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Abstract
Skills are temporal abstractions that are intended
to improve reinforcement learning (RL) perfor-
mance through hierarchical RL. Despite our intu-
ition about the properties of an environment that
make skills useful, a precise characterization has
been absent. We provide the first such charac-
terization, focusing on the utility of deterministic
skills in deterministic sparse-reward environments
with finite action spaces. We show theoretically
and empirically that RL performance gain from
skills is worse in environments where solutions to
states are less compressible. Additional theoreti-
cal results suggest that skills benefit exploration
more than they benefit learning from existing ex-
perience, and that using unexpressive skills such
as macroactions may worsen RL performance.
We hope our findings can guide research on au-
tomatic skill discovery and help RL practitioners
better decide when and how to use skills.

1. Introduction
In most real-world sequential decision making problems,
agents are only given sparse rewards for their actions. This
makes reinforcement learning (RL) challenging, as agents
can only recognize good behavior after long sequences of
good decisions. This issue can be mitigated by leverag-
ing temporal abstractions (Sutton et al., 1999), also known
as skills. A skill is a high-level action — such as a fixed
sequence of actions (macroaction) or a sub-policy with a ter-
mination condition (option) — that is expected to be useful
in a large number of states. Skills can be hand-engineered to
perform subtasks (Pedersen et al., 2016; He et al., 2011) or
learned from experience (Machado et al., 2017; Bacon et al.,
2017; Barreto et al., 2019; Kipf et al., 2019; Jiang et al.,
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2022; Li et al., 2022). Incorporating skills into the agent’s
action space (hierarchical RL) allows it to act at a higher
level and reach goals in fewer steps, which may improve
exploration and thus RL performance.

Despite their appeal, skills have not seen widespread use. In
fact, they were not involved in most major breakthroughs
and applications of RL, such as surpassing human-level
performance in all Atari games (Badia et al., 2020), RLHF
for aligning LLMs with human preferences (Ouyang et al.,
2022), AlphaTensor for faster matrix multiplication (Fawzi
et al., 2022), and AlphaDev for faster sorting (Mankowitz
et al., 2023). A reason skills have not been widely adopted is
that they sometimes do not improve RL performance and it
is unclear how to determine beforehand whether they would.
While several methods have been developed to automati-
cally discover skills, most of them require the practitioner
to decide whether to use skills at all. To our knowledge,
LEMMA (Li et al., 2022) is the only algorithm that automat-
ically decides whether skills are useful by learning the opti-
mal number of skills — zero would mean that skills do not
help. However, this is accomplished by optimizing a heuris-
tic objective that does not necessarily reflect the benefits to
RL. Other skill discovery algorithms such as Option-Critic
(Bacon et al., 2017), eigenoptions (Machado et al., 2017),
deep skill chaining (Bagaria & Konidaris, 2019), LOVE
(Jiang et al., 2022) and COPlanLearn (Nayyar et al., 2023)
determine the number of skills using a hyperparameter. A
better understanding of how exactly skills benefit RL may
guide research in automatically determining whether skills
would be useful in an environment and the optimal number
to learn if they are. Such an understanding can also provide
insight into why skills do not work in certain environments
as well as help practitioners better decide whether to use
skills for a given RL task.

Our work provides a theoretical analysis of when and how
skills and hierarchical RL benefit RL performance in deter-
ministic sparse-reward environments. We hope our insights
will serve to guide research in automatic skill discovery
including the automatic determination of whether to use
skills, and allow practitioners to better understand the kinds
of environments where skills are helpful. In summary, we
make the following contributions:
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• We define two metrics — p-exploration difficulty and
p-learning difficulty — that quantify the hardness of
exploration and learning from experience in a deter-
ministic sparse-reward environment with a finite action
space. We show empirically that these metrics corre-
late strongly with the sample complexity of several RL
algorithms (Section 3).

• We define two closely related metrics that measure the
incompressibility of solutions to states generated by
the environment. Under mild assumptions, we prove
lower bounds on the change in p-learning difficulty
and p-exploration difficulty due to deterministic skills
in terms of the incompressibility measures. We show
that skills are better suited to decreasing p-exploration
difficulty rather than p-learning difficulty, and less ex-
pressive skills are less apt at decreasing the difficulty
metrics. In particular, for each difficulty metric, we
demonstrate the existence of environments where incor-
porating macroactions provably increases it (Sections 4
and 5).

• We show empirically that macroactions and deep neural
options are less beneficial in environments with higher
incompressibility (Section 6).

• We describe how to derive skill learning objectives
from our incompressibility metrics (Section 7).

All proofs are found in Appendix E. Code for experi-
ments are publicly available at https://github.com/
uranium11010/rl-skill-theory.

2. Preliminary Definitions
We first introduce basic definitions related to deterministic
sparse-reward Markov decision processes (MDPs), which
are the focus of this paper. We choose to focus on sparse-
reward environments since skills are purported to alleviate
the sparse-reward problem. Despite our focus on determinis-
tic environments, a large number of environments both in the
standard RL literature (e.g., the original Atari game environ-
ments (Bellemare et al., 2013) and MuJoCo (Todorov et al.,
2012)) and in applications of RL (e.g., program synthesis
(Ellis et al., 2019; Mankowitz et al., 2023) and mathemat-
ical reasoning (Kaliszyk et al., 2018; Poesia et al., 2021;
Wu et al., 2021)) are deterministic. Furthermore, by fo-
cusing on a special case of MDPs, our hardness results —
lower bounds on the change in difficulty due to skills —
suggest that improving RL using skills in the general case
of stochastic environments can be at least as hard. Finally,
Appendix F.1 provides preliminary results on generalizing
to stochastic environments, suggesting that many insights
obtained from studying deterministic environments apply to
stochastic ones as well.

Definition 2.1. A deterministic sparse-reward MDP
(DSMDP) is defined by a 4-tupleM = (S,A, T, g) where S
is the state space, A is the action space, T : (S\{g})×A→
S is the deterministic transition function and g ∈ S is the
goal state.

Note that environments that have multiple goal states can
also be formulated as DSMDPs by merging these goal states
into a single goal state. The CompILE2 environment intro-
duced in Section 3.3 is one such example — see Appendix B
for more details.

Borrowing terminology commonly used in symbolic rea-
soning domains, we say “solve a state” as a shorthand for
“finding a sequence of actions that lead to the goal state,”
and we call such a sequence of actions a solution. This is
formalized below.
Definition 2.2. A solution to a state s ∈ S \ {g} of
a DSMDP M = (S,A, T, g) is a sequence of actions
(a1, . . . , al) ∈ Al (l ≥ 1) such that applying the sequence
of actions starting in s results in the goal state g:

T (s, (a1, . . . , al)) = g, (1)

where T (s, (a1, . . . , al)) := T (· · · (T (s, a1), a2) · · · , al)
denotes the result of applying action sequence (a1, . . . , al)
to state s. Here, l > 0 is called the length of the solution.
We will denote by SolM(s) the set of solutions to s and
dM(s) = minσ∈SolM(s) |σ| the length of a shortest solution
to s.

Note that a state can have no solutions. For example, in
domains where we’d like to formalize the notion of “death,”
one could transition to a “dead state” that goes to itself for
all actions taken, and that dead state has no solutions. In
contrast, states that have at least one solution are called
solvable states.

Some results in this paper assume that no two states share a
solution, a property we call solution separability.
Definition 2.3. A DSMDP is solution-separable if no se-
quence of actions is a solution to more than one state.

Any DSMDP with invertible transitions is solution-
separable. Here, we say a DSMDP (S,A, T, g) has invert-
ible transitions if s = s′ whenever T (s, a) = T (s′, a) and
T (s, a) is either solvable or the goal. Examples include (a)
all twisty puzzles such as the Rubik’s cube; (b) grid world
domains where taking a vacuous action (e.g., walking into
a wall or picking up a non-existent object) leads to instant
death; (c) sliding puzzles where taking a vacuous action
leads to instant death.

The following definition formalizes RL in the episodic set-
ting as applied to a DSMDP.
Definition 2.4. In reinforcement learning (RL) in the
episodic setting, an agent interacts with an environment
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(MDP) in episodes to learn a policy π(a | s) that optimizes
the expected cumulative reward from one episode. For a
DSMDP, the optimal policy is

argmax
π

E
s0∼p0

(s0,a1,...,al,sl)∼Rolloutπ(s0)

[
γl−11[sl = g]

]
. (2)

Here, p0 is the initial state distribution and 0 < γ ≤ 1 is
the discount factor. Rolloutπ(s0) is the result of rolling
out policy π starting in state s0, stopping when either the
goal state is reached or H actions have been taken, where
H is called the horizon and sometimes considered part of
the definition of an MDP. Note that when γ = 1, then
Equation (2) becomes maximizing the probability that the
policy solves s0 ∼ p0.

Now, we introduce skills. Whereas skills need not be deter-
ministic in general, we are studying deterministic environ-
ments and will thus focus on deterministic skills.
Definition 2.5. A deterministic skill in a DSMDP is a func-
tion from states to finite action sequences. In other words,
for each state, we specify the sequence of actions to be taken
if the agent initiates the skill in that state. Note that this
sequence is allowed to be empty.

We will refer to deterministic skills as simply “skills.”

The prototypical example of an unexpressive class of skills
is macroactions.
Definition 2.6. A macroaction is a skill that produces the
same sequence of actions of length greater than 1 regardless
of the state in which the skill is initiated.

Incorporating skills into a DSMDP is called a skill augmen-
tation, which is more precisely defined below.
Definition 2.7. A DSMDP M0 = (S,A0, T0, g) aug-
mented with a finite set of skills Z is the DSMDPM+ =
(S,A+, T+, g) where A+ = A0 ∪ Z, T+(s, a) = T0(s, a)
for a ∈ A0, and T+(s, a) = T0(s, a(s)) for a ∈ Z.1 We
sayM+ is the A+-skill augmentation ofM0. We call A0

the base action space and A+ the skill-augmented action
space. Furthermore, if Z ̸= ∅ so that A0 is a proper subset
of A+, then we say the skill augmentation is strict.

For simplicity, when discussing a base environment M0

and its skill augmentationM+, we will abuse notation by
writing subscripts “+” or “0” in places where they should
really be “M+” or “M0”, such as d0(s) and Sol0(s) for
dM0

(s) and SolM0
(s). We allow repetition of skills and

skills are also allowed to overlap with base actions. In such
cases, Z and A+ should be interpreted as multisets.

1Technically, T+ is a partial function as T+(s, z) is undefined
if unrolling the skill z reaches the goal state before the unrolling
finishes. Thus, in this case, the agent is considered not to have
reached the goal state. (However, our HRL implementation in our
experiments follows the more common convention that the agent
is considered successful in this situation.)

3. Quantifying RL Difficulty in a Deterministic
Sparse-Reward Environment

To study how much skills can reduce the difficulty of apply-
ing RL to a DSMDP, we need to first quantify this difficulty.
Unfortunately, existing MDP difficulty metrics fail to cap-
ture RL difficulty in DSMDPs since they were not designed
to directly estimate sample efficiency or regret, but instead
appear in loose asymptotic performance bounds of RL al-
gorithms (see Appendix A for a brief survey). As a result,
they correlate poorly with actual performance measures like
total regret (Conserva & Rauber, 2022). We therefore aim
to develop difficulty metrics for DSMDPs by directly esti-
mating an RL performance measure — in our case, sample
efficiency — and to verify them empirically.

Below, we introduce two metrics quantifying the difficulty
of applying RL to a deterministic sparse-reward environ-
ment, assuming that the environments compared have the
same state space (e.g., they are different skill augmentations
of the same base environment). We motivate these metrics
using heuristic arguments that estimate the sample efficiency
of an RL agent in the episodic setting without assuming any
particular RL algorithm. We then experimentally test how
well the metrics correlate with the sample efficiency of 4
popular RL algorithms in 32 macroaction augmentations of
each of 4 base environments.

3.1. Quantifying Difficulty in Learning from Experience

To quantify the complexity of learning a DSMDP from exist-
ing experience, suppose that the agent has gathered enough
experience to effectively reduce the remaining learning prob-
lem to a planning problem. Then Lemma 3.1 shows that the
number of iterations through the entire state space needed
to learn the value of a state is linear in the minimum length
of a solution to that state.

Lemma 3.1. Suppose we apply value iteration with dis-
count rate γ = 1 and learning rate α to a DSMDP
M = (S,A, T, g) with a finite action space. In particu-
lar, we initialize V (s) ← 0 for s ̸= g and V (g) ← 1, and
at time t, we update the entire table using

V (s)← (1−α)V (s)+αmax
a

V (T (s, a)) for all s ̸= g.

(3)
If α = 1, then the number of time steps until the value of
a solvable state s becomes its true value (i.e., 1) is dM(s).
If α < 1, then the number of time steps until the value of a
solvable state s is within ε of its true value (i.e., 1−V (s) <
ε) is

Θ

(
dM(s) + log(1/ε)

α

)
.

