊𝑖 + 𝑥𝑖𝑤𝑟 + 𝐵𝑖 ) (10)

Then we introduce squeeze and excitation block (SE block) [14] to
recalibrate channel-wise feature responses as Eq. 11.

ℎ′𝑟 + 𝑗ℎ′𝑖 = 𝑆𝐸 (ℎ𝑟 ) + 𝑗𝑆𝐸 (ℎ𝑖 ), (11)

where SE represents the SE block. Furthermore, we add the original
frequency information and then stack them to obtain a complex
number as the output features. Finally, we use the inverse fast
Fourier transform (IFFT) to get the frequency-enhanced features 𝑦
of the input 𝑋 . The whole process is shown as Eq. 12

𝑦 = 𝐼𝐹𝐹𝑇 (𝑦𝑟 + 𝑗𝑦𝑖 ) = 𝐼𝐹𝐹𝑇 ((𝑥𝑟 + ℎ′𝑟 ) + 𝑗 (𝑥𝑖ℎ′𝑖 )) (12)

3.3 TGCA-Module
To better capture the theme information, we first assign each sticker
a topic ID as illustrated in Section 1. Given a batch of stickers input
𝑋 𝑙𝑜𝑢𝑡 , we will first group them by topic id and then a Conv1d layer
with a kernel size of 1 is used to capture the channel correlation
of the same group of features. A skip connection is used to ensure
specificity between features in the same group. The whole process
operation is shown as Eq. 14.

𝑋 𝑙𝑐 = 𝑋
𝑙
𝑜𝑢𝑡 +𝐶𝑜𝑛𝑣1𝑑 (𝑋 𝑙𝑜𝑢𝑡 ), (13)

Then for each group, we adopt the average of all the stickers as the
group context feature, each sticker will obtain the corresponding
context feature and we stack them as the context-aware features.
Then we also utilize the𝑊𝑔𝑙𝑜𝑏𝑎𝑙 to obtain the global context 𝑥𝑙𝑐𝑔 .

With the two global features from the CLS token in the encoder and
from the context-aware features, we further design a Topic Context
Aware layer to fuse them inspired by the attention mechanism. The
operation of the Topic Context Aware layer is shown in Eq. ??.

𝑋 ′𝑙
𝑔 = 𝑋 𝑙𝑔 + 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑋 𝑙𝑔 (𝑋 𝑙𝑐𝑔)𝑇 )𝑋 𝑙𝑐𝑔, (14)

In this way, the global feature can effectively learn the context
features of the stickers with the same topic ID. Then we stack
the global feature of each stage as 𝑋𝑔𝑙𝑜𝑏𝑎𝑙 to represent the global
representation of the sticker.

3.4 LERA-Module
To better capture the relationship between the region information
and the sticker emotion, we proposed a local enhanced re-attention
module (LERA-Module) inspired by the Ref. [17]. Since the different
local information like the expressions and the poses has different
scales, LERA is utilized in each stage of the PVT encoder to exploit
multi-scale features. In the attention mechanism of each encoder,
we can also obtain the attention weight distribution among patches
as Eq. 16.

𝑎𝑙 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇√︁
𝑑ℎ𝑒𝑎𝑑

), (15)

where 𝑎𝑙 is the corresponding attention weights in the 𝑙-th stages.
Considering that each encoder has 𝐾𝑙 attention layers, we regard
the attention weights in each attention layer as Eq. 16.

𝑎𝑛
𝑙
= [𝑎𝑛1

𝑙
, 𝑎𝑛2
𝑙
, ..., 𝑎𝑛3

𝑙
], 𝑖 ∈ 1, 2, ..., 𝐾𝑙 , (16)

where 𝑎𝑛
𝑙
is the 𝑖-th attention head in the 𝑙-th stage. Then by multi-

plying the attention weight of each head at the same stage, we can
obtain the final attention weights as Eq. 17.

