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A CONVERGENCE BEHAVIOUR OF FEDSAM

The modified loss of FedSAM has the form below

C̃FEDSAM (ω) = C(ω) +
ε

2mn

n−1∑
i=0

∥∇Ci(ω)∥2 − (
Eϵ

4mn
− ε

2mn
)

m−1∑
j=0

∥∇Ci(ω)−∇Cij(ω)∥2

+
ε

2mn

n−1∑
i=0

m−1∑
j=0

E−1∑
k=0

∥∇Cij(ω)−∇Cijk(ω)∥2

if we ignore the subsidiary implicit regularizer caused by frequent application of mini-batch gradient
norm penalty. The implicit regularizer for FedSAM is composed of three terms: a generalizing term
that penalizes the gradient norm, a drifting term that disperses the client gradients, and a new term.
One thing to notice is that all three terms depend on the variable ε. The presence of ε in the drifting
term decreases the magnitude of the drifting term, reducing dispersion of client gradients. Also, it is
possible to predict that the variance of mini-batch gradients will decrease when the new term, with
a form of ε

2mn

∑n−1
i=0

∑m−1
j=0

∑E−1
k=0 ∥∇Cij(ω)−∇Cijk(ω)∥2, is minimized.

We empirically checked the effect of those terms by changing the value of ε to Eϵ/2, which can
make the magnitude of the drifting term zero while increasing the magnitude of the new term. We
have done experiments on MNIST and Fashion-MNIST on non-IID settings and full client participa-
tion. The learning rate was 0.001 and we trained the model for 300 rounds for MNIST, 500 rounds
for Fashion-MNIST. The model was different from the main experiments: we used a CNN model
consisting of 2 convolutional layers with 32 and 64 7 × 7 filters and a softmax layer for all three
experiments, which is a model bigger than the model used in previous experiments for MNIST and
Fashion-MNIST. We used a larger model for stability of mini-batch gradients.

(a) (b)

Figure A.1: The value of ε during training. Training was done on (a) MNIST and (b) Fashion-
MNIST with non-IID settings and full client paricipation. The dotted line denotes Eϵ/2. It is
possible to see that ε is smaller than Eϵ/2.

First thing done was investigating the value of ε during a normal training with FedSAM. The value
of ε was set as 0.01/∥∇Cijk(ω)∥. As shown in Figure A.1, while the value of ε mildly fluctuated
during training, the value stayed below Eϵ/2, which accords with our assumption on the value of ε.
Next thing done was inspecting the effect of the mini-batch gradient variance. One attempt we made
was to change the value of ε to Eϵ/2 in the early stages of training. As a result, the gradient exploded
and the loss became NaN, which means that the mini-batch gradient variance is heavily affecting the
convergence behaviour. One of the reason for such an explosion was due to the increased variance
of the mini-batch gradients. As shown in Figure A.2, the variance of mini-batch gradients rapidly
increased in the early stages of training and slowly decreased in the later stages. The increased
magnitude of the term

∑m−1
j=0

∑E−1
k=0 ∥∇Cij(ω) − ∇Cijk(ω)∥2 could heavily affect the gradient

variance in the early stages.

Therefore, in additional experiments, we switched the value of ε at the late stage of training where
the gradient variance is reduced and the training procedure is stable. We switched the value at
200-th round on MNIST and 300-th round on Fashion-MNIST. As a result, though the convergence
behaviour became extremely unstable initially after switching, the performance quickly catched up
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(a) (b)

Figure A.2: Mini-batch gradient variance during training of (a) MNIST and (b) Fashion-MNIST.
Though the variance may rapidly increase initially after the switch, the variance decreases and be-
comes smaller than the one of FedSAM in later stages.

(a) (b)

Figure A.3: Test accuracy(%) during training of (a) MNIST and (b) Fashion-MNIST. We switched
the value of ε to Eϵ/2 at 200-th round for MNIST, 300-th round for Fashion-MNIST. Though the
convergence behaviour became extremely unstable initially after switching, the performance quickly
catched up to or surpassed the ones of FedSAM.

to or surpassed the ones of FedSAM. In spite of a huge gap between the value of ε and Eϵ/2 in late
rounds, the performance was similar or better. The results show that the drifting effect is mitigated
more when ε is as big as Eϵ/2.