Since each iteration has a complexity of Θ(|S||A|), the
total complexity for learning the value of a state s is
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Θ(|S||A|dM(s)) for constant α, ε. If we apply the same in-
tuition to the RL setting, then we would expect that learning
the optimal policy at a state s requires Θ(dM(s)) “itera-
tions,” where one “iteration” involves the agent sampling
experiences that effectively cover the entire space of state-
action pairs. Thus, as a rough estimation, approximately
Θ(|Seff||A|dM(s)) samples are needed to learn the policy at
state s. Here, |Seff| is some effective size of the state space,
counting only those states that we “care about,” i.e., those
with positive p0(s) or that are part of (short) solutions to
states with positive p0(s). For constant |Seff|, this estimation
of the sample complexity motivates using a weighted aver-
age of |A|dM(s) over states s to measure the complexity of
learning from experience.

Definition 3.2. LetM = (S,A, T, g) be a DSMDP with
finite action space A. For a probability distribution p on
solvable states, the p-learning difficulty ofM is defined as

Jlearn(M; p) = |A|Es∼p[dM(s)] (4)

where dM(s) is the length of a shortest solution to s.

The distribution p assigns higher importance to states that
we care more about learning to solve. If p0 denotes the
initial state distribution of the MDP, then p should be higher
for states with higher p0. For simplicity, we can just take p
to be p0.

The p-learning difficulty can be viewed as a generaliza-
tion of diameter (Auer et al., 2008). While the diame-
ter of an MDP is originally defined for the continuous
learning setting, a natural extension to the episodic setting
for a DSMDP is the maximum length of a solution to a
state, maxs̸=g dM(s). Ignoring the |A| factor, this is the
p-learning difficulty when p is zero for all but the state(s)
with the largest dM(s).

3.2. Quantifying Difficulty in Exploration

p-learning difficulty does not take into account the complex-
ity of gathering the needed experience: learning a state s
starts to take place only after the agent has seen state-action
pairs that form a chain leading from s to the goal state.
Thus, as a simplification, an agent’s learning process in the
episodic setting can be roughly divided into two stages: the
first stage is dominated by exploration, where the agent tries
to find reward signal and gather experience; the second stage
is dominated by learning, where the agent learns from the
experience. The sample efficiency of the learning stage is
captured by the p-learning difficulty. Let us now motivate
the definition of p-exploration difficulty by estimating the
sample efficiency of the exploration stage.

Suppose that the initial exploration policy is a uniformly
random policy, and let q(s) denote the probability that such
a policy solves s in one episode. Assuming that the policy

remains roughly uniform until the agent finally solves s for
the first time, the expected number of episodes until this
happens is 1/q(s), and the number of environment steps
taken is H/q(s) where H is the horizon. To obtain an upper
bound on the expected total number of steps taken to find a
solution to every state, we simply sum this expression over
all states to arrive at Nsum = H

∑
s

1
q(s) . Note that this can

be a significant overestimate of the true sample complexity:
solving a state s often updates the agent in a way that helps
it solve states whose solutions contain s. We will address
this issue later.

For a constant horizon H and state space size, Nsum ∝
Es∼p [1/q(s)] where p is a uniform distribution over all
states. As with the p-learning difficulty, we generalize this
to allow different weights p(s) to be assigned to different
states. For example, if a state has small q(s) but the MDP’s
initial state distribution p0 assigns almost zero probability to
s, then we can afford not to learn to solve s and this can be
reflected by having p(s) ≈ 0. For simplicity, we can simply
set p to p0, as with the p-learning difficulty.

We now address the issue of overestimating the sample
complexity. In practice, this overestimation is more sig-
nificant when q(s) for different s are more disparate. In
DSMDPs where states vary in difficulty (vary in q(s)),
solving easy states (states with large q(s)) generally up-
dates the agent in a way that helps it find solutions to
harder states (states with small q(s)). For this reason, we
find empirically (Appendix D.2) that the arithmetic mean
NAM = Es∼p[1/q(s)] is outperformed by the geometric
mean NGM = exp(Es∼p[log(1/q(s))]), which is lower than
NAM when there’s variety in 1/q(s). Although this estima-
tion of exploration sample complexity is quite rough, it is
difficult to make better estimates without knowing details
of the MDP structure and RL algorithm. Also, the resul-
tant definition of p-exploration difficulty already performs
well empirically on several environments for several RL
algorithms (Section 3.3).

Finally, we take the logarithm of NGM as that simplifies
notation in our theoretical results. We also replace the fixed
horizon with a random horizon sampled from a geometric
distribution to simplify theoretical analysis.
Definition 3.3. LetM = (S,A, T, g) be a DSMDP with
finite action space A. For a probability distribution p on solv-
able states and 0 ≤ δ < 1, the δ-discounted p-exploration
difficulty ofM is defined as

Jexplore(M; p, δ) = Es∼p[− log qM,δ(s)] (5)

where

qM,δ(s) :=
∑

σ∈Sol(s)

(
1− δ

|A|

)|σ|

(6)

is the probability that the following policy solves s: at every
time step, terminate with probability δ and choose an action
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uniformly at random with probability 1− δ. qM,δ(s) is also
the probability that the uniformly random policy solves s
within a horizon of length H , where H +1 is sampled from
the geometric distribution with parameter δ.

3.3. Experiments

In motivating p-learning difficulty and p-exploration diffi-
culty, we made significant approximations to estimate the
sample complexity without assuming a particular environ-
ment or RL algorithm. Despite this, we show empirically
that a combination of the two difficult metrics predicts sam-
ple complexity well across a variety of environments and
RL algorithms.

We study four deterministic sparse-reward environments:
(a) CliffWalking, a simple grid world (Sutton & Barto,
2018); (b) CompILE2, the CompILE grid world with visit
length 2 (Kipf et al., 2019); (c) 8Puzzle, the 8-puzzle; (d)
RubiksCube222, the 2x2 Rubik’s cube. For the compu-
tation of p-learning difficulty and p-exploration difficulty to
be feasible, p needs to have finite support over a sufficiently
small number of states (∼ 107 or less). To mitigate this lim-
itation, we chose environments for which there exist larger
versions with a similar MDP structure. For example, the
2x2 Rubik’s cube should behave similarly to the 3x3 cube,
4x4 cube, etc., and the 8-puzzle should behave similarly to
the 15-puzzle, 24-puzzle, etc.

Each environment has 32 action space variants, with one
being the base environment (the trivial skill augmentation)
and 31 with different sets of macroactions. One macroac-
tion augmentation is calculated using LEMMA (Li et al.,
2022) on offline data derived from breadth-first search; 5
are variations of that macroaction augmentation; and 25 are
generated randomly. More details are given in Appendix B.

We evaluate how well a combination of p-learning difficulty
and p-exploration difficulty captures the sample complexity
of 4 RL algorithms on the different variants of each environ-
ment. The algorithms are: (a) Q-learning (Watkins, 1989);
(b) Value iteration (Bellman, 1957), modified to the RL set-
ting, similar to (Agostinelli et al., 2019); (c) REINFORCE
(Williams, 1992), made tabular by parameterizing the policy
directly with the logits of the actions; (d) Deep Q-networks
(DQN) (Mnih et al., 2015).

According to Sections 3.1 and 3.2, we expect Jlearn to scale
roughly linearly with the sample complexity of learning
from experience and exp(Jexplore) to scale roughly linearly
with the sample complexity of exploration. We thus choose
a weighted average J = λJlearn + (1 − λ) exp(Jexplore)
(0 ≤ λ ≤ 1) to represent the combined difficulty. The
discount δ used in the p-exploration difficulty is set to 1/H ,
where H is the environment’s horizon. The sample complex-
ity N and the combined difficulty J spanned several orders

of magnitude in CliffWalking and CompILE2, so we
took the logarithm of both before computing their Pearson
correlation coefficient. The value of λ was chosen to maxi-
mize this correlation. The results are summarized in Table 1.
Most correlation values are at least around 0.7, demonstrat-
ing that combining p-learning difficulty and p-exploration
difficulty allows us to capture a significant portion of the
variation in RL sample efficiency on different action space
variants of the same environment.

We also conducted experiments to directly test Lemma 3.1
by computing the correlation between the number of itera-
tions it takes value iteration to converge and the p-weighted
average solution length (Appendix D.1). In addition to state
value iteration, we also considered Q-value iteration to sim-
ulate Q-learning. With two exceptions, all correlations are
above 0.9, thus empirically corroborating Lemma 3.1.

4. Effect of Skills on Learning from
Experience

Part of our goal is to understand what makes a particular
set of skills helpful for an RL agent. One intuition articu-
lated in prior work (Jiang et al., 2022; Kipf et al., 2019) is
that skills help compress optimal trajectories, making them
shorter and thus more likely to be found during exploration.
But, conversely, data distributions can be provably incom-
pressible when their entropy is too high (Cover, 1994). As a
result, we expect that skills are less likely to be helpful when
the distribution of optimal trajectories in the environment
is incompressible. This intuition is made precise by The-
orem 4.2, which states that the ratio between the new and
old p-learning difficulties after an A+-skill augmentation
is lower-bounded by the product of an incompressibility
measure and a factor penalizing large |A+|. Before stating
the theorem, let’s first define this incompressibility measure.
Definition 4.1. Let M0 = (S,A0, T0, g) be a DSMDP
with finite |A0| > 1 and M+ = (S,A+, T+, g) its A+-
skill augmentation. Let p be a distribution over solvable
states. The A+-merged p-incompressibility is defined as

ICA+
(M0; p) = sup

0<ε<1

H[P+]− log
(
1−ε
ε

)
Es∼p[d0(s)] log

(
|A0|
1−ε

) . (7)

Here, P+ is the distribution of canonical shortest solutions in
M+ to states sampled from p, where the canonical shortest
solutions are chosen such that H[P+] is maximized. Note
that H[P+] is the entropy of the state distribution after states
with the same canonical solution inM+ have been merged
into one state. Thus, it has the property H[P+] ≤ H[p],
where equality holds iff all states in the support of p have
different canonical solutions.

A+-merged p-incompressibility can be understood as the
coding efficiency of using base actions to write solutions to
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Table 1. Correlations between logN and log J where N is the number of environment steps the agent takes to learn the environment and
J = λJlearn + (1− λ) exp(Jexplore) is a weighted average of the p-learning difficulty and the exponential of the p-exploration difficulty.
Convergence criteria include reaching a certain reward threshold r∗ (0.5 for RubiksCube222 and 0.9 for the other environments) or
reaching a certain threshold ∆Q∗ or ∆V ∗ in the p-weighted average error in action or state values (0.2 for RubiksCube222 and 0.05
for the other environments). The value of λ ∈ [0, 1] was chosen so that the correlation was maximized. Data points where the algorithm
never converges before the experiment run ends (100M environment steps) were excluded from the calculation of the correlation. The
reported errors are standard errors of the mean over 5 random seeds.

log JCliffWalking log JCompILE2 log J8Puzzle log JRubiksCube222

Q-Learning logNr≥r∗ 0.947 ± 0.006 0.792 ± 0.025 0.403 ± 0.036 0.857 ± 0.023
logN∆Q≤∆Q∗ 0.953 ± 0.008 0.786 ± 0.023 0.671 ± 0.056 0.937 ± 0.003

Value iteration logNr≥r∗ 0.933 ± 0.009 0.825 ± 0.018 0.693 ± 0.051 0.785 ± 0.031
logN∆V ≤∆V ∗ 0.951 ± 0.015 0.849 ± 0.013 0.885 ± 0.011 0.748 ± 0.029

REINFORCE logNr≥r∗ 0.949 ± 0.006 0.869 ± 0.013 0.678 ± 0.020 0.892 ± 0.029

DQN logNr≥r∗ 0.789 ± 0.028 0.758 ± 0.076 0.583 ± 0.039 0.753 ± 0.019

states sampled from p as opposed to using a code optimized
for the distribution of shortest solutions with skills. More
precisely, we can write

ICA+(M0; p) = sup
0<ε<1

H[P+]− log
(
1−ε
ε

)
H[P0, P0,unif,ε]− log

(
1−ε
ε

) , (8)

where H[P+] is the optimal expected number of bits needed
to encode a (canonical) shortest solution inM+ to a state
s ∼ p, and H[P0, P0,unif,ε] denotes the cross entropy be-
tween P0 and P0,unif,ε. P0 is the distribution of shortest
solutions to states sampled from p containing only base
actions. P0,unif,ε(σ) = ε(1 − ε)|σ|−1|A0|−|σ| is a uniform
prior over base action sequences. H[P0, P0,unif,ε] is thus
the expected number of bits required to encode a shortest
solution using a fixed-length code over base actions A0,
optimized for a termination symbol that appears at the end
of each time step with probability ε.