𝑎
𝑓 𝑖𝑛𝑎𝑙

𝑙
=

𝐿∏
𝑙=1

𝑎𝑙 =

𝐿∏
𝑙=1

[𝑎1
𝑙
, 𝑎2
𝑙
, ..., 𝑎𝑁

𝑙
], (17)

where 𝑁 is the number of attention heads in each attention layer.
Then we introduce a selection hyperparameter 𝛼 to select the patch
features ℎ𝑙𝑜𝑐𝑎𝑙 with the highest attention weights. At the same time,
we introduce the maximum value of patch features in the patch
dimension to fine-tune the important local information selected
according to the attention mechanism. We first use a global max
pooling to obtain the maximum feature ℎ𝑚𝑎𝑥 , then we expand it
to the same dimension of ℎ𝑙𝑜𝑐𝑎𝑙 and get the final local features
captured as Eq. 18 shows.

ℎ′𝑙
𝑙𝑜𝑐𝑎𝑙

= ℎ𝑙𝑜𝑐𝑎𝑙 + 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (ℎ𝑙𝑜𝑐𝑎𝑙 (ℎ𝑚𝑎𝑥 )𝑇 )ℎ𝑚𝑎𝑥 , (18)

where ℎ′𝑙
𝑙𝑜𝑐𝑎𝑙

represents the final local feature of the 𝑙-th stage. Fi-
nally, we use a linear transformation to keep the final local feature
of each stage as the same dimension and stack them as the local
representation of the sticker, which is set as 𝑋𝑙𝑜𝑐𝑎𝑙 . Furthermore,
with the global representation 𝑋𝑔𝑙𝑜𝑏𝑎𝑙 we obtained before, we con-
catenate the 𝑋𝑙𝑜𝑐𝑎𝑙 to 𝑋𝑔𝑙𝑜𝑏𝑎𝑙 as the final visual representation.

3.5 Prediction Module
With the given visual feature and text feature, we first used two lin-
ear transformations to project them into the same dimension. Then
we concatenate the textual feature to the visual feature and add a
position embedding to it. Inspired by agent attention [9], we design
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Figure 4: Framework of the proposed TG-Attention.

a topic-guided attention to better capture features from stickers
with the same topic ID, as shown in Fig. 4. After obtaining 𝑄,𝐾,𝑉
with linear transformation, we utilize a TCA-Module to obtain a
Topic Token from the 𝑄 and then feed it as the query and 𝐾,𝑉 to a
Softmax Attention to obtain the Topic Features. Furthermore, we
use the𝑄 as the query, Topic Tokens as the key, and Topic Features
as the value to conduct a Softmax Attention. In this way, we can
better fuse the sticker representation and context features from the
stickers with the same topic ID. Finally, we utilize an MLP and a
linear prediction head to get the emotion recognition results.

4 EXPERIMENTATION
This section systematically evaluates our proposed TGCA-PVT
for sticker emotion recognition and also extends to image-based
emotion recognition.

4.1 Experimental Settings
Datasets.We evaluate our TGCA-PVT model on the benchmark
sticker-based emotion recognition datasets SER30K [17] 1. Further-
more, to demonstrate the effectiveness of our TGCA-PVT model
in the field of image emotion recognition, we conduct experiments
on the image-based emotion recognition dataset FI [40] 2. Both of
these two datasets are visual sentiment analysis datasets, but differ-
ent from the FI dataset with only images, the SER30K dataset is a
sticker dataset in which all stickers have the corresponding theme
and some images have corresponding text modal information.

SER30K dataset contains 30,739 stickers including 1,887 stikcer
themes collected from the sticker image website 3. Each sticker is
annotated with the emotion label by three annotators and belongs
to a common theme. Stickers within the same theme have similar
subject characters. There are 7 categories of sentiment labels (i.e.
Anger, Disgust, Fear, Happiness, Neutral, Sadness, and Surprise, and
5,886 stickers inside are annotated with text information. More
details about the samples contained in different emotion labels are
provided in Table 1. Conducting emotion recognition on this dataset
can help better investigate the effect of stickers on users’ emotions
in online chatting on social media.