Through a backward error analysis and experiments, we concluded that FedSAM enhances the con-
vergence behaviour by mildly and gradually removing the drifting term of the modified loss, which
is similar to performing an ’interpolation’ between FedAvg and FedSGD.

B HOW A DRIFTING TERM AFFECTS THE CONVERGENCE SPEED OF FEDAVG

In this section, we do not explicitly show an exact bound of convergence rate of FedAvg. Instead,
we provide a brief overview how a drifting term slows the convergence speed of FedAvg. For
ease of analysis, we only consider a situation where all clients participate in all rounds. Ignoring a
generalizing term, we consider the following optimization problem:

min
ω

C̃(ω) := C(ω)− Eϵ

4m

m−1∑
j=0

∥∇C(ω)−∇Cj(ω)∥2
 (33)

Then we make a few assumptions on cost functions C0, . . . , Cm−1 for an easier analysis.

Assumption 1. Cost functions C0, . . . , Cm−1 are all L-smooth: ∥∇Cj(x)−∇Cj(y)∥2 ≤ L∥x−
y∥2 for any x, y and L > 0.

Assumption 2. The learning rate or step size ϵ is bounded: ϵ ≤ 1/L.
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Assumption 3. The gradient norm of the variance of cost functions divided by the gradient norm

of the average cost function is bounded: ∥∇Var[∇Cj(ω)]∥2

∥∇C(ω)∥2
=

∥ 1
m

∑m−1
j=0 ∇∥∇C(ω)−∇Cj(ω)∥2

2∥2

∥∇C(ω)∥2
≤ σ̃.

Overview. Our assumption that cost functions are L-smooth implies that the average cost function
C is also L-smooth. This property leads to the following inequality:

C(y) ≤ C(x) + ⟨∇C(x), y − x⟩+ L

2
∥y − x∥22 (34)

If we let x = ω and y = ω+ = ω−ϵ∇C̃(ω) = ω−ϵ∇C(ω)+ Eϵ2

4m

∑m−1
j=0 ∇∥∇C(ω)−∇Cj(ω)∥22,

which is a one-step update of gradient descent from ω, we then get

C(ω+) = C(ω − ϵ∇C(ω) +
Eϵ2

4m

m−1∑
j=0

∇∥∇C(ω)−∇Cj(ω)∥22)

≤ C(ω)− ⟨∇C(ω), ϵ∇C(ω)− Eϵ2

4m

m−1∑
j=0

∇∥∇C(ω)−∇Cj(ω)∥22⟩

+
L

2
∥ϵ∇C(ω)− Eϵ2

4m

m−1∑
j=0

∇∥∇C(ω)−∇Cj(ω)∥22∥22

= C(ω)− ϵ(1− Lϵ

2
)∥∇C(ω)∥22 +

Eϵ2

4
(1− Lϵ)⟨∇C(ω),

1

m

m−1∑
j=0

∇∥∇C(ω)−∇Cj(ω)∥22⟩

+
LE2ϵ4

32
∥ 1

m

m−1∑
j=0

∇∥∇C(ω)−∇Cj(ω)∥22∥22 (35)

Now an important factor for bounding C(ω+) is whether the term ⟨∇C(ω), 1
m

∑m−1
j=0 ∇∥∇C(ω)−

∇Cj(ω)∥22⟩ is not smaller than 0. To know if it is true, we should know what the term means: it
indicates whether 1

m

∑m−1
j=0 ∥∇C(ω) − ∇Cj(ω)∥22 increases or decreases if the parameter is one-

step-updated following the cost function C. If 1
m

∑m−1
j=0 ∥∇C(ω)−∇Cj(ω)∥22 decreases, the term

⟨∇C(ω), 1
m

∑m−1
j=0 ∇∥∇C(ω)−∇Cj(ω)∥22⟩ is larger than 0.