We now introduce the theorem, which shows how A+-
merged p-incompressibility can be used to bound how much
skills in A+ can improve p-learning difficulty.

Theorem 4.2. LetM+ = (S,A+, T+, g) be the A+-skill
augmentation of the DSMDPM0 = (S,A0, T0, g) with fi-
nite |A0| > 1, and p a probability distribution over solvable
states. Then

Jlearn(M+; p)

Jlearn(M0; p)
≥ |A+| log |A0|
|A0| log |A+|

ICA+
(M0; p). (9)

We can use Theorem 4.2 to understand the effect that the ex-
pressivity of skills has on their ability to improve p-learning
difficulty.2 More expressive skills can encode more di-
verse behavior and thus allow a larger number of action

2See Appendix F.2 for a more formal treatment where the
incompressibility measure in Theorem 4.2 is replaced with one
defined explicitly in terms of a quantitative measure of expressivity.

sequences to be encoded as the same skill. This allows
states to share solutions more often, which decreases H[P+]
and hence ICA+

(M0; p). As a result, the lower bound on
the p-learning difficulty ratio decreases. As concrete exam-
ples, if we place no restriction on what kinds of skills are
allowed, then we can simply include a single skill that solves
all solvable states, resulting in ICA+

(M0; p) = 0 and
Jlearn(M+; p) = |A0| + 1. This is less than Jlearn(M0; p)
whenever Es∼p[d0(s)] > 1 + 1/|A0|, which is true for all
RL environments of practical interest. If a skill is allowed to
be a concrete sequence of actions and loops of actions, then
states whose solutions involve different numbers of repeti-
tions of the same component will have the same solution
containing a skill with a loop whose body is that component.
Thus, H[P+] < H[p] but is larger than the value of zero
obtained when no restriction is placed on skills. Finally, if
skills are restricted to macroactions, then distinct solutions
remain distinct after rewriting with macroactions, and so
the A+-merged p-incompressibility achieves its maximum
value. In solution-separable environments, this maximum
value is equal to the unmerged p-incompressibility (Defi-
nition 4.3), in which case Theorem 4.2 can be restated in
terms of it (Corollary 4.4).

Definition 4.3. LetM = (S,A, T, g) be a DSMDP with
finite |A| > 1 and p a distribution over solvable states. The
unmerged p-incompressibility is defined as

IC(M; p) = sup
0<ε<1

IC(M; p, ε), (10)

where the ε-discounted unmerged p-incompressibility

IC(M; p, ε) =
H[p]− log

(
1−ε
ε

)
Es∼p[dM(s)] log

(
|A|
1−ε

) . (11)

It measures incompressibility on a scale from 0 to 1 ifM
is solution-separable. Furthermore, unlike the A+-merged

6



When Do Skills Help Reinforcement Learning?

p-incompressibility, it is a function of onlyM and p and is
thus a general measure of the incompressibility ofM.

Corollary 4.4 (Corollary to Theorem 4.2). In the setup to
Theorem 4.2, supposeM0 is solution-separable3 and A+ is
a macroaction augmentation. Then

Jlearn(M+; p)

Jlearn(M0; p)
≥ |A+| log |A0|
|A0| log |A+|

IC(M0; p). (12)

A direct consequence of the above corollary is that there
exist environments where incorporating macroactions will
always worsen p-learning difficulty, no matter how many
there are or what they are.

Corollary 4.5 (Corollary to Corollary 4.4). In the setup to
Theorem 4.2, supposeM0 is solution-separable and A+ is
a strict macroaction augmentation. If

1− IC(M0; p) ≤
1

|A0|+ 1

(
1− 1

ln |A0|

)
,

then Jlearn(M+; p) > Jlearn(M0; p).

5. Effect of Skills on Exploration
To study the properties of a DSMDP that make exploration
difficult, we have derived a tight lower bound on the p-
exploration difficulty of a DSMDP in terms of the entropy
of p and a term representing how dense solutions to states
are in the space of all solutions (Theorem 5.2).

Definition 5.1. LetM = (S,A, T, g) be a DSMDP with
finite action space A. For 0 ≤ δ < 1, the δ-discounted
solution density ofM is defined as

D(M; δ) =
∑
s

ρM,δ(s), (13)

where

ρM,δ(s) =
δ

1− δ
qM,δ(s)

=
∑

σ∈SolM(s)

δ(1− δ)|σ|−1|A|−|σ| (14)

is the probability that a uniformly random action sequence
with length sampled from Geometric(δ) solves s.

Theorem 5.2. LetM+ = (S,A+, T+, g) be the A+-skill
augmentation of the DSMDPM0 = (S,A0, T0, g) with a
finite action space, and p a probability distribution over
solvable states. Then for 0 < δ < 1,

Jexplore(M+; p, δ) ≥ H[p]− log

(
1− δ

δ
D(M+; δ)

)
.

(15)
3See Appendix F.3 for the version of this corollary that does

not assume solution-separability.

Furthermore, if the state space is finite and δ > maxs p(s),
then for any ε > 0, there exists an A+-skill augmentation
M+ ofM0 such that

Jexplore(M+; p, δ) < H[p]− log

(
1− δ

δ
D(M+; δ)

)
+ ε,

(16)
thus showing that the lower bound given above is tight for
all finite DSMDPs and a large range of δ.

The fact that the lower bound grows with H[p] is intuitive:
when there are many states that we care about learning to
solve (H[p] is large), it is hard for the agent to gather the
experience needed to learn to solve all these states (Jexplore
is large). However, incorporating skills only changes the
action space and cannot affect H[p]. Skills thus improve
exploration by increasing the δ-discounted solution density,
which is interpreted as the density of solutions to states
within the space of all action sequences. Action sequences
of length l equally divide a total density of δ(1− δ)l−1, so
that the combined density of all possible action sequences
is 1. If M+ is solution-separable, then

∑
s ρ+,δ(s) ≤ 1,

whereas if every action sequence solves some state, then∑
s ρ+,δ(s) ≥ 1. Skills improve exploration by increas-

ing this density, similar to how skills reduce A+-merged
p-incompressibility by allowing more states to share solu-
tions. More expressive skills are more apt at increasing
solution density. For example, introducing macroactions
in a solution-separable environment results in a solution-
separable environment, so the density remains at most 1. If
we introduce the logic of loops, then states whose solutions
involve different repetitions of the same component can be
solved by the same action sequence containing a loop skill,
hence increasing the density. In the extreme case where no
restriction is placed on the kind of skills allowed, we can
introduce many skills, each of which automatically solves
all solvable states. The resultant density is approximately
δ|Ssolvable|, which is usually much larger than 1.

As a corollary to Theorem 5.2, increase in p-exploration
difficulty due to macroactions is lower-bounded by the δ-
discounted unmerged p-incompressibility (Equation (11))
in solution-separable environments, thus providing the p-
exploration difficulty counterpart to Corollary 4.4.

Corollary 5.3 (Corollary to Theorem 5.2). In the setup to
Theorem 5.2, supposeM0 is solution-separable, |A0| > 1,
and A+ is a macroaction augmentation. Then

Jexplore(M+; p, δ)

Jexplore(M0; p, δ)
≥ IC(M0; p, δ). (17)

Compared to Corollary 4.4, the factor |A+| log |A0|
|A0| log |A+| penal-

izing large A+ is absent, and the sup in IC(M0; p) =
sup0<δ<1 IC(M0; p, δ) has been removed. The resultant

7



When Do Skills Help Reinforcement Learning?

weaker bound suggests that skills are better suited to improv-
ing exploration than learning from experience. This is made
more precise in Theorem 5.4 and Corollary 5.5 below, but
before stating these results, we shall first give an intuitive
explanation for why this is the case.

In discussing the effects of skills on learning from existing
experience, there was a tradeoff between action space size
and reducing solution lengths. Intuitively, while skills allow
reward information to propagate to states faster, a large
action space means a larger number of experiences to iterate
through to efficiently cover the space of all state-action pairs
(s, a). Such a tradeoff is not so clear in the effects of skills
on exploration. To improve exploration, skills are chosen
so that a uniformly random policy in the augmented action
space is more likely to reach the goal. If skills are expressive
enough, this should always be possible, unless the base
action space is already close to optimal. Of course, the
most general skills trivially improve p-exploration difficulty
by simply mapping every solvable state to the goal, which
gives Jexplore ≈ 0. But there can be skills that achieve the
maximum possible A+-merged p-incompressibility (which
appears in the lower bound for p-learning difficulty increase
in Theorem 4.2) but still decrease p-exploration difficulty.
This is made precise by the following theorem.

Theorem 5.4. Let M0 = (S,A0, T0, g) be a solution-
separable DSMDP with finite |A0| > 1 as well as finite
|S|. Let p be a probability distribution over solvable states.
For all δ > maxs p(s) for which p ̸≡ ρ0,δ, there exists an
A+-skill augmentationM+ ofM0 such that:

• There exist distinct shortest solutions in A+ to all
states in the support of p (namely, H[P+] achieves its
maximum possible value H[p] and thus ICA+

(M0; p)
achieves its maximum possible value IC(M0; p));

• Jexplore(M+; p, δ) < Jexplore(M0; p, δ).

Corollary 5.5 (Corollary to Theorem 5.4). Assume the setup
to Theorem 5.4. If

1− IC(M0; p) ≤
1

|A0|+ 1

(
1− 1

ln |A0|

)
,

then there exists a skill augmentationM+ ofM0 such that
Jlearn(M+; p) > Jlearn(M0; p) but Jexplore(M+; p, δ) <
Jexplore(M0; p, δ).

Corollary 5.5 shows that there are environments where skills
can benefit exploration but harm learning from experience.
This again suggests that skills are more apt at improving
exploration than learning.

As a final discussion on the effect that skills have on ex-
ploration, we answer the question: are there environments
where unexpressive skills like macroactions always harm

exploration? Unlike Corollary 4.4, there is no penalty fac-
tor in the lower bound given in Corollary 5.3. As a result,
there is no environment where the lower bound is above
1, which would have implied that all macroaction augmen-
tations increase p-exploration difficulty. Nevertheless, the
answer to the question is still affirmative. The following
two theorems construct environments where incorporating
macroactions always increases p-exploration difficulty, no
matter how many there are or what they are.

Theorem 5.6. Let M0 = (S,A0, T0, g) be a solution-
separable DSMDP with a finite action space such that any
state that has a length-1 solution only has length-1 solu-
tions. Let p be a probability distribution over solvable states.
Suppose that δ > 0 and

DKL (p ∥ ρ0,δ) ≤
δ2 log e

8(|A0|+ 1)2
.4

Then Jexplore(M+; p, δ) > Jexplore(M0; p, δ) for any strict
macroaction augmentationM+ ofM0.

Theorem 5.7. Let M0 = (S,A0, T0, g) be a solution-
separable DSMDP with a finite action space such that: 1)
every action sequence is the solution to some state; 2) for
every solvable state, all solutions to that state have the same
length. Let p be a probability distribution over solvable
states such that p(s)/p(s′) = |Sol0(s)|/|Sol0(s′)| for any
s, s′ whose solutions have the same length. Then

Jexplore(M+; p, 0)− Jexplore(M0; p, 0)

≥ |A0|
|A+|

(
1− |A0|
|A+|

)
(18)

for any strict A+-macroaction augmentationM+ ofM0.

A stronger version of this theorem (Appendix F.4) relaxes the
conditions onM0 and p and the modified bound involves
subtracting a corresponding KL-divergence term.

Stated in words, Theorem 5.6 says that macroactions harm
exploration when most action sequences are solutions to
some state and that a state’s assigned importance p(s) is
close to the probability that a uniformly random action
sequence solves it. Theorem 5.7 suggests that it suffices for
p(s) to be roughly proportional to this probability across
states whose solutions have the same length. These results
make more precise our intuition that it is more difficult to
use skills to improve exploration in environments where
solutions to states look uniformly randomly distributed.

4Technically,
∑

s ρ0,δ(s) ≤ 1 but may not equal 1, so the
KL-divergence is really between p′ and ρ′0,δ , defined such that
p′ ≡ p and ρ′0,δ ≡ ρ0,δ on all solvable states and a dummy
state sd is introduced that bears the remaining probability (i.e.,
p′(sd) = 0, ρ′0,δ(sd) = 1−

∑
s̸=sd

ρ0,δ(s)).
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Figure 1. For each of the 4 environments studied, we plot the point (x, y) where x is the unmerged p-incompressibility of the base
environment and y is the best complexity improvement ratio minC+/C0 over the 31 macroaction augmentations of the base environment.
Different colors represent different measures C of complexity, and different panels correspond to sample complexities N of different RL
algorithms. The plots corresponding to p-learning difficulty (Jlearn) and p-exploration difficulty (Jexplore) have been repeated across panels
for clearer comparison with the plots corresponding to the sample complexities (N ) of the RL algorithms.