FI dataset is a widely used large-scale visual sentiment analy-
sis dataset obtained on two popular social platforms, Flicker and

1https://github.com/nku-shengzheliu/SER30K
2https://qzyou.github.io/projects/sa-ds/
3https://getstickerpack.com

Instagram. It contains 23,308 images with 8 sentiment categories
(i.e. Amusement, Anger, Awe, Contentment, Disgust, Excitement, Fear,
and Sadness, and more than 1,000 samples are contained by each
category. There’s no text information or themes about the images.
Since the images have no theme, we use the file name to generate
the topic id of the image.

Table 1: Detailes of datasets used.

SER30K Samples Samples with text FI Dataset Samples

Anger 2,750 439 Amusement 4,942
Disgust 211 17 Anger 1,266
Fear 826 58 Awe 3,151
Happiness 11,255 1,965 Contentment 5,374
Neutral 10,815 2,832 Disgust 1,658
Sadness 3,359 346 Excitement 2,963
Surprise 1,523 229 Fear 1,032
- - - Sadness 2,922

Total 30739 5886 Total 23,308

Implementation Details. Using the same setup as the Ref [17],
we randomly divided the SER30K data set into training, validation,
and test sets at a ratio of 7:1:2. We implemented our approach based
on the Pytorch framework [19]. All of the experiments in the work
are conducted on NVIDIA GTX 4090. For textual input, the max
sequence of features obtained by the pre-trained Bert model is set
as 30, and the feature dimension is 768. For the pre-trained PVT
encoder for visual features, we adopt the PVT-small [31] pre-trained
on the ImageNet1k [4]. The proposed TGCA-PVT is optimized using
the SGD algorithm with a learning rate of 10𝑒−4. The size of the
sticker input to the model is 448x448. We also set the batch size as
16 and the epoch numbers as 50.

4.2 Baselines
To evaluate the proposed method for sticker emotion recognition on
the SER30K dataset, we first compare our proposed model with var-
ious baselines in image emotion analysis without text information,
ranging from classical non-numerical methods such as SVM and
RF to state-of-the-art deep neural models including AlexNet [15],
VGG [48], ResNet [10] and ViT [6]. Additionally, we investigate
advanced models incorporating attention mechanisms to capture
emotional information from sticker regions effectively. Specifically,
we consider WSCNet [35], PDANet [45], and LORA-V [17], which
can utilize attention mechanisms to enhance emotional feature
extraction from sticker images, demonstrating their potential for
improving sticker emotion recognition performance. Then for stick-
ers with text information, we compare our proposed method with
some multimodal emotion recognition methods including WSCNet-
T and PDANet-T, which use WSCNet and PDANet to capture the
sticker information and then use the same way as LORA to encode
the text feature and fuse vision feature and text feature. We also
compare multimodal fusion methods including LORA [17], TFN
[41], and MCB [8]. By comparing these methods, our proposed
method’s performance can be effectively verified.

For the FI dataset, we introduce vision sentiment analysis mod-
els including Sentibank based on psychological theories and web
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Table 2: Performance of the recently proposed emotion recognition methods in the SER30K Dataset. The precision of each
emotion category as well as the overall classification accuracy are reported. All values in the table are in percentages.