Another thing to notice is that 1
m

∑m−1
j=0 ∥∇C(ω) − ∇Cj(ω)∥22 indicates the variance of client

gradients. In the experiments by Johnson & Zhang (2013), the gradient variance has decreased dur-
ing training in the overall perspective, which indicates that 1

m

∑m−1
j=0 ∥∇C(ω) − ∇Cj(ω)∥22 will

also decrease if the parameter is one-step-updated following the cost function C. This empirical
evidence implies that the assumption ⟨∇C(ω), 1

m

∑m−1
j=0 ∇∥∇C(ω) − ∇Cj(ω)∥22⟩ ≥ 0 is not im-

plausible at least in intermediate stages of training. In this paper, we do not exactly show that
1
m

∑m−1
j=0 ∥∇C(ω)−∇Cj(ω)∥22 will decrease during training but instead show that the approxima-

tion of the gradient variance decreases when the current parameter is far from the optimal point.

⟨∇C(ω),
1

m

m−1∑
j=0

∇∥∇C(ω)−∇Cj(ω)∥22⟩ = ⟨∇C(ω),
1

m

m−1∑
j=0

∇∥∇C(ω)∥22 −∇∥∇Cj(ω)∥22⟩

=
2

m

m−1∑
j=0

⟨∇Cj(ω),∇∇Cj(ω)∇C(ω)⟩

− 2⟨∇C(ω),∇∇C(ω)∇C(ω)⟩
(36)

Here, as a rough explanation, we regard the current minimization problem as a maximum likelihood
estimation problem and use the Fisher information matrix as an expectation of Hessian, or the current
problem can be regarded as a sort of least square minimization problem and we can use a Gauss-
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Newton approximation of Hessian. We use ∇∇Cj(ω) ≈ ∇Cj(ω)∇Cj(ω)
T then we get

⟨∇C(ω),
1

m

m−1∑
j=0

∇∥∇C(ω)−∇Cj(ω)∥22⟩ ≈
2

m

m−1∑
j=0

∥∇Cj(ω)∥22⟨∇Cj(ω),∇C(ω)⟩−2∥∇C(ω)∥42

(37)
If the current parameter is far enough from the optimal point so that the angle between ∇C(ω) and
∇Cj(ω) is small, then we can approximate the equation above as

⟨∇C(ω),
1

m

m−1∑
j=0

∇∥∇C(ω)−∇Cj(ω)∥22⟩ ≈
2

m

m−1∑
j=0

∥∇Cj(ω)∥32∥∇C(ω)∥2−2∥∇C(ω)∥42 (38)

Reminding that 1
m

∑m−1
j=0 ∇Cj(ω) = ∇C(ω), by Jensen’s inequality,

⟨∇C(ω),
1

m

m−1∑
j=0

∇∥∇C(ω)−∇Cj(ω)∥22⟩ ≈
2

m

m−1∑
j=0

∥∇Cj(ω)∥32∥∇C(ω)∥2 − 2∥∇C(ω)∥42 ≥ 0

(39)

Now we assume that ⟨∇C(ω), 1
m

∑m−1
j=0 ∇∥∇C(ω) − ∇Cj(ω)∥22⟩ ≥ 0, with assumption 2 and 3

we can bound C(ω+) as

C(ω+) ≤ C(ω)− ϵ(1− Lϵ

2
)∥∇C(ω)∥22 +

Eϵ2

4
(1− Lϵ)σ̃∥∇C(ω)∥22 +

E2ϵ3

32
σ̃2∥∇C(ω)∥22

= C(ω)− ϵ(1− Lϵ

2
− Eϵ

4
(1− Lϵ)σ̃ − E2ϵ2

32
σ̃2)∥∇C(ω)∥22 (40)

Compare this bound to the bound of gradient descent:

C(ω+) ≤ C(ω)− ϵ(1− Lϵ

2
)∥∇C(ω)∥22 (41)

It is possible to observe that the upper bound has become larger and the effective learning rate has
decreased due to the presence of the drifting term, which hampers the convergence of FedAvg.

While the assumption of decreasing gradient variance might be viable in the intermediate stages of
training, such an assumption can be incorrect in the very early stages of training where the norms
of gradients tend to increase rapidly as depicted in Figure A.2. If the variance of gradients increase
due to the increasing norm, ⟨∇C(ω), 1

m

∑m−1
j=0 ∇∥∇C(ω)−∇Cj(ω)∥22⟩ will become negative and

FedAvg might show a faster convergence than variance reduction methods. In fact, we were able to
observe such a phenomenon in early stages of training during our experiments.