6. Experiments
Corollaries 4.4 and 5.3 suggest that solution-separable
DSMDPs with lower unmerged p-incompressibility can
benefit more from macroactions. We test this prediction
on the four environments studied in Section 3.3, which
include both solution-separable (RubiksCube222) and
non-solution-separable (CliffWalking, CompILE2,
8Puzzle) DSMDPs. For different complexity measures C
(p-learning difficulty, p-exploration difficulty, and sample
complexity N of four RL algorithms), Figure 1 shows the
best complexity improvement ratio minC+/C0 across the
31 (strict) macroaction augmentations of each base environ-
ment against the unmerged p-incompressibility of the base
environment. We observe a positive correlation regardless
of the choice of C and RL algorithm, thus corroborating our
theoretical predictions: macroactions are more helpful in
environments with lower unmerged p-incompressibility.

While the definition of unmerged p-incompressibility is
motivated in the context of macroactions (Corollaries 4.4
and 5.3), experiments with general stochastic options dis-
covered by LOVE (Jiang et al., 2022) show that it success-
fully captures the difficulty of applying HRL with general
options in an environment. Table 2 shows the unmerged
p-incompressibility values of our four environments, along
with the sample complexity improvement ratio N+/N0 from
optionally applying HRL with options discovered by LOVE.
The improvement from HRL decreases as the unmerged
p-incompressibility increases.

7. p-Incompressibility for Skill Learning
Appendix G demonstrates two ways to use our incompress-
ibility measures to derive objectives for skill learning. We
show that, under mild approximations, these two objectives
are equivalent to two minimum description length (MDL)
objectives previously used in the skill learning literature.

Table 2. Unmerged p-incompressibility IC(M0; p) vs. the im-
provement ratio N+/N0 of sample complexity Nr≥r∗ from apply-
ing HRL with LOVE options. Results are averaged over 5 seeds.
Because HRL can fail to learn an environment on some seeds, we
set the improvement ratio to 1 if HRL does not improve the sample
complexity.

Environment N+/N0 IC(M0; p)

CliffWalking 0.000007 ± 0.000007 0.0000
CompILE2 0.00023 ± 0.00011 0.1475
8Puzzle 0.64 ± 0.19 0.5157

RubiksCube222 0.73 ± 0.17 0.8072

In particular, finding the A+ that minimizes A+-merged
p-incompressibility corresponds to the objective used by
LOVE (Jiang et al., 2022), and finding the skills such that
the resultant skill-augmented environment has the highest
unmerged p-incompressibility corresponds to the objective
used by LEMMA (Li et al., 2022).

8. Conclusion
We introduce the first theoretical analysis of the utility of
RL skills, focusing on deterministic sparse-reward MDPs.
With both theoretical motivation and empirical verification,
we introduce metrics that quantify two aspects of RL com-
plexity: exploration and learning from experience. We show
both theoretically and experimentally that these metrics can
be improved more in environments where solutions to states
are more compressible. Further theoretical results suggest
that skills benefit exploration more than learning from ex-
perience, and that less expressive skills are less beneficial
to improving RL sample efficiency. Our work is a first step
towards characterizing the properties of an environment that
make skills helpful for RL, and we expect future theoreti-
cal work to generalize beyond deterministic sparse-reward
MDPs with finite action spaces.
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A. Survey on Existing RL Difficulty Metrics
Here, we provide a brief survey on existing RL difficulty metrics and explain why they are inadequate for our purposes. See
Conserva & Rauber (2022) for a more detailed survey and benchmark. We will be using the notationM = (S,A, P,R) for
an MDP with state space S, action space A, transition kernel P , and reward kernel R.

• The environmental value norm of the optimal policy (Maillard et al., 2014) is given by

sup
(s,a)∈S×A

√
Vars′∼P (s,a) V ∗

γ (s
′), (19)

where P (s, a) is the transition kernel of the MDP and V ∗
γ is the value function of the optimal policy with discount

factor γ. The variation in the values of next states quantifies the difficulty in obtaining accurate sample estimates of
action values. However, in deterministic MDPs, which are our focus, the environmental value norm of the optimal
policy is always zero and is therefore not applicable.

• The distribution mismatch coefficient (Kakade & Langford, 2002) is given by

sup
π

∑
s∈S

µ∗
s

µπ
s

, (20)

where µπ
s is the stationary distribution of the Markov chain induced by policy π and µ∗

s is the stationary distribution of
the Markov chain induced by the optimal policy. It measures how much the stationary distribution of states visited
by the agent can differ from the optimal distribution. It is defined only for ergodic MDPs (otherwise the stationary
distribution may not be uniquely defined) in the continuous setting, whereas we focus on deterministic MDPs (which
are not ergodic when |S| > 1) in the episodic setting.

• The sum of reciprocals of suboptimality gaps (Simchowitz & Jamieson, 2019) is given by∑
(s,a)∈S×A:∆(s,a)̸=0

1

∆(s, a)
, ∆(s, a) = V ∗(s)−Q∗(s, a), (21)

where V ∗(s) and Q∗(s, a) are the state and action value functions of the optimal policy. Larger ∆(s, a) allows the
agent to more easily distinguish suboptimal actions from the optimal action and can thus reduce average total regret in
the long run. However, as Conserva & Rauber (2022) points out, smaller ∆(s, a) makes it easier to find a near-optimal
policy, which contributes to decreasing the sample complexity.

• The diameter (Auer et al., 2008) is defined to be

sup
s1 ̸=s2

inf
π

Tπ
s1→s2 , (22)

where Tπ
s1→s2 denotes the expected time to reach s2 starting in s1 following policy π. While this is defined for the

continuous setting, a natural definition for the diameter of a DSMDPM in the episodic setting would be

sup
s̸=g: SolM(s) ̸=∅

dM(s), (23)

where dM(s) denotes the length of a shortest solution to s. However, taking the supremum is overly pessimistic, and
in many cases, there may be states that are far from the goal but that we do not care about solving. Our p-learning
difficulty takes this into account by using a weighted average of dM(s), multiplied by |A| to take into account the
additional sample complexity due to a large action space.

B. Environments
Experiments were conducted on 4 base environments of varying complexity:

12



When Do Skills Help Reinforcement Learning?

• CliffWalking (Sutton & Barto, 2018), a toy grid world environment of size 4× 12 where the agent always begins
in the bottom left corner and has to travel to the bottom right corner. The available actions are moving one step in each
of the 4 cardinal directions. The agent returns to its original position whenever it touches a square in the bottom row
other than the leftmost and rightmost squares.

• CompILE2 is one of the CompILE grid world environments (Kipf et al., 2019). The agent navigates in an 10× 10
grid world with walls both lining the edges and within the grid. The world also has several objects of different kinds,
possibly with several of each kind. The agent’s goal is to pick up several specified (kinds of) objects in order. In
CompILE2, the agent has to pick up 2 objects. The available actions are moving one step in each of the 4 cardinal
directions in addition to attempting to pick up the object in the current cell. The positions and types of the objects
are fixed but the agent’s position is randomized at every reset, following Jiang et al. (2022). We did not choose 3 or
more objects for the agent to pick up because we found that the agent could not find the positive reward signal without
suitable skills in these cases, consistent with previous findings on the same environment (Kipf et al., 2019; Jiang et al.,
2022). Since whether the goal is reached depends on the sequence of objects the agent has picked up, the state includes
both the grid and the sequence of objects that the agent has picked up thus far. Since Kipf et al. (2019) did not publish
the source code for the environment, we use the implementation by Jiang et al. (2022).

Because there can be several of the same kind of object on the grid, there are different sequences of objects the agent
can pick up that amount to the same sequence of kinds of objects. There are thus multiple goal states, which are merged
into one to comply with the definition of a DSMDP.

• 8Puzzle is the 8-puzzle, the 3× 3 version of the more well-known 15-puzzle. There are 8 tiles numbered 1 to 8 on a
3× 3 board so that there is one tile missing. The available actions are moving the position of the missing tile in each of
the four cardinal directions. The solved state has the numbers 1 to 8 in order from left-to-right, top-to-bottom. The
puzzle is scrambled from the solved state by applying a random legal action K times where K is uniform between 1
and 31. Here, 31 is the maximum distance from any state to the goal state. The puzzle is re-scrambled if the scramble
solves the cube.

• RubiksCube222 is the 2x2 Rubik’s cube, also called the pocket cube. The available actions are turning the front,
right, or top faces clockwise by 90◦. The cube is scrambled by applying a random sequence of moves of length K
where K is uniform between 1 and 11 and where each move is turning the front, right, or top face 90◦ clockwise,
180◦, or 90◦ counterclockwise and no two consecutive moves turn the same face. (Note that the action space used for
scrambling is larger than the action space of the agent.) Here, 11 is the maximum number distance from a state to the
solved state. We use the implementation provided by Hukmani et al. (2021).

For 8Puzzle and RubiksCube222, our choice of sampling the scramble length uniformly from 1 to some maximum K
follows Agostinelli et al. (2019).

Basic information about the 4 base environments is summarized in Table 3.

For each base environment, one of the 32 action space variants is just the base environment itself. The remaining 31 are
(strict) macroaction augmentations generated as follows:

• For CliffWalking, the LEMMA abstraction algorithm (Li et al., 2022) found one single macroaction from the
offline trajectory data generated using breadth-first search (BFS). That single macroaction is just the shortest sequence
of actions that solves the only possible starting state of the environment: (U = up, R = right, D = down, L = left)

Table 3. Basic information about the base environments studied by our experiments. |A0|: size of base action space; |S|: size of state
space; |Sp>0|: size of support of p.

Environment |A0| |S| |Sp>0|
CliffWalking 4 32 1

CompILE2 5 115,462 59
8Puzzle 4 362,880 181,439

RubiksCube222 3 3,674,160 3,674,159
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– URRRRRRRRRRRD

5 other sets of macroactions were derived from subsequences of near-optimal solutions to the starting state:

– RR
– RR, RRRR, RRRRRRRR
– RRRRRRRRRRR
– UUURRRR, RRR, DRDRD
– URRRRRRRRRRR, RRRRRRRRRRRD

Furthermore, for each k = 1, 2, 3, 4, 5, we randomly generated 5 sets of k distinct macroactions. A random macroaction
with length L+ 1 (L ∼ Geometric(1/3)) was generated as follows:

– With probability 0.4, randomly choose between U and R with probabilities 0.3 and 0.7;
– With probability 0.3, randomly choose between R and D with probabilities 0.7 and 0.3;
– With probability 0.1, randomly choose between D and L with probabilities 0.7 and 0.3;
– With probability 0.2, randomly choose between L and U with probabilities 0.3 and 0.7.

We didn’t choose probabilities uniform across all directions because this results in several sets of macroactions that
cause the agent to drift leftward or downward during random exploration, and the agent almost never receives any
positive reward signal. However, it was also the presence of drift that helped us generate variety in the learnability of
the macroaction-augmented environments. Variation in the direction of the drift across different sets of macroactions
resulted in sample efficiencies that varied across 7 orders of magnitude.

• For CompILE2, LEMMA discovered the following set of macroactions: (L = left, U = up, R = right, D = down, P =
pick up)

– PUURRRP, LL, UU, DD

5 other sets of macroactions were derived from subsequences of subsets of these macroactions:

– LL, UU, DD
– LL, UU, RRR, DD
– PUU, RRRP
– PUURRRP
– PUURRRP, LL, UU, RRR, DD

Furthermore, for each k = 1, 2, 3, 4, 5, we randomly generated 5 sets of k distinct macroactions. A random macroaction
with length L+ 1 (L ∼ Geometric(1/3)) was generated as follows:

– With probability 1/4, randomly choose among L, U and P with probabilities 0.4, 0.4 and 0.2;
– With probability 1/4, randomly choose among U, R and P with probabilities 0.4, 0.4 and 0.2;
– With probability 1/4, randomly choose among R, D and P with probabilities 0.4, 0.4 and 0.2;
– With probability 1/4, randomly choose among D, L and P with probabilities 0.4, 0.4 and 0.2.

• For 8Puzzle, LEMMA discovered the following set of macroactions: (U = up, R = right, D = down, L = left)

– RD, LDR

5 other sets of macroactions were derived from subsets of these macroactions, possibly with reflection across the
diagonal (a symmetry of the puzzle):

– RD
– LDR
– RD, DR
– LDR, URD
– RD, DR, LDR, URD
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Furthermore, for each k = 1, 2, 3, 4, 5, we randomly generated 5 sets of k distinct macroactions. A random macroaction
with length L+ 1 (L ∼ Geometric(1/2)) was generated by sampling from U, R, D, L with probabilities 0.2, 0.3, 0.3,
0.2. The higher probabilities for R and D are intended to encourage moving the position of the missing tile towards the
bottom-right corner.

