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Abstract
Semi-supervisedmedical image segmentation has gained increasing
attention due to its potential to alleviate the manual annotation bur-
den. Mainstream methods typically involve two subnets, and con-
duct a consistency objective to ensure them producing consistent
predictions for unlabeled data. However, they often ignore that the
complementarity of model predictions is equally crucial. To realize
the potential of the multi-subnet architecture, we propose a novel
cross-view mutual learning method with a two-branch co-training
framework. Specifically, we first introduce a novel conflict-based
feature learning (CFL) that encourages the two subnets to learn dis-
tinct features from the same input. These distinct features are then
decoded into complementary model predictions, allowing both sub-
nets to understand the input from different views. More importantly,
we propose a cross-view mutual learning (CML) to maximize the
effectiveness of CFL. This approach requires only modifications to
the model inputs and supervisory signals, and implements a hetero-
geneous consistency objective to fully explore the complementarity
of model predictions. Consequently, the aggregated predictions can
effectively capture both consistency and complementarity across
two subnets. Experimental results on three public datasets demon-
strate the superiority of CML over previous SoTA methods. Code is
available at https://github.com/SongwuJob/CML.
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1 Introduction
Accurate identification of tissue structures or lesion regions is an
essential task in medical image processing, and has achieved re-
markable strides with the advance of deep learning [11, 12, 37, 40].
However, most current approaches generally rely on a large amount
of meticulously annotated data, which is quite time-consuming,
requiring expertise [8, 10]. To alleviate tedious manual labeling,
semi-supervised medical image segmentation (SSMIS) methods
[7, 17, 28, 32] have gained prominence, where they require only a
limited amount of labeled data, and utilize abundant unlabeled data
to achieve satisfactory effectiveness.

In SSMIS, the effective utilization of unlabeled data is an always-
on topic [35]. Mainstream methods typically involve two similar
networks, and conduct pseudo-label supervision [23] or consis-
tency regularization [13] to make two subnets producing consistent
predictions. Mean Teacher (MT) is a typical framework and pro-
pels a series of SSMIS works [19]. One of the most representative
works is FixMatch [18], which employs the Teacher network to gen-
erate pseudo-labels on weakly-augmented unlabeled images, and
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Figure 1: A brief description of the process forMean Teacher (MT), Co-training, and the proposed CML frameworks, respectively.

(a) MT vs Performance (b) Co-training vs Performance (c) CML vs Performance

Figure 2: The training process for MT, Co-training, and CML frameworks on LA dataset using 10% labeled data. (a) Teacher
network, limited by EMA, exhibits performance variation consistent with Student network. (b) Co-training framework makes
the two subnets presenting an adversarial rise, but the implementation of cross supervision gradually degrades them into the
same view. (c) The proposed CML encourages the two subnets to reason the same input from different views, and the aggregated
predictions benefited from complementary semantics achieve superior effectiveness.

supervises the Student network learning the strongly-augmented
version. Based on this, BCP [1] copy-pastes labeled and unlabeled
data bidirectionally for alleviating empirical distribution mismatch.
Despite the superior results achieved by these methods, the limita-
tion imposed by Exponential Moving Average (EMA) hinders the
Teacher network to reason individually about inputs, which wastes
the potential of the multi-subnet architecture [25].

The co-training framework is a promising method to this end,
which allows the two subnets to reason the same inputs from dif-
ferent views, and transfer the knowledge learned from one view to
another through cross supervision [26]. For instance, MC-Net [31]
employs different decoder networks, and conducts the consistency
objective to make all decoders producing consistent predictions.
Based on this, MC-Net+ [29] further expands the type of decoder
networks to explore multi-view consistency. CAML [6] based on
mutual learning paradigm transfers the labeled prior knowledge
to unlabeled data. Nevertheless, we observe that most previous co-
training methods typically lack an explicit constraint to encourage
different subnets to learn complementary semantics. And we point
out that such complementary information is essential to realize the
potential of the multi-subnet architecture. In other words, most SS-
MIS methods focus on two subnets making consistent predictions,
ignoring that the complementarity of model predictions is equally
crucial for learning unlabeled data.

In order to exhibit the effectiveness of cross-view complementary
information, we conduct the training process analysis for different
frameworks, i.e., MT and co-training methods, as shown in Fig. 1.

There are three observations: (1) As shown in Fig. 2(a), limited by
EMA, the performance of Teacher network is largely determined
by the Student network, wasting its learning capacity. (2) As shown
in Fig. 2(b), the co-training method can allow the two subnet to
reason the input individually. However, due to the lack of explicit
constraints, the two models gradually become consistent under
cross supervision. (3) The proposed CML method encourages to
make complementary model predictions. As shown in Fig. 2(c), the
performance of the two subnets presents an adversarial rise, and
the aggregation results benefited from cross-view complementary
semantics, thereby achieving superior effectiveness.