(a) (b)

Figure B.1: The variance of pseudo-gradients from clients. The variance rapidly increases in the
initial stage and starts to decrease after a certain number of rounds. This also shows that the as-
sumption of the decreasing gradient variance is viable in real training situations.

We checked the value of the gradient variance during training on MNIST and Fashion-MNIST to
examine if there is a correlation between the accuracy of FedAvg and the fluctuation of the gradient
variance. Not only were we able to verify that FedAvg can be faster in the early stages of training,
but also observe that the time FedAvg starts to become slower coincides with the time the gradient
variance starts to decrease. These results indicate that our analysis on the drifting term not only
explains why FedAvg overall performs worse than gradient descent, but also explains why and when
FedAvg can perform better than other optimization algorithms.
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(a) (b)

Figure B.2: Test accuracies of various federated learning methods on (a) MNIST and (b) Fashion-
MNIST. It is able to observe that FedAvg converges faster than SCAFFOLD and FedDyn in the very
early stages of training. Another thing to observe is that the time FedAvg starts to become slower
coincides with the time the gradient variance starts to decrease.

C IMPLICIT REGULARIZER OF CONVENTIONAL VARIANCE REDUCTION
METHODS

In this section, we define some of the variables otherwise. Here, the cost function of j-th client is
Cj(ω), while the client is performing a full-batch training with the learning rate ϵ. The average of all
cost functions of clients is C(ω). The training is done for n rounds with m clients, and the number
of iterations of each round is E. We assume that all clients participate in training for all rounds.

C.1 IMPLICIT REGULARIZER OF SCAFFOLD

During training of the j-th client at the i-th round, the parameter ωij is being updated based on
the client control variate cij and the server control variate ci. First, we need to approximate cij

and ci, which we will approximate as ∇Cj(ω
(i−1)j
0 ) and ∇C(ω

(i−1)j
0 ). Since the first round of

SCAFFOLD starts with cij and ci as zero which makes the first round equivalent to FedAvg, we
consider that ωij

0 = ω
(i−1)j
0 − Eϵ∇C(ω

(i−1)j
0 ) + O(E2ϵ2) assuming the parameter updates are

similar to the ones of FedAvg. It is possible to check that this assumption can be applied to all later
rounds when the first round is equivalent to FedAvg. Then we can obtain ∇Cj(ω

(i−1)j
0 ) with

∇Cj(ω
(i−1)j
0 ) = ∇Cj(ω

ij
0 + Eϵ∇C(ω

(i−1)j
0 ) +O(E2ϵ2))

= ∇Cj(ω
ij
0 + Eϵ∇C(ωij

0 + Eϵ∇C(ω
(i−1)j
0 )) +O(E2ϵ2))

= ∇Cj(ω
ij
0 + Eϵ∇C(ωij

0 )) +O(E2ϵ2) (42)

Since we will always multiply control variates with Eϵ, we ignore high-order terms and approximate
cij as ∇Cj(ω

ij
0 + Eϵ∇C(ωij

0 )). In the same way, we approximate ci as ∇C(ωij
0 + Eϵ∇C(ωij

0 )).
Now the discrete updates of the parameter ωi during E steps can be expressed step-by-step.

ωij
1 = ωij

0 − ϵ(∇Cj(ω
ij
0 )− cij + ci) (43)

ωij
2 = ωij

0 − ϵ(∇Cj(ω
ij
0 − ϵ(∇Cj(ω

ij
0 )− cij + ci))− cij + ci) (44)

. . .