• For RubiksCube222, LEMMA generated the empty set. However, the 3 top-scoring macroactions were: (F = front
face 90◦, R = right face 90◦, U = top face 90◦)

– FF, RR, UU

5 other sets of macroactions were derived from subsets of these macroactions, possibly with more repetition of some
base action:

– FF
– FF, FFF
– FF, RR
– FF, FFF, RR, RRR
– FF, FFF, RR, RRR, UUU

Note that FF, RR, UU are half-turns of faces (denoted F2, R2, U2 in standard cube notation) and FFF, RRR, UUU are
counter-clockwise 90◦ turns (usually denoted F′, R′, U′).

Furthermore, for each k = 1, 2, 3, 4, 5, we randomly generated 5 sets of k distinct macroactions. A random macroaction
with length L+ 1 (L ∼ Geometric(1/2)) was generated by sampling from F, R, U each with probability 1/3.

C. Experimental Details
C.1. Hyperparameters

• The learning rate is α = 0.1 for Q-learning, value iteration and REINFORCE, and α = 0.0005 for DQN.

• For the off-policy RL algorithms (Q-learning, value iteration, and DQN), the optimal epsilon schedule for epsilon
greedy can vary by orders of magnitude across different action space variants of the same base environment. We
therefore adopt an adaptive epsilon-greedy exploration policy where the probability ε of choosing a random action
starts at 1 and is decreased by 0.002 every time the agent beats its highest test reward so far by 0.002, until ε = 0.1.

• Testing was performed with 200 episodes (1 episode for CliffWalking, which only has one starting state) using the
greedy policy (Q-learning, value iteration, DQN) or the current policy (REINFORCE). For the purposes of computing
sample complexity, the N at which a reward or value error threshold is reached is computed by averaging over all
values of N where the reward/value error crosses above/below the threshold.

• Experiments were run with a maximum of 100M environment steps. We applied early stopping with a test reward
threshold of 0.95 (0.75 for RubiksCube222) and average value error threshold of 0.025 (0.1 for RubiksCube222).

• The horizon is 50 for all environments, including skill-augmented environments. In addition, to simulate a cost of
applying too many base actions, we terminate an episode whenever the number of base actions reaches 100.

• For Q-learning, value iteration, and DQN, the replay buffer size is 1000 and updates are performed once every 4
episodes with a batch size of 32.

• Details on the model architecture of DQN are given in Appendix C.3.

No extensive hyperparameter tuning was done as the purpose of our experiments was not to compare RL algorithms, but to
compare the performance of one algorithm on different action space variants of the same base environment.

C.2. Computational Resources

Experiments were run on 28 NVIDIA GPUs (8×Quadro RTX 5000, 8×GeForce GTX 1080 Ti, 8×Tesla V100 SXM2 32GB,
4×RTX 6000 Ada Generation). One experiment, which usually consisted of 32 runs of some RL algorithm on different
macroaction augmentations of the same base environment, took between under a minute to about a week to finish. In total,
all experiments were completed within one month.
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C.3. Algorithm-Specific Details

• Value iteration is modified to the RL setting in a way similar to Deep Approximate Value Iteration (DAVI) (Agostinelli
et al., 2019). In DAVI, a state is chosen from some initial distribution and the value network is updated by minimizing
the quadratic loss between the current state value and the Bellman update, thus requiring a forward pass that computes
the values of all next states. In our version of value iteration, a state is chosen from the initial distribution and we apply
a rollout of the epsilon-greedy policy. For each state s in the rollout, we also compute all possible next states. Similar
to Q-learning, these next states are stored along with s in a replay buffer. When we sample a state (along with its next
states) from the replay buffer, its value is updated in the direction of the Bellman update. Note that the fact that all
possible next states are computed from each state in a rollout multiplies the number of environment steps taken by |A|.

• The policy πθ(a | s) in REINFORCE is parameterized directly by the logits. In other words, the weights are an
|S| × |A| matrix and πθ(· | s) = Softmax(θs,·).

• The implementation of the deep neural net in DQN depends on the environment. A state embedding is first constructed
from the input before passed into a linear projection head that outputs the action values Q(s, ·) of a state s.

– In CliffWalking, the input is a length-3 multihot vector at every location of the 4-by-12 grid (hence a 4×12×3
binary tensor). In each multihot vector, the 3 indices represent the player, goal, and cliff. The state embedding is
constructed by passing the input through a 2-layer CNN with ReLU activation followed by a 2-layer MLP with
ReLU activation. The CNN has a kernel size of 3 and padding of 1. The hidden dimension is 32 and the output
embedding has dimension 16.

– In CompILE2, the input has two components. The grid is represented as a length-12 multihot vector at every
location of the 10-by-10 grid (hence a 10 × 10 × 12 binary tensor). The 12 indices of each multihot vector
represent the 10 types of objects, wall, and agent. The next object the agent has to pick up is represented as a
length-10 one-hot vector. The grid is passed through a 2-layer CNN with ReLU activation followed by a 2-layer
MLP with ReLU activation. The result is concatenated with an embedding of the next object the agent has to pick
up and passed through a linear projection to form the final embedding of the observation. The CNN has a a kernel
size of 3 and padding of 0. The hidden dimension is 32 in the CNN layers and 128 in the MLP layers; the object
embedding has dimension 16; the output embedding has dimension 128.

– In 8Puzzle, the input is a length-9 onehot vector at every location of the 3-by-3 grid (hence a 3× 3× 9 binary
tensor) denoting the tile present at each location (or the absence thereof). The state embedding is constructed by
passing the input through a 2-layer CNN with ReLU activation followed by a 2-layer MLP with ReLU activation.
The CNN has a kernel size of 3 and padding of 1. The hidden dimension is 32 and the output dimension is 32.

– In RubiksCube222, the input is a length-6 multihot vector for each of 6× 4 = 24 tiles of the cube (hence a
24× 6 binary tensor) denoting the color of each tile. The state embedding is constructed by flattening the input
and passing it through a 4-layer MLP with ReLU activation. The hidden dimension is 64 and the output dimension
is 32.

D. Additional Empirical Tests of p-Learning and p-Exploration Difficulty
D.1. Empirically Verifying Lemma 3.1 for Motivating p-Learning Difficulty

To test how well p-learning difficulty captures learning from experience, we study the value iteration algorithm for planning
with known transitions and rewards in a DSMDP. We consider two variants of value iteration: state value iteration for
learning the values of states (Bellman, 1957), and action value iteration for learning the values of state-action pairs. The
latter is like Q-learning (Watkins, 1989) but modified to update the values of all state-action pairs at once. Instead of the
original Bellman update, each update uses a linear interpolation between the old value and the new value given by the
Bellman update with a learning rate of α = 0.1 (see Equation (3)).

For each base environment, we test the correlation between average solution length and sample complexity N on 32
macroaction augmentations of that environment. The results are summarized in Table 4. We find that the correlation between
convergence time and average solution length is almost always greater than 0.9, with it occasionally being near-perfect
(above 0.99).
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Table 4. Across 32 macroaction augmentations of each of 4 base environments, we report the correlations between: the number of
iterations until convergence (N ) for two variants of value iteration (state values and Q-values) and two convergence criteria (r ≥ 0.95;
∆V or ∆Q ≤ 0.01); and the p-weighted mean solution length of a state (d := Es∼p[d+(s)]). The reported errors are standard errors of
the mean over 5 seeds.

dCliffWalking dCompILE2 d8Puzzle dRubiksCube222

Q-value iteration Nr≥0.95 0.980 ± 0.001 0.934 ± 0.012 0.901 ± 0.013 0.942 ± 0.007
N∆Q≤0.01 0.998 ± 0.000 0.977 ± 0.003 0.968 ± 0.006 0.989 ± 0.001

Value iteration Nr≥0.95 0.977 ± 0.001 0.942 ± 0.005 0.902 ± 0.015 0.942 ± 0.007
N∆V ≤0.01 0.998 ± 0.000 0.984 ± 0.002 0.969 ± 0.005 0.985 ± 0.001

Table 5. Version of Table 1 where the geometric mean is replaced with the arithmetic mean in the definition of Jexplore. With 3 exceptions,
all correlation values are no higher than those when the geometric mean are used (Table 1).

log JCliffWalking log JCompILE2 log J8Puzzle log JRubiksCube222

Q-Learning logNr≥r∗ 0.947 ± 0.006 0.661 ± 0.049 0.301 ± 0.047 0.366 ± 0.081
logN∆Q≤∆Q∗ 0.953 ± 0.008 0.631 ± 0.061 0.442 ± 0.043 0.763 ± 0.019

Value iteration logNr≥r∗ 0.933 ± 0.009 0.724 ± 0.043 0.788 ± 0.042 0.247 ± 0.058
logN∆V ≤∆V ∗ 0.951 ± 0.015 0.732 ± 0.035 0.877 ± 0.011 0.694 ± 0.021

REINFORCE logNr≥r∗ 0.949 ± 0.006 0.732 ± 0.039 0.715 ± 0.020 0.537 ± 0.139

DQN logNr≥r∗ 0.789 ± 0.028 0.752 ± 0.075 0.621 ± 0.025 0.576 ± 0.023

D.2. Arithmetic Mean Variant of p-Exploration Difficulty Performs Worse Than the Geometric Mean

Table 5 shows the version of Table 1 where Jexplore = logNGM is redefined to be logNAM. (Up to a constant factor,
NAM = Es∼p[1/q(s)] estimates an upper bound on the sample complexity of the exploration stage of RL.) Comparing the
results with Table 1, we find that with 3 exceptions (in 8Puzzle), all correlation values are no higher than those when the
geometric mean is used.5 This provides empirical validation for using the geometric mean as opposed to the arithmetic
mean in our definition of p-exploration difficulty.

E. Proofs
Proof of Lemma 3.1. (Note: This proof assumes log refers to the natural logarithm.)

For α = 1, simple induction on t shows that, at time t, the states with value 1 are exactly those states that can be solved with
t actions or less, and all other states have value 0.

For the α < 1 case, let’s first consider the case where the DSMDP is a chain of states 0, 1, . . . , n where state 0 is the
only goal state and T (s, a) = s− 1 for any action a and non-goal state s ̸= 0. Then the value iteration formula becomes
V (s)← (1− α)V (s) + αV (s− 1) for s > 0 and V (0) = 1. For α≪ 1, we can write this as a differential equation

dVs

dt
= −α(Vs − Vs−1)

for s > 0, and dV0

dt = 0. (We have switched to subscript notation to make it clearer that this is a linear system of ODEs in
time.) Solving the system with the initial conditions V0(0) = 1 and Vs(0) = 0 for s > 0 yields

Vs(t) = 1− e−αt
s−1∑
k=0

(αt)k

k!
.

Note that Vs(t) decreases in s, i.e., at any time t, states closer to the goal have higher value.

5The correlation values of CliffWalking are exactly equal across the two tables because this environment has only one possible
starting state, as a result of which the arithmetic and geometric means are exactly equal.
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If αt = as+ b log(1/ε) where a > 1 and b = a
a−1 , then

log(1− Vs(t)) ≤ −αt+ log

(
s
(αt)s

s!

)
≤ −as− b log(1/ε) + s log(as+ b log(1/ε))− (s− 1)(log(s− 1)− 1)

≤ −as− b log(1/ε) + s log s+ s log a+
b

a
log(1/ε)− (s− 1)(log(s− 1)− 1)

= −s(a− log a− 1)−
(
b− b

a

)
log(1/ε) + s(log s− log(s− 1)) + log(s− 1)− 1

= log ε− s

(
a− log a− 1 + log

(
s− 1

s

)
− log(s− 1)− 1

s

)
,

which is less than log ε for sufficiently large s since a− log a− 1 > 0.

Let αt = s+ log(1/ε)− 1− log 2. Then for s ≥ 2 and ε ≤ 1/2, we have

log(1− Vs(t)) ≥ −s− log(1/ε) + 1 + log 2 + log

(
s−1∑
k=0

(s− 1)k

k!

)
(∗)
≥ −s− log(1/ε) + 1 + log 2 + log

(
1

2
es−1

)
= log ε,

where the inequality marked (*) made use of the fact that the the median of a Poisson distribution with positive integer rate
s− 1 is exactly s− 1 (Choi, 1994).

We have thus shown that we need αt = Θ(s+ log(1/ε)) to obtain 1− Vs(t) = ε. In other words, the time until the value
estimate Vs(t) is within ε of its true value of 1 is

t = Θ

(
s+ log(1/ε)

α

)
. (24)

Now let’s return to the general graph setting. In this situation, the invariants are as follows:

• maxa V (T (s, a), t) = V (n(s), t) where n(s) is the next state on the shortest path from s to any goal.

• V (s, t) = Vd(s)(t) where Vd(t) is the solution to the value function in the case of a simple chain, as we just derived.