Modality Model
Precision on each emotion category

AccuracyAnger Disgust Fear Happiness Neutral Sadness Surprise

Image

SVM 25.66 22.22 28.96 63.48 67.18 34.34 23.42 51.02
RF 74.07 100.0 100.0 52.52 50.84 75.00 75.00 52.21
AlexNet 20.00 00.00 00.00 53.33 49.67 33.13 10.52 50.87
VGG 37.40 00.00 41.02 73.55 60.76 51.52 35.14 62.57
ViT 52.72 32.00 53.70 74.68 62.92 56.55 40.31 64.94
ResNet 50.30 26.66 57.01 76.63 65.94 64.69 48.33 67.76
PDANet 58.10 26.66 61.68 79.60 64.76 63.50 47.10 68.68
WSCNet 58.77 0.00 74.62 79.49 63.50 65.96 49.53 68.98
LORA-V 54.71 50.00 64.15 78.04 67.03 66.25 44.68 69.22
TGCA-PVT-V 57.17 57.14 68.42 76.92 68.96 65.48 52.40 70.23

Image+Text

SVM 22.61 9.33 12.36 65.36 61.99 33.05 20.02 45.05
RF 90.00 100.0 100.0 52.81 51.27 82.22 66.66 52.55
TFN 00.00 00.00 00.00 58.13 51.74 32.98 00.00 54.19
MCB 35.16 18.18 50.70 64.64 58.66 49.11 32.93 58.18
PDANet 60.09 19.23 59.29 80.57 65.02 61.08 48.98 68.93
WSCNet 56.64 36.84 60.00 77.85 66.72 67.04 49.18 69.45
LORA 59.18 50.00 63.09 75.83 67.78 67.60 54.14 70.51
TGCA-PVT 65.67 35.73 66.09 79.57 69.39 63.62 53.04 71.63

mining [1], PAEF which extracts principles-of-art-based emotion
features [44], DeepSentibank that improves the Sentibankwith deep
CNNs [3], deep CNNs models for image classification including
Fine-tuned AlexNet [15], MldrNet that combines deep representa-
tions of different levels [22], Fine-tuned VGG16 [26], label distri-
bution learning proposed by Yang et al. [37], Fine-tuned ResNet50
[10], the sentiment constraints and the hierarchical relation of emo-
tion labels proposed by Yang et al. [36], MAP proposed by He et
al. that performs pyramidal segmentation and pooling for visual
sentiment analysis [11], WSCNet [35], a deep CNN model to ex-
tract and integrate the content information from the high layers
and style information from the low layers, which is proposed by
Zhang et al. [43], SOLVER that constructs Emotion Graph based on
semantic concepts and visual features for visual emotion analysis
[32], stimuli-aware visual emotion analysis method proposed by
Yang et al. [34], MAM that incorporates different visual concepts
for emotion analysis [42] and LORA-V [17]. Accordingly, we use
the proposed single-modal model TGCA-PVT-V for comparison.

4.3 Experimental Results
Experimental results on the SER30K dataset are depicted in Table 2.
There are two tasks, the first one is to use the image modality to
conduct emotion recognition and the second one is to use both the
image and text modalities. We provide the average accuracy of all
categories and the precision of each emotion category as the same
as the Ref. [17]. We can see that our proposed TGCA-PVT achieves
the best average accuracy. Although some methods have higher
precision on some specific categories, their overall accuracy is not
as good as our designed method. On the one hand, this situation is
because there is a phenomenon of class imbalance in the data set,

and on the other hand, the model is prone to emotional confusion,
which leads to high precision when the accuracy is not high.

Specifically, for single-modal sticker emotion recognition, we
remove the text feature encoder in the TGCA-PVT and keep the
other modules the same, which is called TGCA-PVT-V. Compared
to traditional machine learning methods, most of the deep learning
methods have an obvious advantage in accuracy. Especially the
methods that utilize spatial attention mechanisms to capture the
regional emotion features. In contrast, other models do not capture
the emotional features in emoticons well.

For multimodal sticker emotion recognition, text features are
additional inputs. The textual information in emoticons can provide
sufficient emotional features. However, the category imbalance
is also more severe due to the lower number of emoticons with
textual features in the SER30K dataset. As a result, the simpler
model instead decreases in recognition accuracy, while the effective
methods such as PDANet,WSCNet, LORA, and our proposed TGCA-
PVT can achieve better accuracy. We can see that introducing
textual features and multi-modal fusion can improve them by 0.25%,
0.47%, 1.29%, and 1.38% respectively.