ωij
E = ωij

0 − Eϵ(∇Cj(ω
ij
0 )− cij + ci) +

E(E − 1)

2
ϵ2∇∇Cj(ω

ij
0 )(∇Cj(ω

ij
0 )− cij + ci) +O(E3ϵ3)

(45)

Neglecting O(E3ϵ3) terms, parameter ωij is expressed as

ωij
E = ωij

0 − Eϵ∇C(ωij
0 )− E2ϵ2∇C(ωij

0 )∇∇(C(ωij
0 )− Cj(ω

ij
0 ))

+
E(E − 1)

2
ϵ2

m−1∑
i=0

∇∇Cj(ω
ij
0 )∇C(ωij

0 ) +O(E3ϵ3) (46)
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After the i-th round, the client parameters are aggregated and form a parameter ωi.

ωi
E = ωi

0 − Eϵ∇C(ωi
0) +

E(E − 1)

4
ϵ2∇∥∇C(ωi

0)∥2 +O(E3ϵ3) (47)

After n rounds of training, the expectation value of global parameter ω will become as

E(ωnE) = ω0 − nEϵ∇C(ω0) +
n2E2ϵ2

4
∇(∥∇C(ω0)∥2 −

1

n
∥∇C(ω0)∥2

+
1

n
∥∇C(ω0)∥2 −

1

nE
∥∇C(ω0)∥2) +O(n3E3ϵ3) (48)

= ω0 − nEϵ∇C(ω0) +
n2E2ϵ2

4
∇(∥∇C(ω0)∥2 −

1

nE
∥∇C(ω0)∥2) +O(n3E3ϵ3) (49)

Then the modified loss under SCAFFOLD is

C̃SCAFFOLD(ω) = C(ω) +
ϵ

4
∥∇C(ω)∥2 (50)

C.2 IMPLICIT REGULARIZER OF FEDDYN

In FedDyn, for the j-th client at the i-th round, firstly the local parameter ωij is updated along the
loss function Rj(ω

ij) = Cj(ω
ij) − ⟨∇Cj(ω

(i−1)j
E ), ωij⟩ + α

2 ∥ω
ij − ωij

0 ∥2 while ∇Cj(ω
(i−1)j
E )

acts as a client control variate and ω(i−1)E is a global parameter from a previous round. The discrete
updates of the parameter ωij during E steps can be expressed step-by-step.

ωij
1 = ωij

0 − ϵ∇Cj(ω
ij
0 ) + ϵ∇Cj(ω

(i−1)j
E )− ϵα(ωij

0 − ωij
0 ) (51)

ωij
2 = ωij

1 − ϵ∇Cj(ω
ij
0 ) + ϵ∇Cj(ω

(i−1)j
E )− ϵα(ωij

1 − ωij
0 )

= (1− ϵα)ωij
1 + ϵαωij

0 − ϵ∇Cj(ω
ij
0 ) + ϵ∇Cj(ω

(i−1)j
E ) (52)

. . .

ωij
E = (1− ϵα)ωij

E−1 + ϵαωij
0 + ϵ∇Cj(ω

(i−1)j
E )− ϵ∇Cj(ω

ij
E−1) (53)

Then, after we organize the equations above, the updated parameter ωij
E will become

ωij
E = (1− ϵα)Eωij

0 + ϵαωij
0 (1 + · · ·+ (1− ϵα)E−1) +

E−1∑
k=0

(1− ϵα)E−1−kϵ(∇Cj(ω
(i−1)j
E )−∇Cj(ω

ij
k ))

= ωij
0 +

1− (1− ϵα)E

ϵα
ϵ∇Cj(ω

(i−1)j
E )−

E−1∑
k=0

(1− ϵα)E−1−kϵ∇Cj(ω
ij
k ) (54)

If we ignore high-order terms, it is possible to express ωij
E as

ωij
E = ωij

0 + (Eϵ− E(E − 1)

2
αϵ2)∇Cj(ω

(i−1)j
E )−

E−1∑
k=0

(ϵ− (E − 1− k)αϵ2)∇Cj(ω
ij
k ) +O(E3ϵ3)

= ωij
0 + (Eϵ− E(E − 1)

2
αϵ2)∇Cj(ω

(i−1)j
E )− (ϵ− (E − 0)αϵ2)∇Cj(ω

ij
0 )

− (ϵ− (E − 1)αϵ2)∇Cj(ω
ij
0 − ϵ∇Cj(ω

ij
0 ) + ϵ∇Cj(ω

(i−1)j
E ) +O(E2ϵ2))− . . .