This invariants are preserved by the fact that Vd(t) is non-increasing in d. Thus, replacing s with d(s) in the formula for the
chain DSMDP (Equation (24)) yields the result for the general DSMDP case.

Proof of Theorem 4.2. (Note: We use the version of the geometric distribution with support excluding 0.)

For σ ∈ (A+)
+, let P+,unif,ε(σ) = ε(1−ε)|σ|−1|A+|−|σ|, the probability that a random sequence of length∼ Geometric(ε)

with actions chosen uniformly from A+ is exactly σ. Then P+,unif,ε is a probability distribution over (A+)
+, so

Eσ∼P+
[− logP+,unif,ε(σ)] = H[P+, P+,unif,ε] ≥ H[P+],

where H[p, q] denotes the cross entropy between p and q.

Now, fix any 0 < ε < 1. Then

Es∼p[d+(s)] log

(
|A+|
1− ε

)
+ log

(
1− ε

ε

)
= Eσ∼P+

[|σ|] log
(
|A+|
1− ε

)
+ log

(
1− ε

ε

)
= Eσ∼P+

[− logP+,unif,ε(σ)]

≥ H[P+].
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Thus,

Es∼p[d+(s)] log
(

|A+|
1−ε

)
Es∼p[d0(s)] log

(
|A0|
1−ε

) ≥ H[P+]− log
(
1−ε
ε

)
Es∼p[d0(s)] log

(
|A0|
1−ε

)
Jlearn(M+; p)

Jlearn(M0; p)
=

Es∼p[d+(s)]|A+|
Es∼p[d0(s)]|A0|

≥
|A+| log

(
|A0|
1−ε

)
|A0| log

(
|A+|
1−ε

) H[P+]− log
(
1−ε
ε

)
Es∼p[d0(s)] log

(
|A0|
1−ε

)
≥ |A+| log |A0|
|A0| log |A+|

H[P+]− log
(
1−ε
ε

)
Es∼p[d0(s)] log

(
|A0|
1−ε

) .
The last inequality used the fact that |A+| ≥ |A0| gives

log
(

|A0|
1−ε

)
log
(

|A+|
1−ε

) = 1−
log
(

|A+|
|A0|

)
log
(

|A+|
1−ε

) ≥ 1−
log
(

|A+|
|A0|

)
log |A+|

=
log |A0|
log |A+|

.

Now, we have

Jlearn(M+; p)

Jlearn(M0; p)
≥ sup

0<ε<1

|A+| log |A0|
|A0| log |A+|

H[P+]− log
(
1−ε
ε

)
Es∼p[d0(s)] log

(
|A0|
1−ε

) =
|A+| log |A0|
|A0| log |A+|

ICA+
(M0; p),

which completes the proof.

Proof of Corollary 4.5. Since |A0| ≥ 2, we have |A+| ≥ |A0| + 1 ≥ 3. The function f(x) = lnx/x is decreasing for
x ≥ e, so

|A0| ln |A+|
|A+| ln |A0|

=
f(|A+|)
f(|A0|)

≤ f(|A0|+ 1)

f(|A0|)
=
|A0| ln(|A0|+ 1)

(|A0|+ 1) ln |A0|

=
|A0|
|A0|+ 1

1 +
ln
(
1 + 1

|A0|

)
ln |A0|

 <
|A0|
|A0|+ 1

(
1 +

1

|A0| ln |A0|

)
=

1

|A0|+ 1

(
|A0|+

1

ln |A0|

)
.

Then

Jlearn(M+; p)

Jlearn(M0; p)
=
|A+| ln |A0|
|A0| ln |A+|

IC(M0; p) >
1− 1

|A0|+1

(
1− 1

ln |A0|

)
1

|A0|+1

(
|A0|+ 1

ln |A0|

) = 1,

as desired.

Proof of Theorem 5.2.

Jexplore(M+; p, δ) = Es∼p[− log q+,δ(s)]

= Es∼p[− log ρ+,δ(s)]− log

(
1− δ

δ

)
= Es∼p

[
− log

(
ρ+,δ(s)

D(M+; δ)

)]
− log

(
1− δ

δ
D(M+; δ)

)
= H[p] +DKL

(
p ∥ ρ+,δ(·)

D(M+; δ)

)
− log

(
1− δ

δ
D(M+; δ)

)
(25)

≥ H[p]− log

(
1− δ

δ
D(M+; δ)

)
,
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where we have used the fact that ρ+,δ(·)
D(M+;δ) is a normalized probability distribution.

Now, suppose the state space is finite and δ > maxs p(s). According to Equation (25), we want to show that we can
make DKL

(
p ∥ ρ+,δ(·)

D(M+;δ)

)
arbitrarily small with a suitable choice of A+. Construct A+ as follows. Let the number of

skills |A+| − |A0| be some large number K ≫ max{|A0|, 1/mins:p(s)>0 p(s)}. For each solvable state s with p(s) > 0,
let ⌊Kf(s)⌋ skills send s directly to the goal state and the remaining K − ⌊Kf(s)⌋ send s back to s itself, where
f(s) = δ

δ−(1−δ)p(s)p(s) ∈ (0, 1). (For solvable states s with p(s) = 0, simply let all K skills send s back to s itself.) Let’s
now show that ρ+,δ(s)→ p(s) as K →∞ for every solvable state s.

ρ+,δ(s) is the probability that an action sequence σ with actions uniformly chosen from A+ and length |σ| ∼ Geometric(δ)
solves s. Among all such action sequences, the total probability of those that have a base action is no more than the total
probability of all actions sequences that have a base action. The latter is given by

1−
∑

σ∈(A+\A0)+

δ(1− δ)|σ|−1|A+|−|σ| = 1−
∞∑
l=1

(|A+| − |A0|)lδ(1− δ)l−1|A+|−l

= 1− δ

1− δ

∞∑
l=1

(
(1− δ)

(
1− |A0|
|A+|

))l

= 1−
δ
(
1− |A0|

|A+|

)
1− (1− δ)

(
1− |A0|

|A+|

)
→ 0, as |A0|/|A+| → 0.

It now remains to show that the total probability of solutions to s that consist only of skills approximates p(s) arbitrarily
well as K →∞. For s with p(s) = 0, no such solutions exist and so their total probability is 0. For s with p(s) > 0,∑

σ∈Sol+(s)∩(A+\A0)+

δ(1− δ)|σ|−1|A+|−|σ| =

∞∑
l=1

⌊Kf(s)⌋(K − ⌊Kf(s)⌋)l−1δ(1− δ)l−1|A+|−l

=
δ⌊Kf(s)⌋
|A+|

∞∑
l=1

(
(1− δ)

K − ⌊Kf(s)⌋
|A+|

)l−1

=
δ⌊Kf(s)⌋
|A+|

1

1− (1− δ)K−⌊Kf(s)⌋
|A+|

→ δf(s)
1

1− (1− δ)(1− f(s))
(as K →∞)

= p(s).

By now, we have shown that ρ+,δ(s)→ p(s) as K →∞ for every solvable state s. Since S is finite, this convergence is
uniform, so the KL-divergence between p and the normalized version of ρ+,δ tends to zero as K →∞, as desired.

Proof of Corollary 5.3. Since M0 is solution-separable and M+ is a macroaction augmentation of M0, M+ is also
solution-separable. Thus, D(M+; δ) ≤ 1. By Theorem 5.2,

Jexplore(M+; p, δ) ≥ H[p]− log

(
1− δ

δ
D(M+; δ)

)
≥ H[p]− log

(
1− δ

δ

)
,

whereas

Jexplore(M0; p, δ) = Es∼p[− log q0,δ(s)] ≤ Es∼p

[
− log

((
1− δ

|A0|

)d0(s)
)]

= Es∼p[d0(s)] log

(
|A0|
1− δ

)
.

Thus,
Jexplore(M+; p, δ)

Jexplore(M0; p, δ)
≥

H[p]− log
(
1−δ
δ

)
Es∼p[d0(s)] log

(
|A0|
1−δ

) ,
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as desired.

Proof of Theorem 5.4. The construction given in the proof of Theorem 5.2 allows us to make DKL

(
p ∥ ρ+,δ(s)

D(M+;δ)

)
arbi-

trarily close to 0 and D(M+; δ) =
∑

s ρ+,δ(s) arbitrarily close to 1 with sufficient large K = |A+| − |A0|. Recalling
Equation (25), this means that for any ε > 0, the construction gives

Jexplore(M+; p, δ) < H[p]− log

(
1− δ

δ

)
+ ε

for sufficiently large K.

On the other hand, let p′, ρ′0,δ be distributions defined on solvable states in addition to a dummy state sd such that p′(s) = p(s)
and ρ′0,δ(s) = ρ0,δ(s) whenever s ̸= sd, whereas p′(sd) = 0 and ρ′0,δ(sd) = 1−

∑
s ̸=sd

ρ0,δ(s). (Note that ρ′0,δ(sd) ≥ 0

becauseM0 is solution-separable.) Then DKL

(
p′ ∥ ρ′0,δ

)
> 0 since p′ ̸≡ ρ′0,δ . This gives

Jexplore(M0; p, δ) = Es∼p [− log ρ0,δ(s)]− log

(
1− δ

δ

)
= H[p] + Es∼p

[
− log

ρ0,δ(s)

p(s)

]
− log

(
1− δ

δ

)
= H[p] +DKL

(
p′ ∥ ρ′0,δ(s)

)
− log

(
1− δ

δ

)
(26)

> H[p]− log

(
1− δ

δ

)
.

As a result, for sufficiently large K, Jexplore(M+; p, δ) < Jexplore(M0; p, δ).

Now, let’s show that the construction in the proof of Theorem 5.2 can be made more precise to allow all states with p(s) > 0
to have distinct canonical shortest solutions in A+. Simply choose K large enough so that, for all s with p(s) > 0, the
number of skills ⌊Kf(s)⌋ that send s directly to g is at least the number of states with p(s) > 0. Then the number of
shortest solutions to every s with p(s) > 0 is at least the number of such s, so it is possible to choose one shortest solution
for every such s so that all the chosen solutions are distinct.

Proof of Corollary 5.5. Define A+ as in Theorem 5.4, so that Jexplore(M+; p, δ) < Jexplore(M0; p, δ) and Theorem 4.2
gives

Jlearn(M+; p)

Jlearn(M0; p)
≥ |A+| log |A0|
|A0| log |A+|

IC(M0; p), (27)

which is identical to Equation (12). Then the proof that the additional condition in the corollary implies Jlearn(M+; p) >
Jlearn(M0; p) is identical to the proof of Corollary 4.5.

Proof of Theorem 5.6. Augment the state space ofM0 with a state s1 that is solved by every length-1 sequence that is not
already the solution to any other state. (Furthermore, all actions that do not result in the goal state instead transition to a
dead state.) Denote by M̄0 the resultant DSMDP and for simplicity of notation we write ρ̄0,δ for ρM̄0,δ and d̄0 for dM̄0

.
Let M̄+ denote the A+-macroaction augmentation of M̄0. Then the solutions to s1 in A+ are exactly the same as those in
A0 since macroactions always have length greater than 1. We will write ρ̄+,δ to mean ρM̄+,δ. Let p̄ be a distribution over
the solvable states of M̄0 so that p̄ = p on the solvable states ofM0 and p̄(s1) = 0.

As in the proof of Theorem 5.4, we define distributions p′, ρ̄′0,δ, ρ̄
′
+,δ over the solvable states in addition to a dummy state

sd to be equal to p̄, ρ̄0,δ, ρ̄+,δ whenever s ̸= sd, whereas p′(sd) = 0 and ρ̄′0,δ(sd), ρ̄
′
+,δ(sd) are such that ρ̄′0,δ, ρ̄

′
+,δ are

normalized probability distributions.

First, let’s show that ∑
s

|ρ̄′+,δ(s)− ρ̄′0,δ(s)| ≥
δ

|A0|+ 1
. (28)
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If s is distance 1 away from the goal in M̄0, then

ρ̄′+,δ(s) = δ
n(s)

|A+|
, ρ̄′0,δ(s) = δ

n(s)

|A0|
,

where n(s) denotes the number of solutions to s in M̄0 (or equivalently, M̄+), all of which have length 1. Thus,∑
s

|ρ̄′+,δ(s)− ρ̄′0,δ(s)| ≥
∑

s:d̄0(s)=1

δn(s)

(
1

|A0|
− 1

|A+|

)
= δ|A0|

(
1

|A0|
− 1

|A+|

)
= δ

(
1− |A0|
|A+|

)
≥ δ

|A0|+ 1
,

where the last inequality used the fact that |A+| ≥ |A0|+ 1.

We will now use Equation (28) to prove the theorem. By the triangle inequality,∑
s

|ρ̄′+,δ(s)− p̄′(s)| ≥
∑
s

|ρ̄′+,δ(s)− ρ̄′0,δ(s)| −
∑
s

|ρ̄′0,δ(s)− p̄′(s)| ≥ δ

|A0|+ 1
−
∑
s

|ρ̄′0,δ(s)− p̄′(s)|.