In summary, our goal is to enable both subnets reasoning the
input from different views, and the aggregated predictions can fully
exploit cross-view semantics. To this end, we propose a simple yet
effective cross-view mutual learning method, which is consisted
of two main parts: (1) Conflict-based feature learning (CFL):
First, we impose a strong feature-level constraint to maximize the
discrepancy between the feature extracted by two subnets, allowing
two decoders to produce complementary predictions. Based on this,
the cross supervision is conducted to learn more precise predic-
tions for unlabeled data. (2) Cross-view mutual learning (CML):
Considering that direct cross supervision may compel two subnets
to discard complementary information as Fig. 2(b), we propose to
apply the CutMix operation to modify the inputs and supervisory
signals. Meanwhile, we conduct a heterogeneous consistency ob-
jective, which combines two subnets’ pseudo-labels, to supervise
unlabeled data. The final results are obtained through aggregating
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predictions from the two subnets. The proposed CML method also
requires implementing the consistency objective, but we encourage
the exploration of complementary semantics across different views
to learn unlabeled data more effectively. The contributions of our
work can be summarized as below:

• We propose a novel conflict-based feature learning (CFL)
using a co-training framework, which maximizes the dis-
crepancy between the features extracted from the two sub-
nets, thereby enabling them to be decoded as complementary
model predictions for the same input.

• We further propose a cross-view mutual learning (CML)
method based on the CFL, which only requires modifying
the inputs and supervisory signals for exploiting cross-view
complementarity and consistency.

• The proposed CML method does not change the original
network structure, and thus can be simply integrated into
different segmentation models. Extensive experiments are
conducted on three public datasets, demonstrating the supe-
rior segmentation performance.

2 Related Work
Semi-SupervisedMedical Image Segmentation. Many advances

have been made in semi-supervised medical image segmentation
over the past decade. In this field, pseudo-label supervision [2, 9, 23]
and consistency regularization [13, 30, 34] are two widely-used
strategies. Meanwhile, many works effectively utilize unlabeled
data in diverse ways. Specifically, Yu et al. [38] utilize uncertainty
information to guide student network learning highly confident tar-
gets from teacher network. Wang et al. [23] use neighbor matching
to generate reliable pseudo-labels, fully exploring the embedding
similarity with neighboring labeled data. Furthermore, some works
promote consistency in the feature space to effectively leverage
unlabeled data. In specific, Wu et al. [30] explore the pixel-level
smoothness, and then encourage the inter-class separation at the
feature space. Basak et al. [2] introduce a patch-based contrastive
learning framework, which can impose intra-class compactness
and inter-class separability. Zhang et al. [42] propose a self-aware
and cross-sample prototypical learning, which employs feature-
prototype similarity to enrich the diversity of prediction.

Pseudo-Label Learning. In the realm of semi-supervised medi-
cal image segmentation, pseudo-labeling methods have been widely
explored. These approaches [22, 27, 36] incorporate pseudo-labels of
unlabeled data into the training process, augmenting the available
supervisory information. Among them, a key point is how to reduce
the impact of label noise [14]. Specifically, Yao et al. [36] propose a
confidence-aware cross supervision network, which calculates the
KL divergence between original and transformed image predictions,
utilizing it as variance in their confidence-aware cross loss. Wang
et al. [24] introduce a trust module to reassess pseudo-labels from
model outputs, employing a threshold to select high-confidence val-
ues. Moreover, apart from integrating confidence-aware modules,
some approaches focus on enhancing the quality of pseudo-labels.
Li et al. [9] propose a self-ensembling strategy to construct reliable
predictions through exponential moving average, mitigating noise
and unstable pseudo-labels.

Mutual Learning. The co-training framework is a promising
method for semi-supervised medical image segmentation, typically
involving two distinct subnets with similar structures but not shar-
ing parameters [6, 25]. Particularly, they often conduct the mutual
learning paradigm to transfer useful semantics from one subnet to
another via pseudo-labeling, which allows them to provide different
and complementary information for each other [26, 29]. Specifically,
Chen et al. [5] propose a novel cross pseudo supervision, which
trains two subnets with different initialization, and pseudo labels
output from one perturbed segmentation network is used to super-
vise the other segmentation network. Zhang et al. [39] propose a
semi-supervised contrastive mutual learning segmentation frame-
work, which effectively leverages the cross-modal information and
prediction consistency between different modalities to conduct
contrastive mutual learning. Moreover, Wang et al. [25] further
introduce a contrastive difference review module to mitigate the
impact of network bias correction.

3 Method
In semi-supervised scenario, the training set D consists of a small
labeled set D𝑙 = {(𝑋 𝑙

𝑘
, 𝑌 𝑙

𝑘
)}𝑁

𝑘=1, and a large unlabeled set D𝑢 =

{𝑋𝑢
𝑘
}𝑀+𝑁
𝑘=𝑁+1, where 𝑁 ≪ 𝑀 . Specifically, 𝑋𝑘 ∈ R𝐻×𝑊 ×𝐿 repre-

sents the 3D medical volume and 𝑌𝑘 ∈ {0, 1, . . . ,𝐶 − 1}𝐻×𝑊 ×𝐿 is
ground truth with𝐶 categories. Our goal is to train a medical image
segmentation model by fully leveraging both a labeled set D𝑙 and
a much larger unlabeled set D𝑢 .