We also compare our proposed method with the state-of-the-art
image emotion recognition methods as illustrated in Table 3. We
can see that our proposed TGCA-PVT-V utilizing the topic-guided
context-aware module and the frequency attentionmodule achieves
the best accuracy. Compared to the LORA-V which also utilizes
the vision transformer, our method also has an improvement of
0.56%. The reason such enhancement is not as pronounced as on the
SER30K dataset is that on a traditional image emotion recognition
dataset such as FI, there is no segmentation of image themes, and
thus the theme guidance module only provides the ability to mine
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local features in terms of image enhancement. Such experimental
results also demonstrate the robustness of our proposed method in
analyzing the emotions contained in pictures.

Table 3: Average accuracy of each sentiment analysis model
on the FI [40] dataset.

Method Acc(%)

Sentibank [1] 49.23
PAEF [44] 46.13
DeepSentibank [3] 51.54
Fine-tuned AlexNet [15] 59.85
MldrNet [22] 65.23
Fine-tuned VGG16 [26] 65.52
Yang et al. [37] 67.48
Fine-tuned ResNet50 [10] 67.53
Yang et al. [36] 67.64
He et al. [11] 68.13
WSCNet [35] 70.07
Zhang et al. [43] 71.77
SOLVER [32] 72.33
Yang et al. [34] 72.42
MAM [42] 71.44
LORA-V [17] 72.49

TGCA-PVT 73.05

5 ANALYSIS AND DISCUSSION
We also conduct ablation studies and hyper-parameter analysis
to better verify the effect of our proposed method on the SER30K
dataset with both image and text. Furthermore, we show some of
the attention map visualization results to help understand the effect
of our model on sticker emotion recognition.

5.1 Ablation Study
As illustrated in Section. 3, we design several modules to better
improve the performance of the backbone network for sticker emo-
tion recognition. Specifically, we conduct extensive ablation ex-
periments to evaluate the validity of the modules we designed.
The "Base" model indicates the original backbone network that
is PVT-small. Then we remove our designed components from
the TGCA-PVT one by one for comparison, the compared results
are shown in Table. 4. We can see that compared to the backbone
network PVT-small, our proposed method brings an obvious im-
provement. At the same time, when removing the TGCA-module
or LERA-Module, the accuracy has a relatively large drop, which
means these two modules greatly improve the model’s performance
for sticker emotion recognition. In addition, when we remove TG-
Attention, we can observe that the accuracy of the model decreases
by 0.44%, validating the effectiveness of the module. From the re-
sults of these ablation experiments, our designed Topic ID-based
TGCA-Module with TG-Attention can effectively mine the direct
contextual features of emojis under the same topic, to utilize the
topics of emojis to achieve more accurate emotion recognition.

Table 4: Ablation experiments of TGCA-PVT. We remove
each module designed one by one and then report the emo-
tion recognition accuracy. "FLA" represents the FLA-Module,
"TGCA" represents the TGCA-Module, "LERA" represents the
LERA-Module, and "TG-A" represents the TG-Attention in
the prediction module.

Methods FLA TGCA LERA TG-A Acc.(%)

Base 68.35√ √ √
71.49√ √ √
70.97√ √ √
70.93√ √ √
71.19

TGCA-PVT
√ √ √ √

71.63

We further target the designed LERA module, which we analyze
by removing the modules one by one from the stage of the PVT
architecture. The details and experimental results are depicted in
Table 5. Specifically, we started by keeping the LERA-Module for
the last stage only and then added it stage by stage. We can observe
that the effectiveness of the model is gradually improved as more
and more stages of the LERA-Module are used. This means that by
utilizing the pyramid architecture, local features at different scales
can be fused more effectively, thus allowing the model to extract
the rich regional information in the stickers more efficiently, and
ultimately achieve accurate sticker emotion recognition.