Pinsker’s inequality says that DKL (p ∥ q) ≥ 1
2 (
∑

x |p(x)− q(x)|)2 log e for any two probability mass functions p, q. Thus,
if

DKL

(
p̄′ ∥ ρ̄′0,δ

)
= DKL

(
p′ ∥ ρ′0,δ

)
<

δ2 log e

8(|A0|+ 1)2
,

then ∑
s

|ρ̄′+,δ(s)− p̄′(s)| > δ

|A0|+ 1
−

√
2

log e
· δ2 log e

8(|A0|+ 1)2
=

δ

2(|A0|+ 1)

and so

DKL

(
p′ ∥ ρ′+,δ

)
= DKL

(
p̄′ ∥ ρ̄′+,δ

)
>

1

2

(
δ

2(|A0|+ 1)

)2

log e > DKL

(
p′ ∥ ρ′0,δ

)
.

Now, by Equation (26), this is equivalent to Jexplore(M+; p, δ) > Jexplore(M0; p, δ), as desired.

The proof of Theorem 5.7 is omitted as the stronger version and its proof are given in Appendix F.4.

F. Additional Theoretical Results
F.1. Preliminary Results on Stochastic Environments

Here, we provide preliminary generalizations of our results for stochastic sparse-reward MDPs, which are SDMDPs
(Definition 2.1) where the transition kernel T may be stochastic (i.e., T (s, a) is now a distribution over S).

In a (possibly stochastic) sparse-reward MDP, let Wσs be the probability that taking actions σ starting in s results in the goal
state. For an ordering σ1, σ2, . . . of all positive-length action sequences in non-decreasing length, define

wσks =


Wσks 1 ≤ k < kmax

1−
∑kmax−1

i=1 Wσis k = kmax

0 k > kmax

where kmax is the largest k such that
∑k−1

i=1 Wσis < 1. As a result,
∑

σ wσs = 1.

Let’s redefine dM(s) to be the weighted mean
∑

σ wσs|σ|, so that p-learning difficulty (Equation (4)) and A+-merged
p-incompressibility (Equation (7)) are now defined using this new notion of shortest solution length. Furthermore, in the
definition of A+-merged p-incompressibility (Equation (7)), redefine P+ to be P+(σ) =

∑
s p(s)wσs so that

∑
σ P+(σ) =

1. Note that the new definitions match the old definitions when the environment is deterministic. The stochasticity effectively
spreads the responsibility of being a “shortest solution” over several short solutions whose success probabilities Wσs add up
to 1.

Theorem F.1 (Generalization of Theorem 4.2). Under the above redefinitions for stochastic sparse-reward MDPs, Equa-
tion (9) of Theorem 4.2 continues to hold.
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Proof. The proof is identical to that of the original Theorem 4.2.

In stochastic environments, we can keep the original definition of p-exploration difficulty (Equation (5)) since the probabilistic
definition of qM,δ(s) continues to make sense when there’s stochasticity. (As a reminder, it is the probability that a uniformly
random policy that terminates with probability δ before each step solves s.) Similarly, we keep the definition of δ-discounted
solution density (Definition 5.1), which is also defined in terms of q.

Theorem F.2 (Generalization of the first half of Theorem 5.2). Under the above redefinitions for stochastic sparse-reward
MDPs, Equation (15) of Theorem 5.2 continues to hold.

Proof. The proof is identical to that of the original Theorem 5.2.

F.2. Incorporating Skill Expressivity in Theorem 4.2

In Theorem F.5 below, we provide a version of Theorem 4.2 that eliminates the dependence of ICA+
(M0; p) on A+ and

makes it depend explicitly on a quantitative measure of skill expressivity instead. This new measure of incompressibility
(Equation (29)), which we call E-expressive p-incompressibility, decreases in E. This is expected as an environment is
more compressible when the available skills are more expressive.

Definition F.3 (Quantifying skill expressivity). With respect to a DSMDPM = (S,A, T, g), define the behavior variety
expressivity Ez of a skill z : S → A∗ to be |z(S)|, i.e., the number of distinct action sequences that z can produce.

Definition F.4 (E-expressive p-incompressibility). For a DSMDP M = (S,A, T, g) with finite |A| > 1, define its
E-expressive p-incompressibility to be

IC(M; p,E) = sup
0<ε<1

minP H[P ]− log
(
1−ε
ε

)
Es∼p[dM(s)] log

(
|A|E
1−ε

) (29)

where the minP is taken over all choices of canonical (not necessarily shortest) solutions to all states.6 Note that expressivity
E occurs once in the denominator, so that larger E results in smaller IC(M; p,E).

Theorem F.5 (Expressivity and p-learning difficulty improvability). Assuming the setup to Theorem 4.2, the following
modified version of Equation (9) holds:

Jlearn(M+; p)

Jlearn(M0; p)
≥ |A+| log |A0|
|A0| log |A+|

IC(M0; p,E) (30)

where E := maxz∈A+\A0
Ez is the maximum behavior variety expressivity of a skill in the skill augmentation. Higher

expressivity E thus reduces incompressibility and allows skills to improve p-learning difficulty more, as expected.

Proof. Given any choice of canonical shortest solutions in A+, define the random variables σ+ ∈ (A+)
+ and σ0 ∈ (A0)

+

as follows. For s ∼ p, σ+ is the canonical solution to s in A+, and σ0 is the same solution but with skills expanded into
base actions. Then the distribution of σ+ is just P+, and let P0 be the distribution of σ0.

Note that
H[P+] + H[σ0|σ+] = H[(σ+, σ0)] ≥ H[P0]. (31)

Furthermore, since any σ+ can expand to at most E|σ+| different base action sequences,

H[σ0|σ+] ≤ Eσ+∼P+
[|σ+| logE]. (32)

In addition, recall from the proof of Theorem 4.2 that, for any 0 < ε < 1,

Es∼p[d+(s)] log

(
|A+|
1− ε

)
+ log

(
1− ε

ε

)
≥ H[P+]. (33)

6Recall that, given a choice of canonical solutions to all states, P (σ) is the sum over p(s) of all states s that have σ as their canonical
solution. As a result, H[P ] ≤ H[p] and equality holds in solution-separable DSMDPs.
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Thus, substituting Equations (32) and (33) into Equation (31) yields

Es∼p[d+(s)] log

(
|A+|
1− ε

)
+ log

(
1− ε

ε

)
+ Eσ+∼P+ [|σ+|] logE ≥ H[P0]

Es∼p[d+(s)] log

(
|A+|
1− ε

)
+ Es∼p[d+(s)] logE ≥ H[P0]− log

(
1− ε

ε

)
Es∼p[d+(s)] log

(
|A+|E
1− ε

)
≥ H[P0]− log

(
1− ε

ε

)
Es∼p[d+(s)] log

(
|A+|E
1−ε

)
Es∼p[d0(s)] log

(
|A0|E
1−ε

) ≥ minP0 H[P0]− log
(
1−ε
ε

)
Es∼p[d0(s)] log

(
|A0|E
1−ε

)
Jlearn(M+; p)

Jlearn(M0; p)
≥
|A+| log

(
|A0|E
1−ε

)
|A0| log

(
|A+|E
1−ε

) minP0
H[P0]− log

(
1−ε
ε

)
Es∼p[d0(s)] log

(
|A0|E
1−ε

)
where

log
(

|A0|E
1−ε

)
log
(

|A+|E
1−ε

) ≥ log |A0|
log |A+|

since E
1−ε > 1 and |A+| ≥ |A0|. Thus,

Jlearn(MA; p)

Jlearn(MB ; p)
≥ |A+| log |A0|
|A0| log |A+|

minP0
H[P0]− log

(
1−ε
ε

)
Es∼p[d0(s)] log

(
|A0|E
1−ε

) ,

which is true for all 0 < ε < 1, as desired.

F.3. Relaxing Solution-Separability Assumption in Corollary 4.4

Corollary F.6 (Generalization of Corollary 4.4). Relaxing the solution-separability assumption, Corollary 4.4 holds if we
replace H[p] in the definition of IC(M0; p) with minP0

H[P0]. Here, P0 is the distribution of canonical solutions to states
sampled from p, and the minimum is taken over all possible choices of canonical solutions. Thus, H[P0] can be understood
as the entropy of the state distribution if states with the same canonical solution are merged into one “super-state.”

Proof. The result follows directly from Theorem F.5 by setting E = 1.

F.4. Stronger Version of Theorem 5.7

Note: For notational simplicity, we will write qM to mean qM,δ=0.

Before stating the stronger version of Theorem 5.7, we need to first define solution-length separations of state spaces.

Definition F.7. For a DSMDPM = (S,A, T, g), let Ssolvable denote the set of solvable states. The solution-length separation
S̃solvable of Ssolvable is the result of separating every solvable state s ∈ Ssolvable into a set S̃(s) of sub-states corresponding to
the lengths of solutions to s. Formally, we write

S̃solvable :=
⋃

s∈Ssolvable

S̃(s), S̃(s) := {(s, l) | l > 0 s.t. ∃σ ∈ SolM(s) with |σ| = l}.

Furthermore, for a sub-state s̃ = (s, l) of s corresponding to solution length l, we naturally define its solutions to be the
length-l solutions to s. Formally,

S̃olM((s, l)) := {σ ∈ SolM(s) | |σ| = l}

where the˜ is used to make it explicit that we’re applying the operation to sub-states.
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Functions on Ssolvable defined using solutions to states can therefore be naturally extended to S̃. For example, d̃(s̃) for
s̃ = (s, l) ∈ S̃ is just l, and

q̃M(s̃) :=
∑

σ∈S̃olM(s̃)

|A|−|σ| =
∣∣∣S̃olM(s̃)

∣∣∣ |A|−l if s̃ = (s, l).

For an arbitrary function f : Ssolvable → R, there is a family of natural extensions to S̃solvable. Specifically, we say that
f̃ : S̃solvable → R is a solution-length-separated additive extension if, for all s ∈ Ssolvable,

f(s) =
∑

s̃∈S̃(s)

f̃(s̃),

and f(s) = f̃(s) for s ̸∈ Ssolvable. For example, q̃M as defined above is a solution-length-separated additive extension to
qM.

Theorem F.8 (Generalization of Theorem 5.7). LetM+ = (S,A+, T+, g) be the A+-macroaction augmentation of the
solution-separable DSMDPM0 = (S,A0, T0, g) with a finite action space, and p a probability distribution over solvable
states. Then there exists a solution-length-separated additive extension p̃ to p inM0 such that

Jexplore(M+; p)− Jexplore(M0; p) ≥
|A0|
|A+|

(
1− |A0|
|A+|

)
−DKL

(
p̃ ∥ λ̃q̃0

)
. (34)

Here, (λ̃q̃0)((s, l)) := λ̃(l)q̃0((s, l)), where
λ̃(l) :=

∑
s̃′:d̃0(s̃′)=l

p̃(s̃′)

is the total probability (under p̃) of sub-states with solution length l and

q̃0((s, l)) =
∣∣∣S̃ol0((s, l))∣∣∣ |A0|−l

is the probability that a uniformly random action sequence of length l is a solution to s. To make λ̃q̃0 a normalized
probability distribution, we introduce a dummy sub-state s̃d(l) for each solution length l with p̃(s̃d(l)) := 0 and q̃0(s̃d(l)) :=
1−

∑
s:(s,l)∈S̃solvable

q̃0((s, l)). Note that q̃0(s̃d(l)) ≥ 0 because of solution-separability, and it is equal to zero when every
action sequence of length l is the solution to some state.

Proof of Theorem F.8. For each solvable state s, denote by S̃(s) the set of sub-states resultant from separating s by solution
length in the base environment. Define the solution-length-separated additive extension p̃ to p such that p̃(s̃) ∝ q̃+(s̃) for
s̃ ∈ S̃(s), or more precisely,

p̃(s̃) = p(s)
q̃+(s̃)

q+(s)
, q+(s) =

∑
s̃∈S̃(s)

q̃+(s̃).

Here,
q̃+((s, l)) :=

∑
σ∈Sol+(s)

σ expands to l base actions

|A+|−|σ|

denotes the q of the A+-macroaction augmentation of M̃0 (the solution-length separation ofM0 with respect to A0), and
not the solution-length separation ofM+ (the A+-macroaction augmentation ofM0).

Then

log
q0(s)

q+(s)
= log

∑
s̃∈S̃(s)

q̃+(s̃)

q+(s)

q̃0(s̃)

q̃+(s̃)
≥
∑

s̃∈S̃(s)

q̃+(s̃)

q+(s)
log

q̃0(s̃)

q̃+(s̃)

by Jensen’s inequality, so

Jexplore(M+; p)− Jexplore(M0; p) = Es∼p

[
log

q0(s)

q+(s)

]
≥ Es̃∼p̃

[
log

q̃0(s̃)

q̃+(s̃)

]
.
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It thus suffices to lower-bound the latter. Let’s consider base solution lengths l separately.