The overall pipeline of our proposed method is depicted in Fig.
3, with a co-training framework like MC-Net [31] to conduct two
parallel networks to predict the supervisory signals of its coun-
terpart. First, we conduct a novel conflict-based feature learning
(CFL) paradigm that encourages the two subnets to reason the input
from two different views, which will be introduced in Sec. 3.1. Sec-
ond, we propose a simple yet effective cross-view mutual learning
(CML) method that does not need the elaborate pseudo-label correc-
tion strategies, and instead constructs heterogeneous consistency
objective to explore cross-view consistency and complementarity,
as further discussed in Sec. 3.2. In the end, we detail the overall
learning objective in Sec. 3.3.

3.1 Conflict-Based Feature Learning
In this section, we introduce a novel conflict-based feature learn-
ing (CFL) paradigm with a co-training framework. As shown in
Fig. 3, we employ two subnets that share a similar architecture
but have non-shared parameters to conduct mutual learning. Here,
each subnet is divided into an encoder 𝐸𝑖 and a decoder 𝐷𝑖 , where
𝑖 ∈ {0, 1}, denoting the first or second subnet, respectively. Con-
sidering that the objective of CFL is to enable the two subnets
to capture different features from the same input, so the outputs
from different encoder networks should be distinct. In light of this,
we denote the outputs from encoder networks as 𝑓 𝛼

𝑖
= 𝐸𝑖 (𝑋𝛼 ),

where 𝛼 ∈ {𝑙, 𝑢} represents for the labeled data and the unlabeled
data, respectively. Then, we impose a strong constraint L𝛼

𝑑𝑖𝑠
in the

feature space, which minimizes the cosine similarity between the
latent features 𝑓 𝛼

𝑖
in a conflict learning manner. In this way, the

two subnets are able to encode the same input from different views,
thereby capturing different semantic information. The feature-level
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Figure 3: Overall pipeline of CML in the co-training framework. We first apply the CutMix operation to modify the inputs and
supervisory signals to conduct the supervision objective L𝑠𝑢𝑝 . Specifically, for labeled data, we conduct the same CutMix to
generate mixed labels 𝑌 𝑙

𝑚𝑖𝑥
, which are used to supervise the predictions of 𝑋 𝑙

𝑚𝑖𝑥
. For unlabeled data, we construct heterogeneous

supervisory signals 𝑌𝑢
𝑚𝑖𝑥,0 and 𝑌𝑢

𝑚𝑖𝑥,1, obtained by the combination of two subnets’ pseudo-labels, to supervise the predictions
of 𝑋𝑢

𝑚𝑖𝑥
. Note that L𝑑𝑖𝑠 is a conflict-based unsupervised loss, aiming to learn distinct features from the same input.

discrepancy loss L𝛼
𝑑𝑖𝑠

can be formulated as:

L𝛼
𝑑𝑖𝑠,𝑖

= 1 +
𝑓 𝛼
𝑖

· 𝑓 𝛼(1−𝑖 )
∥ 𝑓 𝛼
𝑖
∥ × ∥ 𝑓 𝛼(1−𝑖 ) ∥

, (1)

where 𝑓 𝛼(1−𝑖 ) is a copy of the feature 𝑓
𝛼
(1−𝑖 ) without gradients, avoid-

ing interference with parameter updates in the other subnet. The co-
efficient 1 is to ensure that the value of L𝛼

𝑑𝑖𝑠
is always non-negative.

Note that we need to conduct conflict-based feature learning on
both of the two subnets, so the overall feature-level discrepancy
loss can be expressed as L𝛼

𝑑𝑖𝑠
= L𝛼

𝑑𝑖𝑠,0 + L𝛼
𝑑𝑖𝑠,1.

Meanwhile, we conduct the supervision objective to enable both
subnets making precise predictions. For the labeled images, we use
the ground truths to supervise the model training. Specifically, the
supervision objective L𝑙

𝑠𝑢𝑝 is a linear combination of Dice loss and
Cross-entropy loss, which can be formulated as:

L𝑙
𝑠𝑢𝑝,𝑖 (𝑃

𝑙
𝑖 , 𝑌

𝑙 ) = 1
2

(
L𝑐𝑒 (𝑃𝑙𝑖 , 𝑌

𝑙 ) + L𝑑𝑖𝑐𝑒 (𝑃𝑙𝑖 , 𝑌
𝑙 )
)
, (2)

where 𝑃𝑙
𝑖
= 𝐷𝑖 ◦ 𝐸𝑖 (𝑋 𝑙 ) represents the probability outputs from the

𝑖-th subnet. Particularly, the ground truths are used to supervise

two subnets, and thus the supervision objective for labeled images
can be defined as L𝑙

𝑠𝑢𝑝 = L𝑙
𝑠𝑢𝑝,0 + L𝑙

𝑠𝑢𝑝,1.
For unlabeled images, we implement a mutual learning paradigm

to guide each subnet in making reliable predictions, using pseudo-
labels generated by the other subnet. Specifically, we first compute
the probability outputs for unlabeled images: 𝑃𝑢

𝑖
= 𝐷𝑖 ◦ 𝐸𝑖 (𝑋𝑢 ),

where 𝑖 ∈ {0, 1} represents two different subnets. Then, the pseudo-
labels are generated by 𝑎𝑟𝑔𝑚𝑎𝑥 operation, i.e., �̃�𝑢

𝑖
= 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑃𝑢

𝑖
).