Table 5: Ablation experiments of LERA-Module. "Stage" indi-
cates a stage that uses the LERA-Module.

Stage 4 4+3 4+3+2 4+3+2+1

Acc.(%) 70.66 70.90 71.11 71.61
F1(%) 69.91 70.18 70.22 70.93

5.2 Hyper-parameter Analysis
The only hyper-parameter used in our proposed method is the
selection hyper-parameter 𝛼 used in LERA-Module. The value of
𝛼 affects the model’s ability to extract localized features. When 𝛼
is small, we only select fewer attention weights to compute local
features, and the model will only focus on image regions with larger
weights, while when 𝛼 is too large, regional features that are not
related to the emotional features of the image will also be extracted
by the model, which introduces redundant information, and brings
about performance degradation. Therefore, it is particularly impor-
tant to consider the value of 𝛼 . We selected 1 to 10 as the values
of 𝛼 for our experiments, and a comparison of the experimental
results is shown in Table 6. We can observe that when 𝛼 is 8, our
proposed TGCA-PVT achieves the best accuracy and F1 score. This
means that when the value of 𝛼 is taken as 8, the model can effec-
tively capture the features of the regions in the sticker that contain
emotional information. Meanwhile, since the input image size is
448x448 and the feature map size outputted by the PVT model in
the last stage is 14x14, the size of the extracted local features is 64
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(a) Visualization of stickers that correctly identify emotions by TGCA-PVT. 

(b) Visualization of stickers that wrongly identify emotions by TGCA-PVT. 
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Figure 5: The visualization results of the proposed TGCA-PVT on the SER30K dataset with attention weights. For each sticker,
we show the original image on the left and the attention weight visualization results on the right.

when 𝛼 is 8, which can contain close to 1/3 of the region of the
feature map.

Table 6: Performance of TGCA-PVT with different values of
𝛼 in LERA-Module.

𝛼 1 2 3 4 5

Acc.(%) 71.18 70.86 71.26 71.15 70.87
F1(%) 70.65 70.31 70.59 70.36 70.14

𝛼 6 7 8 9 10

Acc.(%) 70.85 70.95 71.61 71.24 71.51
F1(%) 70.31 70.13 70.93 70.41 70.89

5.3 Qualitative Results
To better show the performance of our proposed TCGA-PVT, we
conduct some visualization results with the attention weights ob-
tained from the last stage in the visual encoder. Specifically, we
average the last attention weights of the last stage and then blend
them into the original image to conduct visualization, as depicted
in Fig. 5. We can observe that the attention mechanism in the visual
coder pays more attention to the key parts of the sticker subject’s
eyes, mouth, and other emotional flow, and at the same time, when
there are two subjects, the attention mechanism also embodies the
attention on both at the same time, which makes the model achieve

a more accurate emotion recognition result. However, excessive
attention to these regional features can also cause the model to
misrecognize, as in the first three misclassification examples in (b),
although the model pays attention to the key regions, the neglect
of other features leads to incorrect recognition results. In the last
misclassification example, the model is not able to distinguish the
primary and secondary relationships between multiple subjects
well, thus focusing more on the secondary subjects, which eventu-
ally leads to misclassification. This also analyzes the shortcomings
of the existing methods and provides us with ideas for further work.

6 CONCLUSION
In this paper, we designed a novel topic-guided context aware
to conduct better sticker emotion recognition. We introduce the
concept of topic ID to help the model learn the common subject
features of the same topic stickers and also design several modules
to improve the performance based on the pre-train vision encoder
PVT-small and text encoder Bert. Extensive experimental results
on the large-scale sticker emotion dataset SER30K and the image
emotion recognition FI dataset verify the effect of our proposed
TGCA-PVT. We also find that making the model recognize the
multi-subject nature of stickers and distinguish the relationship
between different subjects is the key to further improving the emo-
tion recognition results of stickers. We hope that this work will
contribute to advancing the understanding of emotion recognition
in online chat as well as emotion understanding.
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