Fix some l ≥ 1. Define p̃l to be the conditional distribution of p̃ on sub-states with solution length l. In other words, if S̃l

denotes the set of sub-states with solution length l, then p̃l is a distribution over S̃l defined as

p̃l(s̃) =
p̃(s̃)

λ̃(l)
, λ̃(l) =

∑
s̃′∈S̃l

p̃(s̃′).

We write

Es̃∼p̃l

[
log

q̃0(s̃)

q̃+(s̃)

]
= Es̃∼p̃l

[
log

q̃0(s̃)

q̃+(s̃)/
∑

s̃′∈S̃∗
l
q̃+(s̃′)

]
− log

∑
s̃′∈S̃∗

l

q̃+(s̃
′), (35)

where S̃∗
l denotes the set S̃l of sub-states with solution length l, along with a dummy state s̃d for every length-l action

sequence that isn’t a solution to any state. Note that q̃0(s̃d) = |A0|−l for each dummy state so that
∑

s̃′∈S̃∗
l
q̃0(s̃

′) =

|A0|l|A0|−l = 1, whereas q̃+(s̃d) =
∑

σ ∈ (A+)+ expands to α |A+|−|σ| where α is the action sequence assigned as the solution
to s̃d. As usual for dummy states, we define p̃l(s̃d) = 0.

Let’s first lower-bound the first term on the RHS of Equation (35):

Es̃∼p̃l

[
log

q̃0(s̃)

q̃+(s̃)/
∑

s̃′∈S̃∗
l
q̃+(s̃′)

]
= DKL

(
p̃l ∥

q̃+(·)∑
s̃′∈S̃∗

l
q̃+(s̃′)

)
−DKL (p̃l ∥ q̃0) ≥ −DKL (p̃l ∥ q̃0) . (36)

Let’s now upper-bound the sum in the second term on the RHS of Equation (35). We write∑
s̃′∈S̃∗

l

q̃+(s̃
′) =

∑
σ∈(A+)∗

σ expands to l base actions

|A+|−|σ|

which is a function fl(x2, . . . , xK) where xk is the number of macroactions of length k divided by |A+| and K is the
maximum length of any macroaction. To see that this is a function of only l and xk, notice that changing the number of
macroactions of every length as well as the number of base actions by the same factor ξ (which keeps all xk unchanged)
will result in ξl

′
times more sequences σ ∈ (A+)

∗ such that |σ| = l′ and σ expands to l base actions, whereas the |A+|−l′

summand is multiplied by a factor of ξ−l′ for these sequences. The two factors cancel out, thus leaving the entire sum
unchanged.

Now, let’s derive a recursive formula for fl(x2, . . . , xK) where the xi are treated as parameters. To do this, we separate the
sum over σ into cases depending on whether the first action in σ is a macroaction, and its length if yes. If the first action in
σ is a base action, then the rest of σ expands to length l − 1, so the contribution to the sum is x1fl−1(x2, . . . , xK), where
x1 := 1−

∑K
k=2 xk is the number of base actions divided by |A+|. If the first action in σ is a macroaction of length k, then

the rest of σ expands to length l − k, so the contribution to the sum is xkfl−k(x2, . . . , xK). To summarize,

fl =

K∑
k=1

xkfl−k,

where it is understood that fi = 0 for i < 0. The base case is f0 = 1. Since the sum of the coefficients xk in the recursive
formula equals 1, fl is just a weighted average of fl−1, fl−2, . . . , fl−K . Thus, if fl ≤ a for 1 ≤ l ≤ K then fl ≤ a for all
l ≥ 1.

Let’s show by induction on K that
fl ≤ 1− x1 + x2

1 (37)

for all l ≥ 1. It suffices to show that fl ≤ 1− x1 + x2
1 for 1 ≤ l ≤ K.

For K = 1, f1 = x1 = 1 = 1−x1+x2
1. For K = 2, f1 = x1 ≤ x1+(1−x1)

2 = 1−x1+x2
1 and f2 = x1f1+(1−x1) =

1− x1 + x2
1.

Now, for K ≥ 3, assume the K − 1 and K − 2 cases hold.
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Let’s upper-bound fl for the following two cases separately: (i) 1 ≤ l ≤ K − 1; (ii) l = K.

(i) Define x′
k = xk/x̄K for 1 ≤ k ≤ K − 1 where x̄K := 1− xK =

∑K−1
i=1 xi. Define the sequence f ′

l =
∑K−1

k=1 x′
kf

′
l−k

with f ′
i = 0 for i < 0 and f ′

0 = 1. Then the inductive hypothesis gives f ′
l ≤ 1− x′

1 + x′2
1 for 1 ≤ l ≤ K − 1. It is easy to

show by induction on l that fl = (x̄K)lf ′
l for 0 ≤ l ≤ K − 1, so for 1 ≤ l ≤ K − 1,

fl ≤ x̄K(1− x′
1 + x′2

1 ) = x̄K − x1 +
x2
1

x̄K
,

where x̄K is restricted to the range x1 ≤ x̄K ≤ 1. Since x̄K +
x2
1

x̄K
is increasing for x̄K ≥ x1, its maximum is reached when

x̄K = 1, i.e.,

fl ≤ x̄K − x1 +
x2
1

x̄K
≤ 1− x1 + x2

1.

(ii) Note that recursively expanding the recursion formula for fl until we reach the base cases results in a polynomial in
x1, . . . , xK . It is easy to see by induction on l that, for 1 ≤ l ≤ K, no term contains xk where k > l and there is a single
term containing xl which is just xl. So fK−1 = P1(x1, . . . , xK−2) + xK−1 for some polynomial P1, and

fK =

K∑
k=1

xkfK−k

= x1(P1(x1, . . . , xK−2) + xK−1) +

K−2∑
k=2

xkfK−k + xK−1f1 + xK

= P2(x1, . . . , xK−2) + 2x1xK−1 + xK

for some polynomial P2. Substituting xK = 1−
∑K−1

k=1 xk results in

fK = P3(x1, . . . , xK−2) + xK−1(2x1 − 1)

for some polynomial P3. This is linear in xK−1 where 0 ≤ xK−1 ≤ 1−
∑K−2

i=1 xi, so

fK ≤ max
{
fK |xK−1=0, fK |xK=0

}
where

fK |xK−1=0 = P3(x1, . . . , xK−2)

fK |xK=0 = P3(x1, . . . , xK−2) +

(
1−

K−2∑
i=1

xi

)
(2x1 − 1).

fK |xK=0 ≤ 1− x1 + x2
1 by the inductive hypothesis. Now let’s upper-bound fK |xK−1=0.

Note that, regardless of the value of xK−1, we have f0 = 1 and fk ≤ 1 − x1 + x2
1 for 1 ≤ k ≤ K − 2 by the inductive

hypothesis, since these values of fk are independent of xK−1. Thus,

fK−1|xK−1=0 =

K∑
k=1

xkfK−1−k ≤
K−2∑
k=1

xk(1− x1 + x2
1) = (1− xK)(1− x1 + x2

1)

fK |xK−1=0 =

K∑
k=1

xkfK−k

≤ x1(1− xK)
(
1− x1 + x2

1

)
+

K−2∑
k=2

xk

(
1− x1 + x2

1

)
+ xK

= (x1(1− xK) + 1− x1 − xK)
(
1− x1 + x2

1

)
+ xK

= (1− xK(1 + x1))
(
1− x1 + x2

1

)
+ xK

= 1− x1 + x2
1 − xK

(
1 + x3

1

)
+ xK

≤ 1− x1 + x2
1.
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Thus, we have shown that fK ≤ 1−x1+x2
1, which completes the inductive step. This concludes the proof of Equation (37).

Now,

− log
∑
s̃′∈S̃∗

l

q̃+(s̃
′) = − log fl ≥ 1− fl ≥

|A0|
|A+|

(
1− |A0|
|A+|

)
, (38)

where the last inequality follows from Equation (37) with x1 = |A0|/|A+|.

We now substitute Equations (36) and (38) into Equation (35) to obtain

Es̃∼p̃l

[
log

q̃0(s̃)

q̃+(s̃)

]
≥ |A0|
|A+|

(
1− |A0|
|A+|

)
−DKL (p̃l ∥ q̃0) .

Thus, we finally have

Jexplore(M+; p)− Jexplore(M0; p) ≥ Es̃∼p̃

[
log

q̃0(s̃)

q̃+(s̃)

]
=

∞∑
l=1

λ̃(l)Es̃∼p̃l

[
log

q̃0(s̃)

q̃+(s̃)

]

≥
∞∑
l=1

λ̃(l)

(
|A0|
|A+|

(
1− |A0|
|A+|

)
−DKL (p̃l ∥ q̃0)

)
≥ |A0|
|A+|

(
1− |A0|
|A+|

)
−DKL

(
p̃ ∥ λ̃q̃0

)
.

G. Relating p-Incompressibility to Skill Learning
The intuition that skills should optimally compress successful trajectories has been previously used by skill-discovery
algorithms like LOVE and LEMMA. Using the incompressibility measures introduced in this paper, we can approach skill
learning more rigorously. There are two approaches to converting p-incompressibility into a skill-learning objective.

The first approach is to find A+ that minimizes the lower bound on the p-learning difficulty increase ratio as given in
Theorem 4.2. This is equivalent to minimizing

L1(A+) =
|A+|

log |A+|
sup

0<ε<1

H[P+]− log
(
1−ε
ε

)
log
(

|A0|
1−ε

) , (39)

where the sup factor is proportional to the A+-merged p-incompressibility. Usually, H[P+] is large, as a result of which the
maximizing ε satisfies ε≪ 1 and H[P+]≫ log

(
1−ε
ε

)
. Thus, minimizing L1(A+) becomes equivalent to minimizing

L2(A+) =
|A+|

log |A+|
H[P+]. (40)

When |A+| is known or given as a hyperparameter, then the objective is to minimize

L3(A+) = H[P+]. (41)

Note that in practice, it is not possible to compute P+, the distribution of shortest solutions using actions from A+ to states
generated by the environment. However, we do have a training set of offline experience, so we can use our skills to rewrite
these solutions and define P̂+ to be the resultant empirical distribution of abstracted solutions. The P+ appearing in the
objectives L1,L2,L3 should thus be interpreted as P̂+ as calculated from our training set.

However, the resultant approximation of H[P+] will be a significant under-approximation if the training set is much smaller
than the number of states that cover most of the state space under p. In this case, we recommend modeling P+ with the
assumption that it is generated by sampling i.i.d. actions from a distribution pa,+ over A+, with solution length sampled
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from a distribution pl,+. Then the maximum-likelihood (ML) estimates of pa,+ and pl,+ are just the empirical distribution
of actions and the empirical distribution of solution lengths in the abstracted training set. If we define P̃+ to be the
distribution of action sequences defined by this choice of pa,+ and pl,+, then we can approximate H[P+] ≈ H[P̂+, P̃+] =
H[pl,+] + l+H[pa,+], where l+ := El∼pl,+

[l] is the average solution length. Under this approximation, L3 becomes

L4(A+) = H[pl,+] + l+H[pa,+]. (42)

(We can similarly apply this approximation to L1 and L2.) It is often the case that H[pl,+] is much smaller than l+H[pa,+],
so neglecting that term results in the objective

L5(A+) = l+H[pa,+]. (43)

Note that L5 is exactly the minimum description length (MDL) objective used by LOVE (Jiang et al., 2022). It represents
the average number of bits required to encode an abstracted solution, where the encoding of actions is optimized for the
empirical distribution of actions in the abstracted training set.

The second approach to deriving a skill learning objective from p-incompressibility is based on the idea that the maximally
abstracted environment is the least compressible. Using unmerged p-incompressibility to measure incompressibility, this
corresponds to the maximization objective

J6(A+) = IC(M+; p) = sup
0<ε<1

H[p]− log
(
1−ε
ε

)
Es∼p[d+(s)] log

(
|A+|
1−ε

) . (44)

Similar to H[P+] in L1, H[p] in J6 is often large, in which case the maximizing ε satisfies ε≪ 1 and H[p]≫ log
(
1−ε
ε

)
.

Under this approximation, the maximization objective becomes the minimization objective

L7(A+) = Es∼p[d+(s)] log |A+|. (45)

As with P+, Es∼p[d+(s)] cannot be computed exactly, so we approximate it with the average solution length in the abstracted
training set, i.e., l+. As a result,

L7(A+) = l+ log |A+|, (46)

which is just L5 but with a uniform distribution for pa,+. It can thus also be interpreted as an MDL objective where the
encoding of actions is a uniform code. Note that this is exactly the objective used by LEMMA (Li et al., 2022).
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