Following pairwise pseudo-labels, we supervise one subnet’s prob-
ability output with the other subnet’s predictions. Then, the consis-
tency objective for unlabeled images is:

L𝑢
𝑠𝑢𝑝 = L𝑢

𝑠𝑢𝑝,0 (𝑃
𝑢
0 , �̃�

𝑢
1 ) + L𝑢

𝑠𝑢𝑝,1 (𝑃
𝑢
1 , �̃�

𝑢
0 ). (3)

In conclusion, the feature-level discrepancy loss L𝑑𝑖𝑠 allows the
two subnets to encode different semantics from the same inputs.
The supervision loss L𝑠𝑢𝑝 transfers useful knowledge from one
subnet to another through pseudo-labeling, and thus makes more
precise predictions for unlabeled data. Overall, the mutual learning
objective based on CFL method is:

L = L𝑙
𝑠𝑢𝑝 + 𝜆1L𝑢

𝑠𝑢𝑝 + 𝜆2L𝑑𝑖𝑠 , (4)
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where L𝑑𝑖𝑠 = L𝑢
𝑑𝑖𝑠

+L𝑙
𝑑𝑖𝑠

is the feature-level discrepancy objective
for both labeled and unlabeled images. 𝜆1 and 𝜆2 are the trade-off
coefficients.

3.2 Cross-View Mutual Learning
Recall that the proposed CFL method in Sec. 3.1 aims to reason
the same inputs from different views, but the previous mutual
learning methods, e.g., Eq. (3), conduct cross supervision to align
the predictions of the two subnets. There are two issues: (1) Aligning
the predictions of the two subnets might weaken the effectiveness
of the CFL method. In other words, the two subnets might degrade
to the extent where they reason the input from the same view. (2)
The cross supervision paradigm would make two subnets ignoring
meaningful semantics from their own view. To this end, we propose
a novel cross-view mutual learning (CML) method to maximize the
effectiveness of CFL. Note that the proposed CML method does not
require changing the original network structure and the learning
objective in Eq. (4). Instead, it only requires a simple yet effective
modification of the input images and supervisory signals to achieve
superior semi-supervised segmentation effectiveness.

Specifically, we first apply the CutMix operation to modify the
input images. There are two advantages: (1) CutMix is a strong data
augmentation that helps the two subnets further learning extra
meaningful semantics, and (2) CutMix allows us to generate hetero-
geneous supervisory signals, which splice pseudo-labels from two
subnets, to maintain own perspectives of each subnet while fully
exploiting complementary semantics from the other. For labeled
images, we randomly select two labeled images (𝑋 𝑙

𝑢 , 𝑋
𝑙
𝑣) along with

their corresponding ground truths (𝑌 𝑙
𝑢 , 𝑌

𝑙
𝑣 ). Then, we paste a ran-

dom crop from X𝑙
𝑣 into labeled image X𝑙

𝑢 . The mixed image-label
pairs for labeled data can be expressed as:

𝑋 𝑙
𝑚𝑖𝑥 = 𝑋 𝑙

𝑢 ⊙ M + 𝑋 𝑙
𝑣 ⊙ (1 −M), (5)

𝑌 𝑙
𝑚𝑖𝑥 = 𝑌 𝑙

𝑢 ⊙ M + 𝑌 𝑙
𝑣 ⊙ (1 −M), (6)

where 1 ∈ {1}𝐻×𝑊 ×𝐿 , and M ∈ {0, 1}𝐻×𝑊 ×𝐿 denotes a zero-
centered mask, where the size of the zero-value region is 𝛽𝐻 ×
𝛽𝑊 × 𝛽𝐿, with 𝛽 ∈ (0, 1). The symbol ⊙ represents element-wise
multiplication.

Intuitively, we have no need to adjust the ground truths to su-
pervise labeled images, so the mixed label 𝑌 𝑙

𝑚𝑖𝑥
is conducted to

directly supervise the model training. The supervision objective for
labeled images can be redefined as:

L𝑙
𝑠𝑢𝑝 = L𝑙

𝑠𝑢𝑝,0 (𝑃
𝑙
𝑚𝑖𝑥,0, 𝑌

𝑙
𝑚𝑖𝑥 ) + L𝑙

𝑠𝑢𝑝,1 (𝑃
𝑙
𝑚𝑖𝑥,1, 𝑌

𝑙
𝑚𝑖𝑥 ), (7)

where 𝑃𝑙
𝑚𝑖𝑥,𝑖

= 𝐷𝑖 ◦ 𝐸𝑖 (𝑋 𝑙
𝑚𝑖𝑥

) represents the probability outputs
from the 𝑖-th network. 𝑖 ∈ {0, 1} denotes two different subnets.