= ωij
0 − Eϵ(∇Cj(ω

ij
0 )−∇Cj(ω

(i−1)j
E )) +

E(E − 1)

2
ϵ2(α(∇C(ωij

0 )−∇Cj(ω
(i−1)j
E ))

+∇∇C(ωij
0 )∇C(ωij

0 )−∇∇C(ωij
0 )∇Cj(ω

(i−1)j
E )) +O(E3ϵ3) (55)

After the client updates, the server-side control variate is added to the aggregated parameter. Here, if
the parameter ωij is sufficiently minimized throughout the round, the server-side control variate hi

becomes the average of local gradients, 1
m

∑m−1
j=0 ∇C(ωij

0 ) (Acar et al., 2021). During the global
parameter updates, we set α = 1

Eϵ then the discrete updates of the global parameter ω can be
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expressed step-by-step as

ωE ≈ ω0 −
Eϵ

m

m−1∑
j=1

(∇Cj(ω0)−∇Cj(ω
−1j
E ) +∇Cj(ω

0j
E )) +

E(E − 1)

2
ϵ2

m−1∑
j=0

(α(∇C(ω0)−∇Cj(ω
0j
E ))

+∇∇C(ω0)∇C(ω0)−∇∇C(ω0)∇Cj(ω
0j
E )) +O(E3ϵ3) (56)

ω2E ≈ ωE − Eϵ

m

m−1∑
j=1

(∇Cj(ωE)−∇Cj(ω
0j
E ) +∇Cj(ω

1j
E )) +

E(E − 1)

2
ϵ2

m−1∑
j=0

(α(∇C(ωE)−∇Cj(ω
1j
E ))

+∇∇C(ωE)∇C(ωE)−∇∇C(ωE)∇Cj(ω
1j
E )) +O(E3ϵ3)

= ω0 −
Eϵ

m

m−1∑
j=1

(∇Cj(ω0)−∇Cj(ω
−1j
E ) +�����∇Cj(ω

0j
E )

+∇Cj(ωE)−�����∇Cj(ω
0j
E ) +∇Cj(ω

1j
E )) + . . . (57)

. . .

Ignoring high-order terms, then the expected value of ωnE can be approximated as

ωnE ≈ ω0 − nEϵ∇C(ω0)− Eϵ
1

m

m−1∑
j=0

∇Cj(ω
(n−1)j
E ) +

n2E2ϵ2

4
∇(∥∇C(ω0)∥2 −

1

n
∥∇C(ω0)∥2)

+O(n3E3ϵ3) (58)

If the parameter was updated enough, the modified loss can be approximated as

C̃FEDDYN (ω) ≈ C(ω) +
Eϵ

4
∥∇C(ω)∥2 (59)

If the value of α is smaller, FedDyn shows effect as if the learning rate has become larger to 1/α.
With different α, if 1/α is small enough, the aggregated parameter ωnE can be approximated as

ωnE ≈ ω0 −
n

α
∇C(ω0) +

n2

4α2
∇(∥∇C(ω0)∥2 −

1

n
∥∇C(ω0)∥2) +O(

n3

α3
) (60)

and the modified loss can be approximated as

C̃FEDDYN (ω) ≈ C(ω) +
1

4α
∥∇C(ω)∥2 (61)

However, there is one limitation to this analysis: as in Acar et al. (2021) we assumed that hi becomes
1
m

∑m−1
j=0 ∇C(ωij

0 ) when a round ends. Such an assumption is satisfied when the local loss function

Rj(ω
ij) = Cj(ω

ij) − ⟨∇Cj(ω
(i−1)j
E ), ωij⟩ + α

2 ∥ω
ij − ωij

0 ∥2 is sufficiently minimized for a long
period. The point of collision is another assumption of our analysis: a small magnitude of Eϵ. A
small magnitude of Eϵ hampers a sufficient minimization of the local loss function Rj(ω

ij). Though
we assumed that hi becomes 1

m

∑m−1
j=0 ∇C(ωij

0 ) following the assumption of Acar et al. (2021), it
makes Equation 61 remain as an approximation of the modified loss of FedDyn.
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