Considering that the CFL method in Eq. (1) makes the two sub-
nets reasoning the same inputs from different views, the outputs are
thus complementary. In light of this, we aim to modify the supervi-
sory signals for unlabeled images, which contain both pseudo-labels
from the own perspective and complementary predictions from the
other subnet. In specific, we apply the similar CutMix operation in
Eq. (5) for unlabeled inputs. Differently, we implement heteroge-
neous mutual learning to make the two subnets acquiring useful
semantics from unlabeled images. Given two unlabeled images

(𝑋𝑢
𝑝 , 𝑋

𝑢
𝑞 ), the mixed image-label pairs for unlabeled data can be

expressed as:

𝑋𝑢
𝑚𝑖𝑥 = 𝑋𝑢

𝑝 ⊙ M + 𝑋𝑢
𝑞 ⊙ (1 −M), (8)

𝑌𝑢
𝑚𝑖𝑥,𝑖 = 𝑌𝑢

𝑝,(1−𝑖 ) ⊙ M + 𝑌𝑢
𝑞,𝑖 ⊙ (1 −M), (9)

where 𝑌𝑢
𝑝,(1−𝑖 ) and 𝑌

𝑢
𝑞,𝑖

are pseudo-labels for the unlabeled images
𝑋𝑢
𝑝 and 𝑋𝑢

𝑞 , obtained from the (1− 𝑖)-th subnet and the 𝑖-th subnet,
respectively. Taking 𝑌𝑢

𝑞,𝑖
as example, we first input 𝑋𝑢

𝑞 to the 𝑖-th
subnet for predicting its probability output: 𝑃𝑢

𝑞,𝑖
= 𝐷𝑖 ◦ 𝐸𝑖 (𝑋𝑢

𝑞 ).
Then, we conduct 𝑎𝑟𝑔𝑚𝑎𝑥 operation: �̃�𝑢

𝑞,𝑖
= 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑃𝑢

𝑞,𝑖
), and

employ non-maximum suppression (NMS) [4] on �̃�𝑢
𝑞,𝑖

to get the
final pseudo-labels 𝑌𝑢

𝑞,𝑖
. Note that we conduct the same operation

for unlabeled image 𝑋𝑢
𝑝 to generate the pseudo-labels 𝑌𝑢

𝑝,(1−𝑖 ) .
Following pairwise heterogeneous pseudo-labels in Eq. (9), we

implement the consistency objective to guide each subnet in cap-
turing useful semantics from unlabeled images. Since we employ a
mixed and different supervisory signal, the two subnets are capa-
ble of fully exploiting the cross-view complementary information
from the CFL method in Sec. 3.1, while maintaining that of their
own perspectives. Overall, the consistency objective for unlabeled
images can be redefined as:

L𝑢
𝑠𝑢𝑝 = L𝑢

𝑠𝑢𝑝,0 (𝑃
𝑢
𝑚𝑖𝑥,0, 𝑌

𝑢
𝑚𝑖𝑥,0) + L𝑢

𝑠𝑢𝑝,1 (𝑃
𝑢
𝑚𝑖𝑥,1, 𝑌

𝑢
𝑚𝑖𝑥,1), (10)

where 𝑃𝑢
𝑚𝑖𝑥,𝑖

= 𝐷𝑖 ◦ 𝐸𝑖 (𝑋𝑢
𝑚𝑖𝑥

) represents the probability outputs
from the 𝑖-th network.

Since the feature-level discrepancy loss L𝑑𝑖𝑠 is an unsupervised
loss to maximize discrepancy in feature space, it is not related
to the supervisory signals. Hence, we do not need to change the
form of L𝑑𝑖𝑠 . Note that 𝑓 𝛼𝑖 = 𝐸𝑖 (𝑋𝛼

𝑚𝑖𝑥
) in the CML method, where

𝛼 ∈ {𝑙, 𝑢} represents for the labeled data and the unlabeled data,
respectively. Besides, the proposed CML method only changes the
input images and supervisory signals, and thus the overall learning
objective is in form equal to Eq. (4), using the redefined supervision
objective L𝑙

𝑠𝑢𝑝 and L𝑢
𝑠𝑢𝑝 in Eqs. (7, 10).

3.3 The Overall Learning Objective
Inspired by previous work [1], we apply the CutMix augmentation
on labeled data for training a supervised model during pre-training.
Meanwhile, we conduct the feature-level discrepancy objective to
encourage the two subnets capturing different semantics from the
same inputs. Then, the entire learning objective during pre-training
can be formulated as:

L𝑝𝑟𝑒 = L𝑙
𝑠𝑢𝑝 + 𝜆2L𝑙

𝑑𝑖𝑠
, (11)

where 𝜆2 is a trade-off coefficient in Eq. (4).
During self-training, we initialize two subnets using the pre-

trained weights from Eq. (11). Then, we jointly learn the supervision
objectives L𝑙

𝑠𝑢𝑝 and L𝑢
𝑠𝑢𝑝 , and feature-level discrepancy objective

L𝑑𝑖𝑠 , the total loss is in form equal to Eq. (4). Note that we redefine
L𝑙
𝑠𝑢𝑝 and L𝑢

𝑠𝑢𝑝 in Sec. 3.2 to fully exploit cross-view semantics.
In the testing stage, given a test image 𝑋𝑡𝑒𝑠𝑡 , we first compute

the probability maps from the two subnets: 𝑃𝑡𝑒𝑠𝑡,𝑖 = 𝐷𝑖 ◦ 𝐸𝑖 (𝑋𝑡𝑒𝑠𝑡 ).
And the final prediction maps can be obtained in an equal-sum
manner by: 𝑌𝑡𝑒𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥 ((𝑃𝑡𝑒𝑠𝑡,0 + 𝑃𝑡𝑒𝑠𝑡,1)/2).
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Table 1: Comparison results with SoTA semi-supervised seg-
mentation methods on the LA dataset.

Method
Scans used Metrics

Labeled Unlabeled Dice(%)↑ 95HD(voxel)↓ ASD(voxel)↓

V-Net 4(5%) 0 52.55 47.05 9.87
V-Net 8(10%) 0 82.74 13.35 3.26
V-Net 80(All) 0 91.47 5.48 1.51

UA-MT[38]

4(5%) 76(95%)

82.26 13.71 3.82
SASSNet[10] 81.60 16.16 3.58
DTC[13] 81.25 14.90 3.99
URPC[15] 82.48 14.65 3.65
MC-Net[31] 83.59 14.07 2.70
SS-Net[30] 86.33 9.97 2.31
MCF[25] 86.52 9.12 2.40
Ours 87.63 8.92 2.23

UA-MT[38]

8(10%) 72(90%)

87.79 8.68 2.12
SASSNet[10] 87.54 9.84 2.59
DTC[13] 87.51 8.23 2.36
URPC[15] 86.92 11.13 2.28
MC-Net[31] 87.62 10.03 1.82
SS-Net[30] 88.55 7.49 1.90
MCF[25] 88.05 8.32 2.08
Ours 90.36 6.06 1.68

4 Experiments
4.1 Datasets and Evaluation Metrics
LA dataset. The LA dataset [33] is the benchmark dataset for
the 2018 Atrial Segmentation Challenge, which comprises 100
gadolinium-enhanced MR imaging scans (GE-MRIs) and corre-
sponding ground truths, with an isotropic resolution of 0.625 ×
0.625 × 0.625 mm3.
ACDC dataset. The ACDC dataset [3] is the benchmark dataset for
the Automated Cardiac Diagnosis Challenge, which contains 100
short axis cine-MRIs, and expert annotations are provided for three
classes: left and right ventricle (LV, RV), and myocardium (MYO).
BraTS2019 dataset. The BraTS2019 dataset [16] is a whole brain
tumor segmentation dataset, which contains 335 scans with four
modalities (FLAIR, T1, T1ce, and T2), and each sequence with an
isotropic resolution of 1 mm3.
Metrics. Three widely-used metrics are used to evaluate the model
performance, including Dice score (%), 95% Hausdorff Distance
(95HD) in voxel, and Average Surface Distance (ASD) in voxel.

4.2 Implementation Details
The proposed CML method is implemented in PyTorch and exe-
cuted on an NVIDIA GeForce RTX 3090 GPU. Following previous
works [13, 15, 30], we apply random cropping, flipping, and rota-
tion to augment the training dataset. All the segmentation tasks are
optimized using an SGD optimizer with an initial learning rate of
0.01. For LA and BraTS2019 datasets, we set 𝜆1 = 1 and 𝜆2 = 0.2
to implement cross-view mutual learning. Inspired by [1], the zero-
centered maskM is used for CutMix operation, where we set 𝛽 = 2

3 .
Additionally, we follow [15, 30] to randomly crop 112 × 112 × 80
patches for the LA dataset, and 96 × 96 × 96 for the BraTS2019
dataset. The 3D V-Net is chosen as the backbone, and the batch size
is 8, including four labeled patches and four unlabeled patches. Par-
ticularly, the pre-training and self-training iterations on LA dataset

Table 2: Comparison results with SoTA semi-supervised seg-
mentation methods on the ACDC dataset.

Method
Scans used Metrics

Labeled Unlabeled Dice(%)↑ 95HD(voxel)↓ ASD(voxel)↓

U-Net 3(5%) 0 47.83 31.16 12.62
U-Net 7(10%) 0 79.41 9.35 2.70
U-Net 70(All) 0 91.44 4.30 0.99

UA-MT[38]

3(5%) 67(95%)

46.04 20.08 7.75
SASSNet[10] 57.77 20.05 6.06
DTC[13] 56.90 23.36 7.39
URPC[15] 55.87 13.60 3.74
MC-Net[31] 62.85 7.62 2.33
SS-Net[30] 65.82 6.67 2.28
MCF[25] 82.37 5.74 1.59
Ours 88.53 1.87 0.57

UA-MT[38]

7(10%) 63(90%)

81.65 6.88 2.02
SASSNet[10] 84.50 5.42 1.86
DTC[13] 84.29 12.81 4.01
URPC[15] 83.10 4.84 1.53
MC-Net[31] 86.44 5.50 1.84
SS-Net[30] 86.78 6.07 1.40
MCF[25] 87.67 3.89 1.14
Ours 89.42 1.42 0.52

Table 3: Comparison results with SoTA semi-supervised seg-
mentation methods on the BraTS2019 dataset.

Method Scans used Metrics

Labeled Unlabeled Dice(%)↑ 95HD(voxel)↓ ASD(voxel)↓

V-Net 25(10%) 0 78.32 22.29 7.36
V-Net 50(20%) 0 80.18 20.57 6.09
V-Net 250(All) 0 88.23 7.21 1.53

MT[19]

25(10%) 225(90%)

81.70 13.28 3.56
DAN[41] 82.50 15.11 3.79
UA-MT[38] 80.93 17.71 5.43
ICT[20] 82.70 13.43 4.07
EM[21] 82.35 14.70 3.68

URPC[15] 84.16 11.01 2.63
MCF[25] 83.67 12.58 3.28
Ours 85.26 9.08 1.83

MT[19]

50(20%) 200(80%)

85.03 7.80 1.89
DAN[41] 84.63 8.96 2.34
UA-MT[38] 85.05 12.31 3.03
ICT[20] 84.67 8.97 2.39
EM[21] 84.82 12.37 3.21

URPC[15] 85.49 8.47 2.04
MCF[25] 84.85 11.24 2.29
Ours 86.63 7.83 1.45

are set as 2k and 15k, and on BraTS2019 dataset are set as 10k and
30k. For ACDC dataset, we set 𝜆1 = 0.5, 𝜆2 = 0.1 for CML, and
𝛽 = 1

2 for CutMix operation. Following [30], we use a 2D U-Net as
the backbone. The input patch size is set as 256 × 256 (2D slices), and
the batch size is 24. The iterations of pre-training and self-training
are set as 10k and 30k, respectively.

4.3 Comparisons and Results with SoTA
In this section, we conduct experiments with varying ratios of
labeled data, and compare the proposed CML with other SSMIS
methods. Specifically, for LA and ACDC datasets, we evaluate
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Figure 4: Segmentation visualization of different SSMIS methods with 10% labeled data on the LA and ACDC datasets.

Table 4: Ablation studies among different losses on the LA
and ACDC datasets with 10% labeled data.

L𝑙
𝑠𝑢𝑝 L𝑑𝑖𝑠 L𝑢

𝑠𝑢𝑝
LA dataset

Dice(%)↑ 95HD(voxel)↓ ASD(voxel)↓

✓ 82.74 13.35 3.26
✓ ✓ 83.73 18.92 4.80
✓ ✓ 88.16 9.83 2.32
✓ ✓ ✓ 90.36 6.06 1.68

L𝑙
𝑠𝑢𝑝 L𝑑𝑖𝑠 L𝑢

𝑠𝑢𝑝
ACDC dataset

Dice(%)↑ 95HD(voxel)↓ ASD(voxel)↓

✓ 79.41 9.35 2.70
✓ ✓ 80.27 7.69 2.36
✓ ✓ 87.75 6.35 1.71
✓ ✓ ✓ 89.42 1.42 0.52

our method against seven SoTA methods, including UA-MT [38],
SASSNet [10], DTC [13], URPC [15], MC-Net [31], SS-Net [30], and
MCF [25]. To ensure a fair comparison, we report the performance
of all competitors under identical experimental settings in SS-Net
[30] across different labeled ratios (i.e., 5% and 10%).

Tabs. 1 and 2 show that the proposed CML method outperforms
previous SSMIS methods, and achieves results very close to the
fully-supervised counterpart. There are three observations: (1) Most
previous methods, like UA-MT, effectively exploit unlabeled data
with a Mean Teacher framework. However, the model performance
is limited by EMA, wasting the potential of multi-subnet architec-
ture. The proposed CML method significantly improves Dice by
5.37% and 2.57% compared to UA-MT on LA dataset with 5% and
10% labeled data. (2) MC-Net and MCF exploit unlabeled data with
a co-training framework, where they conduct the mutual learning
to make two subnets producing consistent predictions, which are

close to our approach. However, they lack an explicit constraint
to explore the complementarity of model predictions. In contrast,
CML introduces a new conflict-based feature learning, which en-
courages the two subnets reasoning the same input from different
views. Notably, the proposed CML improves 95HD by 4.08 and 2.47,
compared to MC-Net and MCF on ACDC dataset with 10% labeled
data. (3) The CML method can fully exploit cross-view semantics to
make more precise predictions for unlabeled data. As presented in
Fig. 4, our method excels in accurately segmenting intricate details
of the target organ, particularly in cases where edges are prone to
misidentification, as highlighted by green circles.

For BraTS2019 dataset, we compare the proposed CMLmethod
with MT [19], UA-MT [38], ICT [20], EM [21], URPC [15], and MCF
[25] in Tab. 3. All methods strictly follow the experimental setting
in URPC [15] using 10% and 20% labeled data. Similarly, Our CML
outperforms the previous SSMIS methods on the BraTS2019 dataset.
In particular, URPC employs uncertainty estimation to implement
multi-layer consistency learning. However, they ignore that the
complementarity of model predictions is equally crucial, which
would limit the SSMIS performance. The proposed CML achieves
significant improvement in Dice, 95HD, and ASD terms, surpassing
the URPC by 1.1%, 1.93, and 0.8 under 10% labeled data.

4.4 Ablation for Loss Components
To understand the effectiveness of loss components in CML, we re-
move each loss individually to observe the corresponding changes
in performance. Specifically, (A) L𝑙

𝑠𝑢𝑝 is a supervision loss to learn
labeled data, preventing model collapse. (B) L𝑑𝑖𝑠 is a feature-level
discrepancy loss that encourages the two subnets to reason the same
input from different views. (C) L𝑢

𝑠𝑢𝑝 is a heterogeneous consistency
loss to learn unlabeled data, fully exploring the complementarity
of model predictions. As shown in Tab. 4, L𝑢

𝑠𝑢𝑝 plays a crucial role
in the proposed CML method, effectively learning useful semantics
from unlabeled data through cross-view mutual learning. Under
10% labeled data, the model with L𝑢

𝑠𝑢𝑝 improves 5.42% and 8.34% in
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(a) �1 vs Performance (b) �2 vs Performance (c) � vs Performance

Figure 5: The model parameter sensitivity analysis for 𝜆1, 𝜆2, and 𝛽 on three public datasets using 10% labeled data.

Dice term compared to single L𝑙
𝑠𝑢𝑝 on the ACDC and LA datasets,

respectively. Moreover, L𝑑𝑖𝑠 ensures that different encoders out-
put distinct features, and thus capture cross-view complementary
semantics. Specifically, L𝑑𝑖𝑠 further improves 2.2% and 1.67% in
Dice term on the ACDC and LA datasets, respectively. Notably,
the complete CML further achieves superior edge segmentation
performance, improving the model without L𝑑𝑖𝑠 by 3.77 in 95HD
term, 0.64 in ASD term on LA dataset, and 4.93 in 95HD term, 1.19
in ASD term on ACDC dataset, respectively.

4.5 Ablation for Model Parameters
In this section, we conduct the model parameter sensitivity analysis
for 𝜆1, 𝜆2, and 𝛽 . In detail, 𝜆1 and 𝜆2 are the balance weights used
to control the influence of different loss compositions. We set the
hyperparameters 𝜆1 and 𝜆2 in the range of {0.1, 0.2, 0.5, 1}. As shown
in Figs. 5(a) and 5(b), the proposed CML is not sensitive when 𝜆1
changes from 0.2 to 1, and 𝜆2 changes from 0.1 to 0.5. Empirically,
we set 𝜆1 = 1 and 𝜆2 = 0.2 for LA and BraTS2019 datasets, and
𝜆1 = 0.5 and 𝜆2 = 0.1 for ACDC dataset.

In addition, we further explore the optimal setting for zero-
centered mask M, i.e., the parameter 𝛽 . Specifically, we set the
hyperparameters 𝛽 = { 1

3 ,
1
2 ,

2
3 ,

5
6 } to observe how the performance

changes. As depicted in Fig. 5(c), the performance of the model ex-
hibits a clear decline in Dice score when 𝛽 is set as a larger or smaller
value. This might be because a larger or smaller zero-centerd mask
could hinder the effectiveness of CutMix operation, making it diffi-
cult to exploit the heterogeneous consistency objective to transfer
useful semantics from one subnet to another.

4.6 Effectiveness of CML
Recalling our proposed method, we first suggest employing co-
training framework to release the potential of multi-subnet archi-
tectures, where the cross pseudo-supervision is used to learn from
unlabeled data, denoted as CPS. Second, we introduce a new conflict-
based feature learning (CFL), which imposes a strong feature-level
constraint based on CPS to encourage the two subnets reasoning
about the same input from different views. In the end, building
upon CFL, we further propose to implement a heterogeneous con-
sistency objective through cross-view mutual learning (CML), fully
exploring the complementarity of model predictions.

Figure 6: The comparison experiment among CPS, CFL, and
CML methods on three dataset under 10% labeled data.

To evaluate the effectiveness of CML, we conduct a comparison
experiment among CPS, CFL, and CML methods with a co-training
framework. As shown in Fig. 6, CML achieves superior performance
under 10% labeled data. Particularly, for the LA and ACDC datasets,
CML with the CutMix operation improves Dice score by 1.8% and
1.3% compared to CFL. This is because the CutMix operation can
effectively enrich the sample space for medical image datasets.
Meanwhile, the proposed CML aggregates the complementary pre-
dictions from two subnets, thereby learning unlabeled data robustly.
Overall, both the proposed CFL and CML methods contribute to
improving the performance of co-training framework.

5 Conclusion
In this work, we propose a novel cross-view mutual learning (CML)
method for semi-supervised medical image segmentation. Specif-
ically, we first introduce a conflict-based feature learning (CFL)
paradigm that imposes a strong feature-level constraint to encour-
age both subnets encoding cross-view complementary semantics.
Building upon CFL, we further employ the CutMix operation to
construct a heterogeneous consistency objective, allowing us to
fully explore the complementarity of model predictions. Note that
the proposed CML method does not alter the origin network, and
thus can be simply integrated into different segmentation models.
Extensive experiments conducted on three datasets demonstrate
the SoTA segmentation performance of CML.
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